1 Sample characteristics (raw variables)

compareGroups::descrTable(~.
                          , Biok_vert_df_raw, 
                          hide.no = '0', 
                          show.p.overall = FALSE,
                          include.label = TRUE)
## 
## --------Summary descriptives table ---------
## 
## _____________________________________________________________ 
##                                                 [ALL]      N  
##                                                 N=218         
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## sex:                                                      218 
##     male                                      82 (37.6%)      
##     female                                   136 (62.4%)      
## age                                          44.3 (12.9)  218 
## BMI                                          28.6 (5.58)  218 
## race:                                                     218 
##     asian                                     3 (1.38%)       
##     black                                     4 (1.83%)       
##     white                                    211 (96.8%)      
## patientno                                    1016 (1365)  218 
## Site_Location:                                            218 
##     Johns Hopkins                             22 (10.1%)      
##     Univeristy of Michigan                    69 (31.7%)      
##     Mayo Clinic                              114 (52.3%)      
##     Pine Rest                                 13 (5.96%)      
## infusionno:                                               218 
##     BL                                        73 (33.5%)      
##     1st                                       72 (33.0%)      
##     3rd                                       73 (33.5%)      
## Blood_Draw_Event:                                         218 
##     Acute Infusion #1 Baseline 100            49 (22.5%)      
##     Acute Infusion #1 Baseline 40             24 (11.0%)      
##     Acute Infusion #1 Stop 100                48 (22.0%)      
##     Acute Infusion #1 Stop 40                 24 (11.0%)      
##     Acute Infusion #3 Stop 100                28 (12.8%)      
##     Acute Infusion #3 Stop 40                 45 (20.6%)      
## Batch_Number                                 3.51 (1.71)  218 
## BSS_Score                                    4.57 (6.82)  213 
## MADRS_Score                                  17.0 (10.6)  217 
## Remission:                                                215 
##     No remission                              77 (35.8%)      
##     Remitter                                 138 (64.2%)      
## TRP_nM                                       25449 (5942) 218 
## five_HT_nM                                    205 (284)   218 
## KYN_nM                                        917 (244)   218 
## three_HK_nM                                  16.2 (7.44)  218 
## KYNA_nM                                      19.5 (7.68)  218 
## PIC_nM                                       19.2 (13.5)  218 
## Quin_nM                                       146 (43.0)  218 
## AA_nM                                        5.95 (3.12)  218 
## KYN_TRP_ratio                                0.04 (0.01)  218 
## KYN_SER_ratio                                33.2 (72.1)  218 
## QUIN_PIC_ratio                               9.14 (4.39)  218 
## QUIN_KYNA_ratio                              8.30 (3.40)  218 
## threeHK_KYN_ratio                            0.02 (0.01)  218 
## threeHK_KYNA_ratio                           0.91 (0.44)  218 
## IL1B_pg_mL                                   0.28 (0.47)  42  
## IL1B_pg_mL_LLOD                              0.34 (0.19)  218 
## IL2_pg_mL                                    1.27 (6.00)  152 
## IL2_pg_mL_LLOD                               0.92 (5.03)  218 
## IL4_pg_mL                                    0.09 (0.03)  217 
## IL4_pg_mL_LLOD                               0.09 (0.03)  218 
## IL6_pg_mL                                    1.04 (0.58)  218 
## IL8_pg_mL                                    4.36 (1.66)  218 
## IL10_pg_mL                                   0.64 (1.95)  218 
## IL12p70_pg_mL                                 21.8 (186)  217 
## IL12p70_pg_mL_LLOD                            21.7 (185)  218 
## IL13_pg_mL                                   5.07 (11.5)  215 
## IL13_pg_mL_LLOD                              5.01 (11.4)  218 
## TNFa_pg_mL                                   1.44 (0.46)  218 
## IFNy_pg_mL                                   6.97 (5.50)  218 
## CRP_ng_mL                                    2835 (4774)  218 
## NIC_nM                                        41.4 (340)  218 
## NIC_nM_LLOD                                   41.4 (340)  218 
## NTA_nM                                        306 (153)   218 
## SAA_ng_mL                                    2870 (2145)  218 
## VCAM_1_ng_mL                                  309 (67.9)  218 
## ICAM_1_ng_mL                                  308 (82.3)  218 
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

2 Sample missingness counts

missingTable(compareGroups(infusionno~., data=Biok_vert_df_raw))
## 
## --------Missingness table by 'infusionno'---------
## 
## _____________________________________________________________ 
##                        BL        1st        3rd     p.overall 
##                       N=73       N=72       N=73              
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## sex                0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## age                0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## BMI                0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## race               0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## patientno          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Site_Location      0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Blood_Draw_Event   0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Sample_ID          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Batch_Number       0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## BSS_Score          0 (0.00%)  2 (2.78%)  3 (4.11%)    0.291   
## MADRS_Score        0 (0.00%)  0 (0.00%)  1 (1.37%)    1.000   
## Remission          1 (1.37%)  1 (1.39%)  1 (1.37%)    1.000   
## TRP_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## five_HT_nM         0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## KYN_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## three_HK_nM        0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## KYNA_nM            0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## PIC_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Quin_nM            0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## AA_nM              0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## KYN_TRP_ratio      0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## KYN_SER_ratio      0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## QUIN_PIC_ratio     0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## QUIN_KYNA_ratio    0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## threeHK_KYN_ratio  0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## threeHK_KYNA_ratio 0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL1B_pg_mL         57 (78.1%) 61 (84.7%) 58 (79.5%)   0.565   
## IL1B_pg_mL_LLOD    0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL2_pg_mL          28 (38.4%) 20 (27.8%) 18 (24.7%)   0.168   
## IL2_pg_mL_LLOD     0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL4_pg_mL          0 (0.00%)  1 (1.39%)  0 (0.00%)    0.330   
## IL4_pg_mL_LLOD     0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL6_pg_mL          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL8_pg_mL          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL10_pg_mL         0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL12p70_pg_mL      0 (0.00%)  1 (1.39%)  0 (0.00%)    0.330   
## IL12p70_pg_mL_LLOD 0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL13_pg_mL         1 (1.37%)  2 (2.78%)  0 (0.00%)    0.327   
## IL13_pg_mL_LLOD    0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## TNFa_pg_mL         0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IFNy_pg_mL         0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## CRP_ng_mL          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## NIC_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## NIC_nM_LLOD        0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## NTA_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## SAA_ng_mL          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## VCAM_1_ng_mL       0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## ICAM_1_ng_mL       0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

3 Outcome inspection - Depressive severity (MADRS_Score)

mu <- ddply(Biok_vert_df, "infusionno", summarise, grp.mean=mean(MADRS_Score))
ggplot(Biok_vert_df, aes(x=MADRS_Score))+
  geom_histogram(color="black", fill="orange")+
  facet_grid(infusionno ~ .)+
  theme(legend.position="none")+
  geom_vline(data=mu, aes(xintercept=grp.mean, color=infusionno),linetype="dashed")+
  labs(title="Distribution of MADRS total score by Ketamine infusion (timepoint)", x="Depressive severity (MADRS)", y="Count")+
  theme_gray()

Biok_vert_df %>% 
    filter(!is.na(Remission)) %>%
ggplot(aes(x = as.numeric(infusionno), y = MADRS_Score)) + 
  # geom_boxplot(aes(group = infusionno), lwd=1.25, fatten=1, outlier.shape = "triangle", outlier.size = 3 ) +
  ggtitle("Depression by Ketamine Infusion (timeseries)")+
  geom_line(aes(group=patientno, color=Remission)) +
  geom_point(aes(color=Remission))+
  labs(x = "infusionno") +
  scale_x_continuous(breaks = 1:3)

my_comparisons <- list( c("BL", "1st"), c("1st", "3rd"), c("BL", "3rd") )

Biok_vert_df %>%
  filter(!is.na(Remission)) %>%
ggplot(aes(x = infusionno, y = MADRS_Score))+
  geom_boxplot(aes(fill=Remission))+
 geom_jitter(width = 0.1)+ 
  facet_wrap(~Remission)+
  theme_bw()+
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", ref.group="BL", comparisons=my_comparisons)+
  ggpubr::stat_compare_means(method="anova", label.y=70)

Biok_vert_df %>%
  filter(!is.na(Remission)) %>%
ggplot(aes(x = Remission, y = MADRS_Score))+
  geom_boxplot(aes(fill=Remission))+
 geom_jitter(width = 0.1)+ 
  facet_wrap(~infusionno)+
  theme_bw()+
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", label.y=50)

4 Outcome inspection - suicidality (BSS_Score)

mu <- ddply(Biok_vert_df, "infusionno", summarise,grp.mean=mean(log(BSS_Score)))
ggplot(Biok_vert_df, aes(x=log(BSS_Score)))+
  geom_histogram(color="black", fill="orange")+
  facet_grid(infusionno ~ .)+
  theme(legend.position="none")+
  geom_vline(data=mu, aes(xintercept=grp.mean, color=infusionno),linetype="dashed")+
  labs(title="Distribution of BSS total score by Ketamine infusion (timepoint)", x="Suicidal severity (BSS)", y="Count")+
  theme_gray()

Biok_vert_df %>% 
    filter(!is.na(Remission)) %>%
ggplot(aes(x = as.numeric(infusionno), y = BSS_Score)) + 
  # geom_boxplot(aes(group = infusionno), lwd=1.25, fatten=1, outlier.shape = "triangle", outlier.size = 3 ) +
  ggtitle("Suicidality by Ketamine Infusion (timeseries)")+
  geom_line(aes(group=patientno, color=Remission)) +
  geom_point(aes(color=Remission))+
  labs(x = "infusionno") +
  scale_x_continuous(breaks = 1:3)

Biok_vert_df %>%
  filter(!is.na(Remission)) %>%
ggplot(aes(x = infusionno, y = BSS_Score))+
  geom_boxplot(aes(fill=Remission))+
 geom_jitter(width = 0.1)+ 
  facet_wrap(~Remission)+
  theme_bw()+
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", ref.group="BL", comparisons=my_comparisons)+
  ggpubr::stat_compare_means( label.y=40)

Biok_vert_df %>%
  filter(!is.na(Remission)) %>%
ggplot(aes(x = Remission, y = BSS_Score))+
  geom_boxplot(aes(fill=Remission))+
 geom_jitter(width = 0.1)+ 
  facet_wrap(~infusionno)+
  theme_bw()+
  theme(legend.position = "none")+
  ggpubr::stat_compare_means( label.y=30)

5 Univariate screen (whole group) by continuous outcome (Pearson’s matrix)

Bx_spearmans<- Biok_vert_df %>% 
  select("age", "BMI","MADRS_Score", "BSS_Score",
         all_of(Biok_biomarkers)) %>% 
  select(!starts_with("IL1"))%>% 
  select(!starts_with("IL2")) %>% 
  select(!starts_with("IL4")) %>% 
  select(!contains("LLOD"))

mydata.cor = cor(Bx_spearmans, method = c("pearson"), use="complete.obs")
matrix<-Hmisc::rcorr(as.matrix(mydata.cor))
corrplot::corrplot(mydata.cor, 
                   addCoef.col = 'black', 
                   p.mat=matrix$P,
                   insig="blank", 
                   order="hclust",
                   method="color", 
                   type="upper", 
                   diag=FALSE, 
                   number.cex=0.8, 
                   na.label.col = "gray",
                   addgrid.col=TRUE,
                   tl.col = 'red',
                   tl.srt = 45,
                   title="Pearson's matrix of age, BMI, and log transformed biomarkers (whole sample)")

6 Model 1 (mixed effects): TRP by Remission*infusionno

rlmer_TRP<-robustlmm::rlmer(TRP_nM~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_TRP_vif<-lme4::lmer(TRP_nM~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_TRP_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.070739  1        1.034765
## age        1.117809  1        1.057265
## race       1.157261  2        1.037189
## BMI        1.175612  1        1.084256
## Remission  1.021103  1        1.010496
## infusionno 1.002135  2        1.000533
car::qqPlot(residuals(rlmer_TRP), main="QQ-PLOT")

## 218  42 
## 215  41
pairwise_remission<-emmeans(rlmer_TRP, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     1192 1332 Inf   0.895  0.3707
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter      233 1344 Inf   0.174  0.8621
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     1515 1334 Inf   1.135  0.2562
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer_TRP, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate  SE  df z.ratio p.value
##  BL - 1st      3911 984 Inf   3.974  0.0002
##  BL - 3rd      3104 971 Inf   3.197  0.0040
##  1st - 3rd     -807 975 Inf  -0.828  0.6856
## 
## Remission = Remitter:
##  contrast  estimate  SE  df z.ratio p.value
##  BL - 1st      2952 727 Inf   4.059  0.0001
##  BL - 3rd      3427 727 Inf   4.711  <.0001
##  1st - 3rd      474 723 Inf   0.656  0.7888
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

7 MODEL 1: five_HT_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(five_HT_nM~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(five_HT_nM~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.072494  1        1.035613
## age        1.121970  1        1.059231
## race       1.155203  2        1.036727
## BMI        1.176992  1        1.084893
## Remission  1.020156  1        1.010028
## infusionno 1.001426  2        1.000356
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##   8 171 
##   7 168
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    126.8 48.8 Inf   2.599  0.0094
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     76.2 48.8 Inf   1.560  0.1188
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    134.7 48.8 Inf   2.760  0.0058
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     58.33 13.38 Inf   4.361  <.0001
##  BL - 3rd     18.66 13.18 Inf   1.416  0.3327
##  1st - 3rd   -39.67 13.19 Inf  -3.008  0.0074
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st      7.78  9.85 Inf   0.790  0.7095
##  BL - 3rd     26.60  9.85 Inf   2.701  0.0189
##  1st - 3rd    18.82  9.77 Inf   1.927  0.1311
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

8 MODEL 1: KYN_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(KYN_nM~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(KYN_nM~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.071703  1        1.035231
## age        1.119733  1        1.058174
## race       1.158377  2        1.037439
## BMI        1.177280  1        1.085025
## Remission  1.020022  1        1.009961
## infusionno 1.001483  2        1.000370
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 218  42 
## 215  41
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     57.0 50.7 Inf   1.124  0.2611
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     35.1 51.0 Inf   0.689  0.4911
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     52.9 50.8 Inf   1.042  0.2974
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st     98.72 27.1 Inf   3.645  0.0008
##  BL - 3rd     86.33 26.7 Inf   3.234  0.0035
##  1st - 3rd   -12.39 26.7 Inf  -0.463  0.8885
## 
## Remission = Remitter:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st     76.81 20.0 Inf   3.847  0.0004
##  BL - 3rd     82.25 20.0 Inf   4.119  0.0001
##  1st - 3rd     5.43 19.8 Inf   0.274  0.9594
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

9 MODEL 1: three_HK_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(three_HK_nM~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(three_HK_nM~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.073076  1        1.035894
## age        1.123067  1        1.059749
## race       1.156273  2        1.036967
## BMI        1.177900  1        1.085311
## Remission  1.019673  1        1.009788
## infusionno 1.001016  2        1.000254
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 42 55 
## 41 54
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    0.353 1.16 Inf   0.303  0.7619
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    0.359 1.17 Inf   0.307  0.7589
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    0.459 1.17 Inf   0.394  0.6936
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    0.8854 0.598 Inf   1.480  0.3004
##  BL - 3rd    0.8995 0.590 Inf   1.526  0.2788
##  1st - 3rd   0.0142 0.591 Inf   0.024  0.9997
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    0.8917 0.441 Inf   2.022  0.1070
##  BL - 3rd    1.0062 0.441 Inf   2.281  0.0584
##  1st - 3rd   0.1144 0.438 Inf   0.261  0.9630
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

10 MODEL 1: KYNA_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(KYNA_nM~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(KYNA_nM~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.071293  1        1.035033
## age        1.119630  1        1.058126
## race       1.153283  2        1.036296
## BMI        1.175083  1        1.084012
## Remission  1.021432  1        1.010659
## infusionno 1.002190  2        1.000547
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  42 218 
##  41 215
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   -0.288 1.63 Inf  -0.176  0.8600
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   -0.787 1.65 Inf  -0.479  0.6323
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   -0.595 1.64 Inf  -0.363  0.7165
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     1.349 1.013 Inf   1.332  0.3775
##  BL - 3rd     1.578 0.999 Inf   1.579  0.2546
##  1st - 3rd    0.228 1.002 Inf   0.228  0.9718
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     0.850 0.748 Inf   1.137  0.4915
##  BL - 3rd     1.271 0.748 Inf   1.700  0.2053
##  1st - 3rd    0.421 0.743 Inf   0.567  0.8376
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

11 MODEL 1: PIC_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(PIC_nM~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(PIC_nM~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.070013  1        1.034414
## age        1.116520  1        1.056655
## race       1.154117  2        1.036484
## BMI        1.173581  1        1.083319
## Remission  1.022859  1        1.011365
## infusionno 1.002743  2        1.000685
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  42 159 
##  41 156
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   0.1322 1.81 Inf   0.073  0.9417
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter  -0.0174 1.82 Inf  -0.010  0.9924
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter  -0.2489 1.81 Inf  -0.137  0.8907
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     2.410 1.025 Inf   2.351  0.0491
##  BL - 3rd     1.733 1.010 Inf   1.716  0.1993
##  1st - 3rd   -0.676 1.013 Inf  -0.668  0.7822
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     2.260 0.756 Inf   2.989  0.0079
##  BL - 3rd     1.352 0.756 Inf   1.788  0.1735
##  1st - 3rd   -0.908 0.751 Inf  -1.209  0.4475
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

12 MODEL 1: Quin_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(Quin_nM~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(Quin_nM~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.072170  1        1.035457
## age        1.120654  1        1.058610
## race       1.158733  2        1.037519
## BMI        1.177951  1        1.085335
## Remission  1.019672  1        1.009788
## infusionno 1.001187  2        1.000297
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  61 218 
##  60 215
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   -1.944 10.3 Inf  -0.188  0.8505
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   -0.875 10.3 Inf  -0.085  0.9326
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   -4.091 10.3 Inf  -0.396  0.6919
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st     1.581 4.52 Inf   0.350  0.9348
##  BL - 3rd     0.976 4.46 Inf   0.219  0.9739
##  1st - 3rd   -0.605 4.46 Inf  -0.136  0.9899
## 
## Remission = Remitter:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st     2.650 3.33 Inf   0.795  0.7059
##  BL - 3rd    -1.171 3.33 Inf  -0.351  0.9342
##  1st - 3rd   -3.821 3.31 Inf  -1.156  0.4799
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

13 MODEL 1: AA_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(AA_nM~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(AA_nM~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.071595  1        1.035179
## age        1.120229  1        1.058409
## race       1.153724  2        1.036395
## BMI        1.175568  1        1.084236
## Remission  1.021072  1        1.010481
## infusionno 1.002010  2        1.000502
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 50 44 
## 49 43
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -1.189 0.523 Inf  -2.274  0.0230
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.489 0.528 Inf  -0.926  0.3546
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.170 0.524 Inf  -0.324  0.7459
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    -0.373 0.413 Inf  -0.904  0.6375
##  BL - 3rd    -0.161 0.407 Inf  -0.396  0.9170
##  1st - 3rd    0.212 0.409 Inf   0.518  0.8627
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     0.327 0.305 Inf   1.071  0.5321
##  BL - 3rd     0.858 0.305 Inf   2.811  0.0137
##  1st - 3rd    0.531 0.303 Inf   1.750  0.1867
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

14 MODEL 1: KYN_TRP_ratio by Remission*infusionno

rlmer<-robustlmm::rlmer(KYN_TRP_ratio~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(KYN_TRP_ratio~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.072837  1        1.035778
## age        1.122619  1        1.059537
## race       1.155824  2        1.036867
## BMI        1.177528  1        1.085140
## Remission  1.019862  1        1.009882
## infusionno 1.001187  2        1.000297
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 162  55 
## 159  54
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter 0.001265 0.00205 Inf   0.616  0.5381
## 
## infusionno = 1st:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter 0.001760 0.00207 Inf   0.852  0.3944
## 
## infusionno = 3rd:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter 0.000769 0.00206 Inf   0.374  0.7087
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast   estimate       SE  df z.ratio p.value
##  BL - 1st  -0.001523 0.001108 Inf  -1.374  0.3544
##  BL - 3rd  -0.001046 0.001093 Inf  -0.958  0.6036
##  1st - 3rd  0.000477 0.001095 Inf   0.435  0.9008
## 
## Remission = Remitter:
##  contrast   estimate       SE  df z.ratio p.value
##  BL - 1st  -0.001029 0.000817 Inf  -1.258  0.4189
##  BL - 3rd  -0.001543 0.000817 Inf  -1.887  0.1424
##  1st - 3rd -0.000514 0.000812 Inf  -0.633  0.8017
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

15 MODEL 1: KYN_SER_ratio by Remission*infusionno

rlmer<-robustlmm::rlmer(KYN_SER_ratio~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(KYN_SER_ratio~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.068114  1        1.033496
## age        1.113700  1        1.055320
## race       1.158779  2        1.037529
## BMI        1.171466  1        1.082343
## Remission  1.023286  1        1.011576
## infusionno 1.003092  2        1.000772
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 177  28 
## 174  27
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    -4.60 4.26 Inf  -1.081  0.2797
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    -5.74 4.26 Inf  -1.346  0.1784
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    -8.04 4.26 Inf  -1.889  0.0588
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st    -1.148 1.53 Inf  -0.751  0.7331
##  BL - 3rd    -0.735 1.51 Inf  -0.488  0.8772
##  1st - 3rd    0.413 1.51 Inf   0.274  0.9594
## 
## Remission = Remitter:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st    -2.286 1.13 Inf  -2.030  0.1052
##  BL - 3rd    -4.177 1.13 Inf  -3.709  0.0006
##  1st - 3rd   -1.892 1.12 Inf  -1.693  0.2078
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

16 MODEL 1: QUIN_PIC_ratio by Remission*infusionno

rlmer<-robustlmm::rlmer(QUIN_PIC_ratio~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(QUIN_PIC_ratio~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.071772  1        1.035264
## age        1.119889  1        1.058248
## race       1.159842  2        1.037767
## BMI        1.177882  1        1.085303
## Remission  1.019529  1        1.009717
## infusionno 1.001210  2        1.000302
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 152 134 
## 149 132
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.348 0.943 Inf  -0.369  0.7122
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.246 0.947 Inf  -0.260  0.7950
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.295 0.944 Inf  -0.313  0.7545
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    -0.896 0.437 Inf  -2.053  0.0998
##  BL - 3rd    -0.700 0.430 Inf  -1.627  0.2342
##  1st - 3rd    0.196 0.431 Inf   0.455  0.8920
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    -0.794 0.322 Inf  -2.469  0.0362
##  BL - 3rd    -0.647 0.322 Inf  -2.012  0.1094
##  1st - 3rd    0.147 0.319 Inf   0.460  0.8898
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

17 MODEL 1: QUIN_KYNA_ratio by Remission*infusionno

rlmer<-robustlmm::rlmer(QUIN_KYNA_ratio~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(QUIN_KYNA_ratio~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.070881  1        1.034834
## age        1.118450  1        1.057568
## race       1.159853  2        1.037769
## BMI        1.176719  1        1.084767
## Remission  1.019871  1        1.009887
## infusionno 1.001615  2        1.000404
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 152 134 
## 149 132
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter    0.263 0.668 Inf   0.393  0.6941
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter    0.198 0.671 Inf   0.295  0.7677
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter    0.146 0.668 Inf   0.219  0.8268
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    -0.206 0.354 Inf  -0.582  0.8298
##  BL - 3rd    -0.385 0.349 Inf  -1.103  0.5122
##  1st - 3rd   -0.179 0.349 Inf  -0.512  0.8657
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    -0.270 0.261 Inf  -1.036  0.5539
##  BL - 3rd    -0.501 0.261 Inf  -1.920  0.1329
##  1st - 3rd   -0.231 0.259 Inf  -0.891  0.6463
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

18 MODEL 1: threeHK_KYN_ratio by Remission*infusionno

rlmer<-robustlmm::rlmer(threeHK_KYN_ratio~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(threeHK_KYN_ratio~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.073326  1        1.036015
## age        1.123404  1        1.059908
## race       1.157300  2        1.037198
## BMI        1.178502  1        1.085588
## Remission  1.019407  1        1.009657
## infusionno 1.000766  2        1.000191
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 217  42 
## 214  41
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                 estimate      SE  df z.ratio p.value
##  No remission - Remitter -0.000829 0.00105 Inf  -0.789  0.4304
## 
## infusionno = 1st:
##  contrast                 estimate      SE  df z.ratio p.value
##  No remission - Remitter -0.000364 0.00106 Inf  -0.344  0.7309
## 
## infusionno = 3rd:
##  contrast                 estimate      SE  df z.ratio p.value
##  No remission - Remitter -0.000624 0.00105 Inf  -0.592  0.5538
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast   estimate       SE  df z.ratio p.value
##  BL - 1st  -8.42e-04 0.000543 Inf  -1.550  0.2676
##  BL - 3rd  -3.03e-04 0.000535 Inf  -0.567  0.8379
##  1st - 3rd  5.38e-04 0.000536 Inf   1.004  0.5743
## 
## Remission = Remitter:
##  contrast   estimate       SE  df z.ratio p.value
##  BL - 1st  -3.76e-04 0.000400 Inf  -0.939  0.6159
##  BL - 3rd  -9.75e-05 0.000400 Inf  -0.244  0.9678
##  1st - 3rd  2.78e-04 0.000397 Inf   0.700  0.7635
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates
Biok_biomarkers
##  [1] "TRP_nM"             "five_HT_nM"         "KYN_nM"            
##  [4] "three_HK_nM"        "KYNA_nM"            "PIC_nM"            
##  [7] "Quin_nM"            "AA_nM"              "KYN_TRP_ratio"     
## [10] "KYN_SER_ratio"      "QUIN_PIC_ratio"     "QUIN_KYNA_ratio"   
## [13] "threeHK_KYN_ratio"  "threeHK_KYNA_ratio" "IL1B_pg_mL"        
## [16] "IL1B_pg_mL_LLOD"    "IL2_pg_mL"          "IL2_pg_mL_LLOD"    
## [19] "IL4_pg_mL"          "IL4_pg_mL_LLOD"     "IL6_pg_mL"         
## [22] "IL8_pg_mL"          "IL10_pg_mL"         "IL12p70_pg_mL"     
## [25] "IL12p70_pg_mL_LLOD" "IL13_pg_mL"         "IL13_pg_mL_LLOD"   
## [28] "TNFa_pg_mL"         "IFNy_pg_mL"         "CRP_ng_mL"         
## [31] "NIC_nM"             "NIC_nM_LLOD"        "NTA_nM"            
## [34] "SAA_ng_mL"          "VCAM_1_ng_mL"       "ICAM_1_ng_mL"

19 MODEL 1: threeHK_KYNA_ratio by Remission*infusionno

rlmer<-robustlmm::rlmer(threeHK_KYNA_ratio~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(threeHK_KYNA_ratio~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.071771  1        1.035264
## age        1.120132  1        1.058363
## race       1.161233  2        1.038078
## BMI        1.178396  1        1.085540
## Remission  1.018957  1        1.009434
## infusionno 1.000895  2        1.000224
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##   4 152 
##   3 149
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0272 0.0776 Inf   0.351  0.7257
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0396 0.0779 Inf   0.508  0.6112
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0127 0.0777 Inf   0.163  0.8705
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.01074 0.0349 Inf   0.308  0.9491
##  BL - 3rd   0.02395 0.0344 Inf   0.696  0.7655
##  1st - 3rd  0.01321 0.0344 Inf   0.384  0.9221
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.02313 0.0257 Inf   0.899  0.6407
##  BL - 3rd   0.00939 0.0257 Inf   0.365  0.9292
##  1st - 3rd -0.01374 0.0255 Inf  -0.538  0.8523
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates
Biok_biomarkers
##  [1] "TRP_nM"             "five_HT_nM"         "KYN_nM"            
##  [4] "three_HK_nM"        "KYNA_nM"            "PIC_nM"            
##  [7] "Quin_nM"            "AA_nM"              "KYN_TRP_ratio"     
## [10] "KYN_SER_ratio"      "QUIN_PIC_ratio"     "QUIN_KYNA_ratio"   
## [13] "threeHK_KYN_ratio"  "threeHK_KYNA_ratio" "IL1B_pg_mL"        
## [16] "IL1B_pg_mL_LLOD"    "IL2_pg_mL"          "IL2_pg_mL_LLOD"    
## [19] "IL4_pg_mL"          "IL4_pg_mL_LLOD"     "IL6_pg_mL"         
## [22] "IL8_pg_mL"          "IL10_pg_mL"         "IL12p70_pg_mL"     
## [25] "IL12p70_pg_mL_LLOD" "IL13_pg_mL"         "IL13_pg_mL_LLOD"   
## [28] "TNFa_pg_mL"         "IFNy_pg_mL"         "CRP_ng_mL"         
## [31] "NIC_nM"             "NIC_nM_LLOD"        "NTA_nM"            
## [34] "SAA_ng_mL"          "VCAM_1_ng_mL"       "ICAM_1_ng_mL"

20 MODEL 1: IL1B_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL1B_pg_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL1B_pg_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.244521  1        1.115581
## age        1.261477  1        1.123155
## race       1.272183  1        1.127911
## BMI        1.243487  1        1.115118
## Remission  1.133553  1        1.064684
## infusionno 1.081089  2        1.019683
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 18 90 
##  1 18
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0769 0.0789 Inf   0.975  0.3297
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter  -0.0905 0.0900 Inf  -1.006  0.3146
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0264 0.0776 Inf   0.340  0.7340
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.09292 0.0682 Inf   1.363  0.3606
##  BL - 3rd   0.00893 0.0575 Inf   0.155  0.9868
##  1st - 3rd -0.08398 0.0678 Inf  -1.239  0.4302
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st  -0.07449 0.0429 Inf  -1.738  0.1911
##  BL - 3rd  -0.04164 0.0408 Inf  -1.021  0.5633
##  1st - 3rd  0.03285 0.0414 Inf   0.794  0.7067
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates
Biok_biomarkers
##  [1] "TRP_nM"             "five_HT_nM"         "KYN_nM"            
##  [4] "three_HK_nM"        "KYNA_nM"            "PIC_nM"            
##  [7] "Quin_nM"            "AA_nM"              "KYN_TRP_ratio"     
## [10] "KYN_SER_ratio"      "QUIN_PIC_ratio"     "QUIN_KYNA_ratio"   
## [13] "threeHK_KYN_ratio"  "threeHK_KYNA_ratio" "IL1B_pg_mL"        
## [16] "IL1B_pg_mL_LLOD"    "IL2_pg_mL"          "IL2_pg_mL_LLOD"    
## [19] "IL4_pg_mL"          "IL4_pg_mL_LLOD"     "IL6_pg_mL"         
## [22] "IL8_pg_mL"          "IL10_pg_mL"         "IL12p70_pg_mL"     
## [25] "IL12p70_pg_mL_LLOD" "IL13_pg_mL"         "IL13_pg_mL_LLOD"   
## [28] "TNFa_pg_mL"         "IFNy_pg_mL"         "CRP_ng_mL"         
## [31] "NIC_nM"             "NIC_nM_LLOD"        "NTA_nM"            
## [34] "SAA_ng_mL"          "VCAM_1_ng_mL"       "ICAM_1_ng_mL"

21 MODEL 1: IL1B_pg_mL_LLOD by Remission*infusionno

rlmer<-robustlmm::rlmer(IL1B_pg_mL_LLOD~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL1B_pg_mL_LLOD~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.067724  1        1.033308
## age        1.110784  1        1.053937
## race       1.154230  2        1.036509
## BMI        1.168989  1        1.081198
## Remission  1.028915  1        1.014355
## infusionno 1.003362  2        1.000839
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 196  18 
## 193  17
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                 estimate       SE  df z.ratio p.value
##  No remission - Remitter  1.73e-14 6.17e-15 Inf   2.812  0.0049
## 
## infusionno = 1st:
##  contrast                 estimate       SE  df z.ratio p.value
##  No remission - Remitter  2.22e-14 6.24e-15 Inf   3.550  0.0004
## 
## infusionno = 3rd:
##  contrast                 estimate       SE  df z.ratio p.value
##  No remission - Remitter -1.03e-14 6.16e-15 Inf  -1.675  0.0939
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast   estimate       SE  df z.ratio p.value
##  BL - 1st  -5.14e-15 7.00e-15 Inf  -0.735  0.7425
##  BL - 3rd  -4.03e-15 6.93e-15 Inf  -0.581  0.8301
##  1st - 3rd  1.12e-15 7.00e-15 Inf   0.159  0.9861
## 
## Remission = Remitter:
##  contrast   estimate       SE  df z.ratio p.value
##  BL - 1st  -3.23e-16 5.21e-15 Inf  -0.062  0.9979
##  BL - 3rd  -3.17e-14 5.21e-15 Inf  -6.082  <.0001
##  1st - 3rd -3.14e-14 5.20e-15 Inf  -6.029  <.0001
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates
Biok_biomarkers
##  [1] "TRP_nM"             "five_HT_nM"         "KYN_nM"            
##  [4] "three_HK_nM"        "KYNA_nM"            "PIC_nM"            
##  [7] "Quin_nM"            "AA_nM"              "KYN_TRP_ratio"     
## [10] "KYN_SER_ratio"      "QUIN_PIC_ratio"     "QUIN_KYNA_ratio"   
## [13] "threeHK_KYN_ratio"  "threeHK_KYNA_ratio" "IL1B_pg_mL"        
## [16] "IL1B_pg_mL_LLOD"    "IL2_pg_mL"          "IL2_pg_mL_LLOD"    
## [19] "IL4_pg_mL"          "IL4_pg_mL_LLOD"     "IL6_pg_mL"         
## [22] "IL8_pg_mL"          "IL10_pg_mL"         "IL12p70_pg_mL"     
## [25] "IL12p70_pg_mL_LLOD" "IL13_pg_mL"         "IL13_pg_mL_LLOD"   
## [28] "TNFa_pg_mL"         "IFNy_pg_mL"         "CRP_ng_mL"         
## [31] "NIC_nM"             "NIC_nM_LLOD"        "NTA_nM"            
## [34] "SAA_ng_mL"          "VCAM_1_ng_mL"       "ICAM_1_ng_mL"

22 MODEL 1: IL2_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL2_pg_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL2_pg_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.074108  1        1.036392
## age        1.142629  1        1.068938
## race       1.246542  2        1.056639
## BMI        1.246339  1        1.116395
## Remission  1.034167  1        1.016940
## infusionno 1.000076  2        1.000019
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 80  8 
## 49  4
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                 estimate     SE  df z.ratio p.value
##  No remission - Remitter  0.029922 0.0695 Inf   0.431  0.6668
## 
## infusionno = 1st:
##  contrast                 estimate     SE  df z.ratio p.value
##  No remission - Remitter -0.000285 0.0670 Inf  -0.004  0.9966
## 
## infusionno = 3rd:
##  contrast                 estimate     SE  df z.ratio p.value
##  No remission - Remitter  0.059588 0.0662 Inf   0.900  0.3683
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st    0.0834 0.0509 Inf   1.639  0.2292
##  BL - 3rd   -0.0162 0.0517 Inf  -0.313  0.9475
##  1st - 3rd  -0.0995 0.0495 Inf  -2.013  0.1090
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st    0.0532 0.0376 Inf   1.416  0.3326
##  BL - 3rd    0.0135 0.0373 Inf   0.361  0.9305
##  1st - 3rd  -0.0397 0.0345 Inf  -1.148  0.4842
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates
Biok_biomarkers
##  [1] "TRP_nM"             "five_HT_nM"         "KYN_nM"            
##  [4] "three_HK_nM"        "KYNA_nM"            "PIC_nM"            
##  [7] "Quin_nM"            "AA_nM"              "KYN_TRP_ratio"     
## [10] "KYN_SER_ratio"      "QUIN_PIC_ratio"     "QUIN_KYNA_ratio"   
## [13] "threeHK_KYN_ratio"  "threeHK_KYNA_ratio" "IL1B_pg_mL"        
## [16] "IL1B_pg_mL_LLOD"    "IL2_pg_mL"          "IL2_pg_mL_LLOD"    
## [19] "IL4_pg_mL"          "IL4_pg_mL_LLOD"     "IL6_pg_mL"         
## [22] "IL8_pg_mL"          "IL10_pg_mL"         "IL12p70_pg_mL"     
## [25] "IL12p70_pg_mL_LLOD" "IL13_pg_mL"         "IL13_pg_mL_LLOD"   
## [28] "TNFa_pg_mL"         "IFNy_pg_mL"         "CRP_ng_mL"         
## [31] "NIC_nM"             "NIC_nM_LLOD"        "NTA_nM"            
## [34] "SAA_ng_mL"          "VCAM_1_ng_mL"       "ICAM_1_ng_mL"

23 MODEL 1: IL2_pg_mL_LLOD by Remission*infusionno

rlmer<-robustlmm::rlmer(IL2_pg_mL_LLOD~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL2_pg_mL_LLOD~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.072296  1        1.035517
## age        1.121523  1        1.059020
## race       1.163538  2        1.038592
## BMI        1.179893  1        1.086229
## Remission  1.017890  1        1.008905
## infusionno 1.000014  2        1.000003
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 80  8 
## 78  7
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter -0.00311 0.0605 Inf  -0.051  0.9590
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter -0.01427 0.0607 Inf  -0.235  0.8140
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter  0.00481 0.0605 Inf   0.079  0.9367
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.01809 0.0252 Inf   0.716  0.7538
##  BL - 3rd  -0.02917 0.0249 Inf  -1.172  0.4697
##  1st - 3rd -0.04726 0.0249 Inf  -1.897  0.1395
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.00693 0.0186 Inf   0.372  0.9264
##  BL - 3rd  -0.02126 0.0186 Inf  -1.143  0.4877
##  1st - 3rd -0.02819 0.0185 Inf  -1.527  0.2783
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates
Biok_biomarkers
##  [1] "TRP_nM"             "five_HT_nM"         "KYN_nM"            
##  [4] "three_HK_nM"        "KYNA_nM"            "PIC_nM"            
##  [7] "Quin_nM"            "AA_nM"              "KYN_TRP_ratio"     
## [10] "KYN_SER_ratio"      "QUIN_PIC_ratio"     "QUIN_KYNA_ratio"   
## [13] "threeHK_KYN_ratio"  "threeHK_KYNA_ratio" "IL1B_pg_mL"        
## [16] "IL1B_pg_mL_LLOD"    "IL2_pg_mL"          "IL2_pg_mL_LLOD"    
## [19] "IL4_pg_mL"          "IL4_pg_mL_LLOD"     "IL6_pg_mL"         
## [22] "IL8_pg_mL"          "IL10_pg_mL"         "IL12p70_pg_mL"     
## [25] "IL12p70_pg_mL_LLOD" "IL13_pg_mL"         "IL13_pg_mL_LLOD"   
## [28] "TNFa_pg_mL"         "IFNy_pg_mL"         "CRP_ng_mL"         
## [31] "NIC_nM"             "NIC_nM_LLOD"        "NTA_nM"            
## [34] "SAA_ng_mL"          "VCAM_1_ng_mL"       "ICAM_1_ng_mL"

24 MODEL 1: IL4_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL4_pg_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL4_pg_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.071388  1        1.035079
## age        1.120097  1        1.058347
## race       1.160698  2        1.037958
## BMI        1.177810  1        1.085269
## Remission  1.019149  1        1.009529
## infusionno 1.001244  2        1.000311
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  45 120 
##  44 117
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter  0.00270 0.00651 Inf   0.416  0.6777
## 
## infusionno = 1st:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter  0.00405 0.00655 Inf   0.619  0.5357
## 
## infusionno = 3rd:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter  0.00123 0.00651 Inf   0.189  0.8504
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast   estimate      SE  df z.ratio p.value
##  BL - 1st  -0.001963 0.00347 Inf  -0.565  0.8387
##  BL - 3rd  -0.000155 0.00343 Inf  -0.045  0.9989
##  1st - 3rd  0.001809 0.00343 Inf   0.527  0.8581
## 
## Remission = Remitter:
##  contrast   estimate      SE  df z.ratio p.value
##  BL - 1st  -0.000614 0.00258 Inf  -0.238  0.9693
##  BL - 3rd  -0.001631 0.00256 Inf  -0.637  0.7999
##  1st - 3rd -0.001017 0.00256 Inf  -0.397  0.9169
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates
Biok_biomarkers
##  [1] "TRP_nM"             "five_HT_nM"         "KYN_nM"            
##  [4] "three_HK_nM"        "KYNA_nM"            "PIC_nM"            
##  [7] "Quin_nM"            "AA_nM"              "KYN_TRP_ratio"     
## [10] "KYN_SER_ratio"      "QUIN_PIC_ratio"     "QUIN_KYNA_ratio"   
## [13] "threeHK_KYN_ratio"  "threeHK_KYNA_ratio" "IL1B_pg_mL"        
## [16] "IL1B_pg_mL_LLOD"    "IL2_pg_mL"          "IL2_pg_mL_LLOD"    
## [19] "IL4_pg_mL"          "IL4_pg_mL_LLOD"     "IL6_pg_mL"         
## [22] "IL8_pg_mL"          "IL10_pg_mL"         "IL12p70_pg_mL"     
## [25] "IL12p70_pg_mL_LLOD" "IL13_pg_mL"         "IL13_pg_mL_LLOD"   
## [28] "TNFa_pg_mL"         "IFNy_pg_mL"         "CRP_ng_mL"         
## [31] "NIC_nM"             "NIC_nM_LLOD"        "NTA_nM"            
## [34] "SAA_ng_mL"          "VCAM_1_ng_mL"       "ICAM_1_ng_mL"

25 MODEL 1: IL4_pg_mL_LLOD by Remission*infusionno

rlmer<-robustlmm::rlmer(IL4_pg_mL_LLOD~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL4_pg_mL_LLOD~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.071099  1        1.034939
## age        1.119039  1        1.057846
## race       1.160638  2        1.037945
## BMI        1.177326  1        1.085046
## Remission  1.019358  1        1.009633
## infusionno 1.001316  2        1.000329
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 101 120 
##  99 118
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter  0.00272 0.00655 Inf   0.415  0.6779
## 
## infusionno = 1st:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter  0.00474 0.00658 Inf   0.721  0.4708
## 
## infusionno = 3rd:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter  0.00134 0.00655 Inf   0.204  0.8384
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast   estimate      SE  df z.ratio p.value
##  BL - 1st  -1.97e-03 0.00352 Inf  -0.560  0.8414
##  BL - 3rd  -1.91e-04 0.00347 Inf  -0.055  0.9983
##  1st - 3rd  1.78e-03 0.00348 Inf   0.512  0.8655
## 
## Remission = Remitter:
##  contrast   estimate      SE  df z.ratio p.value
##  BL - 1st   5.18e-05 0.00260 Inf   0.020  0.9998
##  BL - 3rd  -1.57e-03 0.00260 Inf  -0.605  0.8171
##  1st - 3rd -1.63e-03 0.00258 Inf  -0.630  0.8036
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates
Biok_biomarkers
##  [1] "TRP_nM"             "five_HT_nM"         "KYN_nM"            
##  [4] "three_HK_nM"        "KYNA_nM"            "PIC_nM"            
##  [7] "Quin_nM"            "AA_nM"              "KYN_TRP_ratio"     
## [10] "KYN_SER_ratio"      "QUIN_PIC_ratio"     "QUIN_KYNA_ratio"   
## [13] "threeHK_KYN_ratio"  "threeHK_KYNA_ratio" "IL1B_pg_mL"        
## [16] "IL1B_pg_mL_LLOD"    "IL2_pg_mL"          "IL2_pg_mL_LLOD"    
## [19] "IL4_pg_mL"          "IL4_pg_mL_LLOD"     "IL6_pg_mL"         
## [22] "IL8_pg_mL"          "IL10_pg_mL"         "IL12p70_pg_mL"     
## [25] "IL12p70_pg_mL_LLOD" "IL13_pg_mL"         "IL13_pg_mL_LLOD"   
## [28] "TNFa_pg_mL"         "IFNy_pg_mL"         "CRP_ng_mL"         
## [31] "NIC_nM"             "NIC_nM_LLOD"        "NTA_nM"            
## [34] "SAA_ng_mL"          "VCAM_1_ng_mL"       "ICAM_1_ng_mL"

26 MODEL 1: IL6_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL6_pg_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL6_pg_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.072532  1        1.035631
## age        1.122043  1        1.059265
## race       1.155271  2        1.036743
## BMI        1.177052  1        1.084920
## Remission  1.020121  1        1.010011
## infusionno 1.001400  2        1.000350
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  81 111 
##  79 109
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter  -0.0119 0.0842 Inf  -0.141  0.8878
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.1293 0.0847 Inf   1.526  0.1269
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0414 0.0844 Inf   0.491  0.6236
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st  -0.13980 0.0448 Inf  -3.120  0.0051
##  BL - 3rd   0.01162 0.0442 Inf   0.263  0.9626
##  1st - 3rd  0.15142 0.0443 Inf   3.421  0.0018
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.00135 0.0330 Inf   0.041  0.9991
##  BL - 3rd   0.06490 0.0330 Inf   1.964  0.1212
##  1st - 3rd  0.06355 0.0328 Inf   1.937  0.1282
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

27 MODEL 1: IL8_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL8_pg_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL8_pg_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.069932  1        1.034375
## age        1.116458  1        1.056626
## race       1.158489  2        1.037464
## BMI        1.174739  1        1.083854
## Remission  1.021320  1        1.010604
## infusionno 1.002362  2        1.000590
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 22 45 
## 21 44
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.384 0.321 Inf  -1.196  0.2317
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.378 0.324 Inf  -1.168  0.2427
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter    0.259 0.322 Inf   0.805  0.4211
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    0.1368 0.225 Inf   0.607  0.8163
##  BL - 3rd    0.1861 0.222 Inf   0.837  0.6799
##  1st - 3rd   0.0493 0.223 Inf   0.221  0.9734
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    0.1430 0.167 Inf   0.859  0.6661
##  BL - 3rd    0.8291 0.167 Inf   4.980  <.0001
##  1st - 3rd   0.6861 0.165 Inf   4.147  0.0001
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

28 MODEL 1: IL10_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL10_pg_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL10_pg_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.074279  1        1.036475
## age        1.125280  1        1.060792
## race       1.158715  2        1.037515
## BMI        1.179753  1        1.086164
## Remission  1.018896  1        1.009404
## infusionno 1.000097  2        1.000024
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  46 173 
##  45 170
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0031 0.0301 Inf   0.103  0.9180
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0122 0.0302 Inf   0.403  0.6868
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0212 0.0301 Inf   0.705  0.4809
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast   estimate      SE  df z.ratio p.value
##  BL - 1st  -0.010627 0.01195 Inf  -0.890  0.6469
##  BL - 3rd  -0.019358 0.01177 Inf  -1.644  0.2271
##  1st - 3rd -0.008730 0.01179 Inf  -0.741  0.7393
## 
## Remission = Remitter:
##  contrast   estimate      SE  df z.ratio p.value
##  BL - 1st  -0.001546 0.00880 Inf  -0.176  0.9831
##  BL - 3rd  -0.001211 0.00880 Inf  -0.138  0.9896
##  1st - 3rd  0.000335 0.00873 Inf   0.038  0.9992
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

29 MODEL 1: IL12p70_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL12p70_pg_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL12p70_pg_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.073451  1        1.036075
## age        1.123322  1        1.059869
## race       1.159640  2        1.037721
## BMI        1.179549  1        1.086071
## Remission  1.018963  1        1.009437
## infusionno 1.000412  2        1.000103
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 137  64 
## 134  63
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0283 0.0356 Inf   0.795  0.4267
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0607 0.0358 Inf   1.694  0.0902
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0369 0.0356 Inf   1.036  0.3004
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st  -0.01753 0.0197 Inf  -0.890  0.6465
##  BL - 3rd  -0.00495 0.0194 Inf  -0.255  0.9648
##  1st - 3rd  0.01257 0.0195 Inf   0.646  0.7944
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.01488 0.0146 Inf   1.017  0.5663
##  BL - 3rd   0.00367 0.0145 Inf   0.253  0.9654
##  1st - 3rd -0.01121 0.0145 Inf  -0.771  0.7206
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates
Biok_biomarkers
##  [1] "TRP_nM"             "five_HT_nM"         "KYN_nM"            
##  [4] "three_HK_nM"        "KYNA_nM"            "PIC_nM"            
##  [7] "Quin_nM"            "AA_nM"              "KYN_TRP_ratio"     
## [10] "KYN_SER_ratio"      "QUIN_PIC_ratio"     "QUIN_KYNA_ratio"   
## [13] "threeHK_KYN_ratio"  "threeHK_KYNA_ratio" "IL1B_pg_mL"        
## [16] "IL1B_pg_mL_LLOD"    "IL2_pg_mL"          "IL2_pg_mL_LLOD"    
## [19] "IL4_pg_mL"          "IL4_pg_mL_LLOD"     "IL6_pg_mL"         
## [22] "IL8_pg_mL"          "IL10_pg_mL"         "IL12p70_pg_mL"     
## [25] "IL12p70_pg_mL_LLOD" "IL13_pg_mL"         "IL13_pg_mL_LLOD"   
## [28] "TNFa_pg_mL"         "IFNy_pg_mL"         "CRP_ng_mL"         
## [31] "NIC_nM"             "NIC_nM_LLOD"        "NTA_nM"            
## [34] "SAA_ng_mL"          "VCAM_1_ng_mL"       "ICAM_1_ng_mL"

30 MODEL 1: IL12p70_pg_mL_LLOD by Remission*infusionno

rlmer<-robustlmm::rlmer(IL12p70_pg_mL_LLOD~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL12p70_pg_mL_LLOD~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.073885  1        1.036284
## age        1.124563  1        1.060454
## race       1.157885  2        1.037329
## BMI        1.179150  1        1.085887
## Remission  1.019121  1        1.009515
## infusionno 1.000407  2        1.000102
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 137  64 
## 135  63
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0280 0.0358 Inf   0.782  0.4340
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0640 0.0360 Inf   1.777  0.0755
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0369 0.0359 Inf   1.027  0.3042
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st  -0.01755 0.0199 Inf  -0.881  0.6523
##  BL - 3rd  -0.00507 0.0196 Inf  -0.258  0.9640
##  1st - 3rd  0.01249 0.0197 Inf   0.634  0.8012
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.01845 0.0147 Inf   1.255  0.4207
##  BL - 3rd   0.00377 0.0147 Inf   0.256  0.9644
##  1st - 3rd -0.01468 0.0146 Inf  -1.006  0.5730
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

31 MODEL 1: IL13_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL13_pg_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL13_pg_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.073946  1        1.036314
## age        1.124178  1        1.060272
## race       1.160375  2        1.037886
## BMI        1.180224  1        1.086381
## Remission  1.018731  1        1.009322
## infusionno 1.000030  2        1.000007
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 137  64 
## 133  62
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.2468 0.178 Inf  -1.385  0.1660
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.0983 0.179 Inf  -0.548  0.5836
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.1442 0.178 Inf  -0.810  0.4182
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   -0.0934 0.0959 Inf  -0.974  0.5935
##  BL - 3rd   -0.0616 0.0945 Inf  -0.652  0.7914
##  1st - 3rd   0.0318 0.0947 Inf   0.335  0.9399
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st    0.0551 0.0725 Inf   0.760  0.7276
##  BL - 3rd    0.0409 0.0713 Inf   0.574  0.8341
##  1st - 3rd  -0.0142 0.0714 Inf  -0.198  0.9785
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

32 MODEL 1: IL13_pg_mL_LLOD by Remission*infusionno

rlmer<-robustlmm::rlmer(IL13_pg_mL_LLOD~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL13_pg_mL_LLOD~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.073941  1        1.036311
## age        1.124168  1        1.060268
## race       1.160324  2        1.037874
## BMI        1.180195  1        1.086368
## Remission  1.018741  1        1.009327
## infusionno 1.000034  2        1.000009
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 137 101 
## 135  99
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.2315 0.181 Inf  -1.279  0.2008
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.0614 0.182 Inf  -0.338  0.7357
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.1459 0.181 Inf  -0.805  0.4208
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   -0.0939 0.1007 Inf  -0.932  0.6200
##  BL - 3rd   -0.0614 0.0993 Inf  -0.619  0.8098
##  1st - 3rd   0.0324 0.0995 Inf   0.326  0.9431
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st    0.0762 0.0743 Inf   1.026  0.5602
##  BL - 3rd    0.0242 0.0743 Inf   0.326  0.9432
##  1st - 3rd  -0.0520 0.0737 Inf  -0.706  0.7601
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

33 MODEL 1: TNFa_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(TNFa_pg_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(TNFa_pg_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.074025  1        1.036352
## age        1.124818  1        1.060574
## race       1.158177  2        1.037394
## BMI        1.179364  1        1.085985
## Remission  1.019038  1        1.009474
## infusionno 1.000298  2        1.000075
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 101 212 
##  99 209
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter -0.00455 0.0797 Inf  -0.057  0.9545
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter -0.01155 0.0799 Inf  -0.145  0.8850
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter  0.00044 0.0798 Inf   0.006  0.9956
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.04374 0.0278 Inf   1.574  0.2570
##  BL - 3rd   0.03070 0.0274 Inf   1.121  0.5010
##  1st - 3rd -0.01304 0.0274 Inf  -0.476  0.8828
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.03674 0.0205 Inf   1.795  0.1714
##  BL - 3rd   0.03569 0.0205 Inf   1.743  0.1891
##  1st - 3rd -0.00105 0.0203 Inf  -0.052  0.9985
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

34 MODEL 1: IFNy_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IFNy_pg_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IFNy_pg_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.069806  1        1.034314
## age        1.115896  1        1.056360
## race       1.157322  2        1.037203
## BMI        1.174108  1        1.083563
## Remission  1.022165  1        1.011022
## infusionno 1.002614  2        1.000653
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 167 173 
## 164 170
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter    0.090 0.659 Inf   0.137  0.8913
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.069 0.661 Inf  -0.105  0.9168
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.318 0.659 Inf  -0.483  0.6293
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     0.368 0.240 Inf   1.537  0.2735
##  BL - 3rd     0.206 0.236 Inf   0.873  0.6576
##  1st - 3rd   -0.162 0.236 Inf  -0.687  0.7713
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     0.209 0.176 Inf   1.186  0.4617
##  BL - 3rd    -0.202 0.176 Inf  -1.146  0.4859
##  1st - 3rd   -0.412 0.175 Inf  -2.350  0.0492
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

35 MODEL 1: CRP_ng_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(CRP_ng_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(CRP_ng_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.072183  1        1.035463
## age        1.120640  1        1.058603
## race       1.159969  2        1.037795
## BMI        1.178414  1        1.085548
## Remission  1.019332  1        1.009620
## infusionno 1.000984  2        1.000246
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 210 155 
## 207 152
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter      768 455 Inf   1.689  0.0912
## 
## infusionno = 1st:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter      732 455 Inf   1.609  0.1076
## 
## infusionno = 3rd:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter      618 455 Inf   1.358  0.1744
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     120.3 108.3 Inf   1.111  0.5075
##  BL - 3rd     284.3 106.7 Inf   2.664  0.0211
##  1st - 3rd    164.0 106.8 Inf   1.536  0.2740
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st      84.6  79.7 Inf   1.061  0.5387
##  BL - 3rd     133.9  79.7 Inf   1.680  0.2130
##  1st - 3rd     49.4  79.1 Inf   0.624  0.8069
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates
Biok_biomarkers
##  [1] "TRP_nM"             "five_HT_nM"         "KYN_nM"            
##  [4] "three_HK_nM"        "KYNA_nM"            "PIC_nM"            
##  [7] "Quin_nM"            "AA_nM"              "KYN_TRP_ratio"     
## [10] "KYN_SER_ratio"      "QUIN_PIC_ratio"     "QUIN_KYNA_ratio"   
## [13] "threeHK_KYN_ratio"  "threeHK_KYNA_ratio" "IL1B_pg_mL"        
## [16] "IL1B_pg_mL_LLOD"    "IL2_pg_mL"          "IL2_pg_mL_LLOD"    
## [19] "IL4_pg_mL"          "IL4_pg_mL_LLOD"     "IL6_pg_mL"         
## [22] "IL8_pg_mL"          "IL10_pg_mL"         "IL12p70_pg_mL"     
## [25] "IL12p70_pg_mL_LLOD" "IL13_pg_mL"         "IL13_pg_mL_LLOD"   
## [28] "TNFa_pg_mL"         "IFNy_pg_mL"         "CRP_ng_mL"         
## [31] "NIC_nM"             "NIC_nM_LLOD"        "NTA_nM"            
## [34] "SAA_ng_mL"          "VCAM_1_ng_mL"       "ICAM_1_ng_mL"

36 MODEL 1: NIC_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(NIC_nM~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(NIC_nM~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.074166  1        1.036420
## age        1.125074  1        1.060695
## race       1.158474  2        1.037460
## BMI        1.179580  1        1.086085
## Remission  1.018958  1        1.009434
## infusionno 1.000188  2        1.000047
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  10 155 
##   9 152
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.0831 0.149 Inf  -0.556  0.5784
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.2776 0.150 Inf  -1.846  0.0649
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   0.0221 0.150 Inf   0.148  0.8825
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st    0.1013 0.0861 Inf   1.176  0.4673
##  BL - 3rd   -0.0298 0.0849 Inf  -0.351  0.9345
##  1st - 3rd  -0.1311 0.0851 Inf  -1.540  0.2721
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   -0.0932 0.0635 Inf  -1.467  0.3067
##  BL - 3rd    0.0754 0.0635 Inf   1.187  0.4611
##  1st - 3rd   0.1687 0.0631 Inf   2.673  0.0205
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

37 MODEL 1: NIC_nM_LLOD by Remission*infusionno

rlmer<-robustlmm::rlmer(NIC_nM_LLOD~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(NIC_nM_LLOD~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.074166  1        1.036420
## age        1.125074  1        1.060695
## race       1.158474  2        1.037460
## BMI        1.179580  1        1.086085
## Remission  1.018958  1        1.009434
## infusionno 1.000188  2        1.000047
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  10 155 
##   9 152
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.0850 0.149 Inf  -0.571  0.5683
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.2773 0.150 Inf  -1.849  0.0644
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   0.0223 0.149 Inf   0.149  0.8815
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st    0.1013 0.0857 Inf   1.181  0.4644
##  BL - 3rd   -0.0298 0.0845 Inf  -0.352  0.9338
##  1st - 3rd  -0.1311 0.0847 Inf  -1.547  0.2691
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   -0.0910 0.0633 Inf  -1.438  0.3211
##  BL - 3rd    0.0775 0.0633 Inf   1.225  0.4381
##  1st - 3rd   0.1685 0.0628 Inf   2.683  0.0200
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

38 MODEL 1: NTA_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(NTA_nM~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(NTA_nM~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.070668  1        1.034731
## age        1.118355  1        1.057523
## race       1.152475  2        1.036115
## BMI        1.174062  1        1.083542
## Remission  1.022283  1        1.011080
## infusionno 1.002534  2        1.000633
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 22 32 
## 21 31
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter  -35.118 34.5 Inf  -1.018  0.3085
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter  -66.694 34.8 Inf  -1.917  0.0552
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   -0.616 34.5 Inf  -0.018  0.9858
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st      43.0 25.4 Inf   1.692  0.2081
##  BL - 3rd      14.8 25.1 Inf   0.591  0.8249
##  1st - 3rd    -28.2 25.2 Inf  -1.120  0.5016
## 
## Remission = Remitter:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st      11.5 18.8 Inf   0.610  0.8149
##  BL - 3rd      49.3 18.8 Inf   2.625  0.0236
##  1st - 3rd     37.9 18.7 Inf   2.028  0.1056
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

39 MODEL 1: SAA_ng_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(SAA_ng_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(SAA_ng_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.070877  1        1.034832
## age        1.118748  1        1.057709
## race       1.160592  2        1.037934
## BMI        1.177020  1        1.084905
## Remission  1.019419  1        1.009663
## infusionno 1.001409  2        1.000352
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 148 163 
## 145 160
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter      530 412 Inf   1.285  0.1987
## 
## infusionno = 1st:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter      494 413 Inf   1.197  0.2311
## 
## infusionno = 3rd:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter      480 412 Inf   1.164  0.2446
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st  100.1010 132.5 Inf   0.755  0.7305
##  BL - 3rd  114.7529 130.6 Inf   0.879  0.6538
##  1st - 3rd  14.6519 130.7 Inf   0.112  0.9931
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st   64.7704  97.6 Inf   0.664  0.7846
##  BL - 3rd   64.7580  97.6 Inf   0.663  0.7847
##  1st - 3rd  -0.0123  96.8 Inf   0.000  1.0000
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

40 MODEL 1: VCAM_1_ng_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(VCAM_1_ng_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(VCAM_1_ng_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.072482  1        1.035607
## age        1.121484  1        1.059002
## race       1.157416  2        1.037224
## BMI        1.177796  1        1.085263
## Remission  1.019786  1        1.009845
## infusionno 1.001191  2        1.000298
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  53 212 
##  52 209
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     6.69 15.7 Inf   0.425  0.6709
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    16.49 15.8 Inf   1.044  0.2967
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    20.19 15.8 Inf   1.281  0.2001
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st    -0.684 7.27 Inf  -0.094  0.9951
##  BL - 3rd     2.871 7.16 Inf   0.401  0.9153
##  1st - 3rd    3.555 7.17 Inf   0.495  0.8735
## 
## Remission = Remitter:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st     9.119 5.36 Inf   1.702  0.2043
##  BL - 3rd    16.373 5.36 Inf   3.056  0.0063
##  1st - 3rd    7.254 5.32 Inf   1.364  0.3597
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

41 MODEL 1: ICAM_1_ng_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(ICAM_1_ng_mL~sex+age+race+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(ICAM_1_ng_mL~sex+age+race+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.071482  1        1.035124
## age        1.119649  1        1.058135
## race       1.160944  2        1.038013
## BMI        1.177931  1        1.085326
## Remission  1.019134  1        1.009522
## infusionno 1.001085  2        1.000271
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 17 15 
## 16 14
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     24.7 17.3 Inf   1.432  0.1523
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     23.3 17.3 Inf   1.346  0.1784
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     30.8 17.3 Inf   1.781  0.0749
## 
## Results are averaged over the levels of: sex, race
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st      4.48 7.32 Inf   0.613  0.8131
##  BL - 3rd      7.47 7.21 Inf   1.036  0.5543
##  1st - 3rd     2.98 7.22 Inf   0.413  0.9101
## 
## Remission = Remitter:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st      3.07 5.39 Inf   0.570  0.8363
##  BL - 3rd     13.53 5.39 Inf   2.509  0.0324
##  1st - 3rd    10.46 5.35 Inf   1.955  0.1236
## 
## Results are averaged over the levels of: sex, race 
## P value adjustment: tukey method for comparing a family of 3 estimates

42 MODEL 2: MADRS by TRP*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+TRP_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by TRP*infusionno")
Mixed model: MADRS by TRP*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 0.95 0.64 – 1.26 <0.001 <0.001
age 0.02 -0.06 – 0.11 0.598 0.598
sex [female] 0.25 0.07 – 0.43 0.005 0.005
BMI 0.03 -0.06 – 0.11 0.534 0.534
TRP nM 0.02 -0.13 – 0.17 0.813 0.813
infusionno [1st] -1.26 -1.47 – -1.06 <0.001 <0.001
infusionno [3rd] -1.81 -2.02 – -1.61 <0.001 <0.001
TRP nM * infusionno [1st] 0.10 -0.10 – 0.30 0.331 0.331
TRP nM * infusionno [3rd] 0.14 -0.07 – 0.34 0.192 0.192
Random Effects
σ2 39.00
τ00 patientno 0.00
τ00 Site_Location 6.15
ICC 0.14
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.610 / 0.663

43 MODEL 2: MADRS by five_HT_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+five_HT_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## [1] 85 13
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by five_HT_nM*infusionno")
Mixed model: MADRS by five_HT_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.05 0.71 – 1.39 <0.001 <0.001
age 0.03 -0.06 – 0.11 0.494 0.494
sex [female] 0.16 -0.01 – 0.33 0.066 0.066
BMI 0.04 -0.05 – 0.12 0.394 0.394
five HT nM -0.03 -0.16 – 0.10 0.641 0.641
infusionno [1st] -1.29 -1.48 – -1.09 <0.001 <0.001
infusionno [3rd] -1.83 -2.03 – -1.64 <0.001 <0.001
five HT nM * infusionno
[1st]
0.08 -0.12 – 0.27 0.432 0.432
five HT nM * infusionno
[3rd]
0.29 0.09 – 0.48 0.004 0.004
Random Effects
σ2 38.75
τ00 patientno 0.00
τ00 Site_Location 8.84
ICC 0.19
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.597 / 0.672

44 MODEL 2: MADRS by KYN_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+KYN_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by KYN_nM*infusionno")
Mixed model: MADRS by KYN_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 0.99 0.67 – 1.31 <0.001 <0.001
age -0.01 -0.10 – 0.08 0.858 0.858
sex [female] 0.22 0.04 – 0.39 0.014 0.014
BMI 0.02 -0.07 – 0.10 0.728 0.728
KYN nM -0.02 -0.16 – 0.12 0.780 0.780
infusionno [1st] -1.28 -1.48 – -1.07 <0.001 <0.001
infusionno [3rd] -1.84 -2.04 – -1.64 <0.001 <0.001
KYN nM * infusionno [1st] 0.11 -0.10 – 0.31 0.298 0.298
KYN nM * infusionno [3rd] 0.14 -0.06 – 0.34 0.166 0.166
Random Effects
σ2 39.71
τ00 patientno 0.00
τ00 Site_Location 6.99
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.599 / 0.659

45 MODEL 2: MADRS by three_HK_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+three_HK_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148 104 
## 147 104
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by three_HK_nM*infusionno")
Mixed model: MADRS by three_HK_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.69 – 1.36 <0.001 <0.001
age 0.01 -0.08 – 0.11 0.805 0.805
sex [female] 0.18 -0.01 – 0.37 0.067 0.067
BMI 0.02 -0.07 – 0.12 0.671 0.671
three HK nM -0.03 -0.14 – 0.09 0.643 0.643
infusionno [1st] -1.28 -1.47 – -1.10 <0.001 <0.001
infusionno [3rd] -1.84 -2.02 – -1.65 <0.001 <0.001
three HK nM * infusionno
[1st]
0.05 -0.14 – 0.23 0.620 0.620
three HK nM * infusionno
[3rd]
0.09 -0.11 – 0.29 0.357 0.357
Random Effects
σ2 35.01
τ00 patientno 4.69
τ00 Site_Location 7.88
ICC 0.26
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.590 / 0.698

46 MODEL 2: MADRS by KYNA_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+KYNA_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148 104 
## 147 104
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by KYNA_nM*infusionno")
Mixed model: MADRS by KYNA_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.36 <0.001 <0.001
age 0.01 -0.09 – 0.11 0.813 0.813
sex [female] 0.17 -0.03 – 0.37 0.093 0.093
BMI 0.02 -0.07 – 0.12 0.651 0.651
KYNA nM -0.06 -0.18 – 0.07 0.386 0.386
infusionno [1st] -1.29 -1.47 – -1.10 <0.001 <0.001
infusionno [3rd] -1.84 -2.03 – -1.65 <0.001 <0.001
KYNA nM * infusionno
[1st]
0.09 -0.11 – 0.28 0.404 0.404
KYNA nM * infusionno
[3rd]
0.06 -0.12 – 0.24 0.531 0.531
Random Effects
σ2 34.60
τ00 patientno 5.26
τ00 Site_Location 7.56
ICC 0.27
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.590 / 0.701

47 MODEL 2: MADRS by PIC_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+PIC_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

##  85 148 
##  85 147
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by PIC_nM*infusionno")
Mixed model: MADRS by PIC_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.00 0.68 – 1.32 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.865 0.865
sex [female] 0.21 0.04 – 0.38 0.017 0.017
BMI 0.03 -0.05 – 0.12 0.449 0.449
PIC nM -0.01 -0.11 – 0.09 0.833 0.833
infusionno [1st] -1.25 -1.45 – -1.05 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
PIC nM * infusionno [1st] 0.31 0.04 – 0.58 0.025 0.025
PIC nM * infusionno [3rd] 0.12 -0.10 – 0.34 0.297 0.297
Random Effects
σ2 39.90
τ00 patientno 0.00
τ00 Site_Location 7.48
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.599 / 0.662

48 MODEL 2: MADRS by Quin_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+Quin_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by Quin_nM*infusionno")
Mixed model: MADRS by Quin_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.37 <0.001 <0.001
age 0.02 -0.07 – 0.11 0.714 0.714
sex [female] 0.16 -0.02 – 0.34 0.080 0.080
BMI 0.03 -0.05 – 0.12 0.458 0.458
Quin nM 0.00 -0.15 – 0.15 0.978 0.978
infusionno [1st] -1.29 -1.49 – -1.09 0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
Quin nM * infusionno
[1st]
-0.01 -0.22 – 0.19 0.890 0.890
Quin nM * infusionno
[3rd]
-0.07 -0.27 – 0.13 0.485 0.485
Random Effects
σ2 41.12
τ00 patientno 0.00
τ00 Site_Location 7.84
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.587 / 0.653

49 MODEL 2: MADRS by AA_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+AA_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by AA_nM*infusionno")
Mixed model: MADRS by AA_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.71 – 1.34 <0.001 <0.001
age 0.01 -0.07 – 0.10 0.751 0.751
sex [female] 0.17 -0.00 – 0.35 0.051 0.051
BMI 0.03 -0.05 – 0.12 0.450 0.450
AA nM -0.07 -0.19 – 0.05 0.233 0.233
infusionno [1st] -1.31 -1.51 – -1.11 <0.001 <0.001
infusionno [3rd] -1.87 -2.07 – -1.66 <0.001 <0.001
AA nM * infusionno [1st] 0.13 -0.06 – 0.33 0.174 0.174
AA nM * infusionno [3rd] 0.02 -0.21 – 0.25 0.846 0.846
Random Effects
σ2 41.13
τ00 patientno 0.00
τ00 Site_Location 7.11
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.593 / 0.653

50 MODEL 2: MADRS by AA_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+AA_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by AA_nM*infusionno")
Mixed model: MADRS by AA_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.71 – 1.34 <0.001 <0.001
age 0.01 -0.07 – 0.10 0.751 0.751
sex [female] 0.17 -0.00 – 0.35 0.051 0.051
BMI 0.03 -0.05 – 0.12 0.450 0.450
AA nM -0.07 -0.19 – 0.05 0.233 0.233
infusionno [1st] -1.31 -1.51 – -1.11 <0.001 <0.001
infusionno [3rd] -1.87 -2.07 – -1.66 <0.001 <0.001
AA nM * infusionno [1st] 0.13 -0.06 – 0.33 0.174 0.174
AA nM * infusionno [3rd] 0.02 -0.21 – 0.25 0.846 0.846
Random Effects
σ2 41.13
τ00 patientno 0.00
τ00 Site_Location 7.11
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.593 / 0.653

51 MODEL 2: MADRS by KYN_TRP_ratio*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+KYN_TRP_ratio*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by KYN_TRP_ratio*infusionno")
Mixed model: MADRS by KYN_TRP_ratio*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.69 – 1.33 <0.001 <0.001
age 0.02 -0.07 – 0.11 0.675 0.675
sex [female] 0.18 0.01 – 0.35 0.042 0.042
BMI 0.03 -0.06 – 0.12 0.473 0.473
KYN TRP ratio -0.07 -0.23 – 0.09 0.382 0.382
infusionno [1st] -1.28 -1.49 – -1.08 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.64 <0.001 <0.001
KYN TRP ratio *
infusionno [1st]
0.06 -0.15 – 0.26 0.592 0.592
KYN TRP ratio *
infusionno [3rd]
0.09 -0.12 – 0.29 0.404 0.404
Random Effects
σ2 40.99
τ00 patientno 0.00
τ00 Site_Location 7.39
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.590 / 0.653

52 MODEL 2: MADRS by KYN_SER_ratio*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+KYN_SER_ratio*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148 104 
## 147 104
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by KYN_SER_ratio*infusionno")
Mixed model: MADRS by KYN_SER_ratio*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.69 – 1.37 <0.001 <0.001
age 0.00 -0.09 – 0.10 0.938 0.938
sex [female] 0.17 -0.02 – 0.35 0.075 0.075
BMI 0.02 -0.07 – 0.12 0.621 0.621
KYN SER ratio 0.10 -0.03 – 0.24 0.141 0.141
infusionno [1st] -1.28 -1.46 – -1.10 <0.001 <0.001
infusionno [3rd] -1.83 -2.01 – -1.64 <0.001 <0.001
KYN SER ratio *
infusionno [1st]
-0.19 -0.42 – 0.04 0.104 0.104
KYN SER ratio *
infusionno [3rd]
-0.18 -0.36 – -0.01 0.040 0.040
Random Effects
σ2 33.81
τ00 patientno 4.54
τ00 Site_Location 8.73
ICC 0.28
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.594 / 0.708

53 MODEL 2: MADRS by QUIN_PIC_ratio*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+TRP_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by QUIN_PIC_ratio*infusionno")
Mixed model: MADRS by QUIN_PIC_ratio*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 0.95 0.64 – 1.26 <0.001 <0.001
age 0.02 -0.06 – 0.11 0.598 0.598
sex [female] 0.25 0.07 – 0.43 0.005 0.005
BMI 0.03 -0.06 – 0.11 0.534 0.534
TRP nM 0.02 -0.13 – 0.17 0.813 0.813
infusionno [1st] -1.26 -1.47 – -1.06 <0.001 <0.001
infusionno [3rd] -1.81 -2.02 – -1.61 <0.001 <0.001
TRP nM * infusionno [1st] 0.10 -0.10 – 0.30 0.331 0.331
TRP nM * infusionno [3rd] 0.14 -0.07 – 0.34 0.192 0.192
Random Effects
σ2 39.00
τ00 patientno 0.00
τ00 Site_Location 6.15
ICC 0.14
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.610 / 0.663

54 MODEL 2: MADRS by QUIN_KYNA_ratio*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+QUIN_KYNA_ratio*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by QUIN_KYNA_ratio*infusionno")
Mixed model: MADRS by QUIN_KYNA_ratio*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.02 0.69 – 1.35 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.859 0.859
sex [female] 0.19 0.03 – 0.36 0.023 0.023
BMI 0.03 -0.05 – 0.11 0.499 0.499
QUIN KYNA ratio 0.05 -0.08 – 0.19 0.453 0.453
infusionno [1st] -1.30 -1.49 – -1.10 0.002 <0.001
infusionno [3rd] -1.85 -2.05 – -1.66 <0.001 <0.001
QUIN KYNA ratio *
infusionno [1st]
-0.18 -0.39 – 0.02 0.077 0.077
QUIN KYNA ratio *
infusionno [3rd]
-0.11 -0.30 – 0.08 0.237 0.237
Random Effects
σ2 38.67
τ00 patientno 0.00
τ00 Site_Location 8.00
ICC 0.17
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.602 / 0.671

55 MODEL 2: MADRS by threeHK_KYN_ratio*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+threeHK_KYN_ratio*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by threeHK_KYN_ratio*infusionno")
Mixed model: MADRS by threeHK_KYN_ratio*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.69 – 1.33 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.906 0.906
sex [female] 0.18 0.01 – 0.36 0.042 0.042
BMI 0.03 -0.06 – 0.12 0.511 0.511
threeHK KYN ratio -0.02 -0.17 – 0.12 0.750 0.750
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.64 <0.001 <0.001
threeHK KYN ratio *
infusionno [1st]
-0.00 -0.21 – 0.20 0.967 0.967
threeHK KYN ratio *
infusionno [3rd]
-0.02 -0.22 – 0.19 0.874 0.874
Random Effects
σ2 41.64
τ00 patientno 0.00
τ00 Site_Location 7.21
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.587 / 0.648

56 MODEL 2: MADRS by threeHK_KYNA_ratio*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+threeHK_KYNA_ratio*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by threeHK_KYNA_ratio*infusionno")
Mixed model: MADRS by threeHK_KYNA_ratio*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.69 – 1.34 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.846 0.846
sex [female] 0.18 0.00 – 0.36 0.044 0.044
BMI 0.02 -0.06 – 0.11 0.601 0.601
threeHK KYNA ratio 0.00 -0.13 – 0.13 0.975 0.975
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
threeHK KYNA ratio *
infusionno [1st]
-0.08 -0.28 – 0.12 0.434 0.434
threeHK KYNA ratio *
infusionno [3rd]
0.05 -0.14 – 0.25 0.586 0.586
Random Effects
σ2 40.57
τ00 patientno 0.00
τ00 Site_Location 7.38
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.593 / 0.655

57 MODEL 2: MADRS by IL1B_pg_mL*infusionno

rlmer<-robustlmm::rlmer(IL1B_pg_mL~age+sex+BMI+TRP_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 18 90 
##  1 18
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL1B_pg_mL*infusionno")
Mixed model: MADRS by IL1B_pg_mL*infusionno
  IL 1 B pg m L
Predictors std. Beta standardized CI p std. p
(Intercept) -0.24 -0.70 – 0.23 0.770 0.317
age 0.03 -0.09 – 0.15 0.631 0.631
sex [female] 0.21 -0.04 – 0.46 0.095 0.095
BMI -0.05 -0.16 – 0.06 0.379 0.379
TRP nM 0.09 -0.04 – 0.22 0.179 0.179
infusionno [1st] 0.13 -0.02 – 0.29 0.903 0.086
infusionno [3rd] 0.12 -0.02 – 0.26 0.252 0.100
TRP nM * infusionno [1st] 0.02 -0.11 – 0.16 0.748 0.748
TRP nM * infusionno [3rd] -0.07 -0.23 – 0.09 0.381 0.381
Random Effects
σ2 0.01
τ00 patientno 0.01
τ00 Site_Location 0.03
ICC 0.90
N patientno 26
N Site_Location 4
Observations 42
Marginal R2 / Conditional R2 0.056 / 0.905

58 MODEL 2: MADRS by IL1B_pg_mL_LLOD*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL1B_pg_mL_LLOD*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL1B_pg_mL_LLOD*infusionno")
Mixed model: MADRS by IL1B_pg_mL_LLOD*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.02 0.69 – 1.35 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.852 0.852
sex [female] 0.18 0.01 – 0.35 0.042 0.042
BMI 0.02 -0.06 – 0.11 0.573 0.573
IL1B pg mL LLOD -0.01 -0.18 – 0.17 0.945 0.945
infusionno [1st] -1.30 -1.51 – -1.10 0.114 <0.001
infusionno [3rd] -1.84 -2.05 – -1.64 <0.001 <0.001
IL1B pg mL LLOD *
infusionno [1st]
-0.23 -0.83 – 0.38 0.465 0.465
IL1B pg mL LLOD *
infusionno [3rd]
-0.03 -0.24 – 0.17 0.741 0.741
Random Effects
σ2 41.14
τ00 patientno 0.00
τ00 Site_Location 7.57
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.588 / 0.652

59 MODEL 2: MADRS by IL2_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL2_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
##  98  54
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL2_pg_mL*infusionno")
Mixed model: MADRS by IL2_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.14 0.81 – 1.47 <0.001 <0.001
age -0.02 -0.12 – 0.09 0.756 0.756
sex [female] 0.03 -0.18 – 0.25 0.768 0.768
BMI 0.07 -0.03 – 0.17 0.187 0.187
IL2 pg mL 0.05 -0.12 – 0.22 0.535 0.535
infusionno [1st] -1.29 -1.53 – -1.04 <0.001 <0.001
infusionno [3rd] -1.93 -2.17 – -1.69 <0.001 <0.001
IL2 pg mL * infusionno
[1st]
0.02 -0.22 – 0.26 0.889 0.889
IL2 pg mL * infusionno
[3rd]
0.09 -0.15 – 0.32 0.463 0.463
Random Effects
σ2 38.85
τ00 patientno 0.00
τ00 Site_Location 5.16
ICC 0.12
N patientno 60
N Site_Location 4
Observations 152
Marginal R2 / Conditional R2 0.615 / 0.660

60 MODEL 2: MADRS by IL2_pg_mL_LLOD*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL2_pg_mL_LLOD*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL2_pg_mL_LLOD*infusionno")
Mixed model: MADRS by IL2_pg_mL_LLOD*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.71 – 1.32 <0.001 <0.001
age 0.02 -0.07 – 0.11 0.660 0.660
sex [female] 0.16 -0.01 – 0.33 0.067 0.067
BMI 0.03 -0.05 – 0.12 0.481 0.481
IL2 pg mL LLOD 0.04 -0.10 – 0.18 0.537 0.537
infusionno [1st] -1.29 -1.49 – -1.10 <0.001 <0.001
infusionno [3rd] -1.86 -2.06 – -1.66 <0.001 <0.001
IL2 pg mL LLOD *
infusionno [1st]
0.02 -0.18 – 0.22 0.867 0.867
IL2 pg mL LLOD *
infusionno [3rd]
0.06 -0.13 – 0.26 0.526 0.526
Random Effects
σ2 40.19
τ00 patientno 0.00
τ00 Site_Location 6.42
ICC 0.14
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.602 / 0.657

61 MODEL 2: MADRS by IL4_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL4_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 146  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL4_pg_mL*infusionno")
Mixed model: MADRS by IL4_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.04 0.69 – 1.38 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.900 0.900
sex [female] 0.16 -0.01 – 0.33 0.072 0.072
BMI 0.02 -0.06 – 0.11 0.603 0.603
IL4 pg mL -0.04 -0.18 – 0.11 0.636 0.636
infusionno [1st] -1.28 -1.48 – -1.08 <0.001 <0.001
infusionno [3rd] -1.84 -2.05 – -1.64 <0.001 <0.001
IL4 pg mL * infusionno
[1st]
0.08 -0.11 – 0.27 0.414 0.414
IL4 pg mL * infusionno
[3rd]
0.10 -0.11 – 0.32 0.355 0.355
Random Effects
σ2 41.05
τ00 patientno 0.00
τ00 Site_Location 8.56
ICC 0.17
N patientno 75
N Site_Location 4
Observations 216
Marginal R2 / Conditional R2 0.583 / 0.655

62 MODEL 2: MADRS by IL4_pg_mL_LLOD*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL4_pg_mL_LLOD*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL4_pg_mL_LLOD*infusionno")
Mixed model: MADRS by IL4_pg_mL_LLOD*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.36 <0.001 <0.001
age 0.01 -0.08 – 0.10 0.786 0.786
sex [female] 0.17 -0.01 – 0.34 0.059 0.059
BMI 0.02 -0.07 – 0.11 0.642 0.642
IL4 pg mL LLOD -0.04 -0.19 – 0.11 0.642 0.642
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IL4 pg mL LLOD *
infusionno [1st]
0.10 -0.09 – 0.29 0.311 0.311
IL4 pg mL LLOD *
infusionno [3rd]
0.10 -0.12 – 0.32 0.361 0.361
Random Effects
σ2 41.17
τ00 patientno 0.00
τ00 Site_Location 8.04
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.586 / 0.654

63 MODEL 2: MADRS by IL6_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL6_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL6_pg_mL*infusionno")
Mixed model: MADRS by IL6_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.71 – 1.36 <0.001 <0.001
age 0.00 -0.09 – 0.09 0.994 0.994
sex [female] 0.16 -0.02 – 0.33 0.076 0.076
BMI 0.01 -0.09 – 0.10 0.906 0.906
IL6 pg mL 0.04 -0.12 – 0.19 0.631 0.631
infusionno [1st] -1.30 -1.50 – -1.10 <0.001 <0.001
infusionno [3rd] -1.84 -2.04 – -1.64 <0.001 <0.001
IL6 pg mL * infusionno
[1st]
0.06 -0.14 – 0.25 0.556 0.556
IL6 pg mL * infusionno
[3rd]
0.04 -0.19 – 0.27 0.720 0.720
Random Effects
σ2 40.32
τ00 patientno 0.00
τ00 Site_Location 7.79
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.593 / 0.659

64 MODEL 2: MADRS by IL8_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL8_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

##  85 148 
##  85 147
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL8_pg_mL*infusionno")
Mixed model: MADRS by IL8_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.02 0.70 – 1.34 <0.001 <0.001
age -0.00 -0.09 – 0.08 0.927 0.927
sex [female] 0.19 0.02 – 0.36 0.031 0.031
BMI 0.03 -0.05 – 0.12 0.457 0.457
IL8 pg mL -0.04 -0.16 – 0.08 0.495 0.495
infusionno [1st] -1.31 -1.50 – -1.11 <0.001 <0.001
infusionno [3rd] -1.84 -2.04 – -1.64 <0.001 <0.001
IL8 pg mL * infusionno
[1st]
0.21 0.01 – 0.40 0.039 0.039
IL8 pg mL * infusionno
[3rd]
0.14 -0.07 – 0.34 0.186 0.186
Random Effects
σ2 39.25
τ00 patientno 0.00
τ00 Site_Location 7.37
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.603 / 0.666

65 MODEL 2: MADRS by IL10_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL10_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL10_pg_mL*infusionno")
Mixed model: MADRS by IL10_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.69 – 1.33 <0.001 <0.001
age 0.02 -0.07 – 0.10 0.725 0.725
sex [female] 0.19 0.02 – 0.36 0.032 0.032
BMI 0.03 -0.06 – 0.11 0.563 0.563
IL10 pg mL -0.00 -0.13 – 0.13 0.993 0.993
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IL10 pg mL * infusionno
[1st]
-0.06 -0.26 – 0.13 0.531 0.531
IL10 pg mL * infusionno
[3rd]
-0.09 -0.29 – 0.12 0.413 0.413
Random Effects
σ2 40.99
τ00 patientno 0.00
τ00 Site_Location 7.08
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.592 / 0.652

66 MODEL 2: MADRS by IL12p70_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL12p70_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 146  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL12p70_pg_mL*infusionno")
Mixed model: MADRS by IL12p70_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.04 0.70 – 1.38 <0.001 <0.001
age -0.00 -0.09 – 0.09 0.941 0.941
sex [female] 0.15 -0.02 – 0.33 0.089 0.089
BMI 0.03 -0.05 – 0.12 0.454 0.454
IL12p70 pg mL -0.06 -0.18 – 0.06 0.348 0.348
infusionno [1st] -1.28 -1.48 – -1.08 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IL12p70 pg mL *
infusionno [1st]
0.05 -0.20 – 0.29 0.697 0.697
IL12p70 pg mL *
infusionno [3rd]
0.05 -0.13 – 0.23 0.563 0.563
Random Effects
σ2 41.03
τ00 patientno 0.00
τ00 Site_Location 8.24
ICC 0.17
N patientno 75
N Site_Location 4
Observations 216
Marginal R2 / Conditional R2 0.585 / 0.655

67 MODEL 2: MADRS by IL12p70_pg_mL_LLOD*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL12p70_pg_mL_LLOD*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL12p70_pg_mL_LLOD*infusionno")
Mixed model: MADRS by IL12p70_pg_mL_LLOD*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.35 <0.001 <0.001
age 0.00 -0.08 – 0.09 0.918 0.918
sex [female] 0.17 -0.01 – 0.34 0.064 0.064
BMI 0.03 -0.06 – 0.12 0.486 0.486
IL12p70 pg mL LLOD -0.06 -0.18 – 0.07 0.365 0.365
infusionno [1st] -1.29 -1.50 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IL12p70 pg mL LLOD *
infusionno [1st]
0.05 -0.19 – 0.30 0.676 0.676
IL12p70 pg mL LLOD *
infusionno [3rd]
0.05 -0.13 – 0.23 0.562 0.562
Random Effects
σ2 41.29
τ00 patientno 0.00
τ00 Site_Location 7.44
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.589 / 0.651

68 MODEL 2: MADRS by IL13_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL13_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 144  84
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL13_pg_mL*infusionno")
Mixed model: MADRS by IL13_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.37 <0.001 <0.001
age 0.00 -0.09 – 0.09 0.945 0.945
sex [female] 0.16 -0.02 – 0.34 0.075 0.075
BMI 0.03 -0.06 – 0.12 0.522 0.522
IL13 pg mL -0.07 -0.21 – 0.07 0.336 0.336
infusionno [1st] -1.26 -1.46 – -1.06 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IL13 pg mL * infusionno
[1st]
0.06 -0.14 – 0.27 0.552 0.552
IL13 pg mL * infusionno
[3rd]
0.06 -0.13 – 0.26 0.540 0.540
Random Effects
σ2 40.64
τ00 patientno 0.00
τ00 Site_Location 8.30
ICC 0.17
N patientno 75
N Site_Location 4
Observations 214
Marginal R2 / Conditional R2 0.587 / 0.657

69 MODEL 2: MADRS by IL13_pg_mL_LLOD*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL13_pg_mL_LLOD*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL13_pg_mL_LLOD*infusionno")
Mixed model: MADRS by IL13_pg_mL_LLOD*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.02 0.70 – 1.35 <0.001 <0.001
age 0.00 -0.08 – 0.09 0.921 0.921
sex [female] 0.17 -0.01 – 0.34 0.062 0.062
BMI 0.03 -0.06 – 0.12 0.489 0.489
IL13 pg mL LLOD -0.07 -0.21 – 0.07 0.350 0.350
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IL13 pg mL LLOD *
infusionno [1st]
0.07 -0.13 – 0.28 0.490 0.490
IL13 pg mL LLOD *
infusionno [3rd]
0.06 -0.14 – 0.26 0.545 0.545
Random Effects
σ2 41.29
τ00 patientno 0.00
τ00 Site_Location 7.41
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.589 / 0.651

70 MODEL 2: MADRS by TNFa_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+TNFa_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by TNFa_pg_mL*infusionno")
Mixed model: MADRS by TNFa_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.04 0.72 – 1.36 <0.001 <0.001
age 0.02 -0.06 – 0.11 0.613 0.613
sex [female] 0.14 -0.03 – 0.32 0.105 0.105
BMI 0.02 -0.06 – 0.11 0.568 0.568
TNFa pg mL -0.12 -0.26 – 0.03 0.130 0.130
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.86 -2.06 – -1.66 <0.001 <0.001
TNFa pg mL * infusionno
[1st]
0.04 -0.16 – 0.25 0.690 0.690
TNFa pg mL * infusionno
[3rd]
0.11 -0.09 – 0.31 0.299 0.299
Random Effects
σ2 40.21
τ00 patientno 0.00
τ00 Site_Location 7.22
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.596 / 0.658

71 MODEL 2: MADRS by IFNy_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IFNy_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IFNy_pg_mL*infusionno")
Mixed model: MADRS by IFNy_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.69 – 1.32 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.871 0.871
sex [female] 0.19 0.02 – 0.36 0.031 0.031
BMI 0.03 -0.06 – 0.11 0.511 0.511
IFNy pg mL 0.07 -0.05 – 0.20 0.249 0.249
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IFNy pg mL * infusionno
[1st]
-0.14 -0.33 – 0.05 0.143 0.143
IFNy pg mL * infusionno
[3rd]
-0.03 -0.24 – 0.18 0.808 0.808
Random Effects
σ2 39.54
τ00 patientno 0.00
τ00 Site_Location 7.15
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.601 / 0.662

72 MODEL 2: MADRS by CRP_ng_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+CRP_ng_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

##  85 148 
##  85 147
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by CRP_ng_mL*infusionno")
Mixed model: MADRS by CRP_ng_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.02 0.71 – 1.34 <0.001 <0.001
age 0.01 -0.07 – 0.10 0.778 0.778
sex [female] 0.17 -0.01 – 0.34 0.062 0.062
BMI 0.01 -0.08 – 0.10 0.842 0.842
CRP ng mL -0.02 -0.16 – 0.12 0.778 0.778
infusionno [1st] -1.29 -1.50 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.64 <0.001 <0.001
CRP ng mL * infusionno
[1st]
0.09 -0.10 – 0.28 0.367 0.367
CRP ng mL * infusionno
[3rd]
0.11 -0.11 – 0.32 0.334 0.334
Random Effects
σ2 40.90
τ00 patientno 0.00
τ00 Site_Location 6.92
ICC 0.14
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.594 / 0.653

73 MODEL 2: MADRS by NIC_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+NIC_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by NIC_nM*infusionno")
Mixed model: MADRS by NIC_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.35 <0.001 <0.001
age 0.01 -0.07 – 0.10 0.801 0.801
sex [female] 0.17 -0.00 – 0.34 0.053 0.053
BMI 0.02 -0.06 – 0.11 0.576 0.576
NIC nM -0.03 -0.15 – 0.09 0.604 0.604
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
NIC nM * infusionno [1st] 0.10 -0.09 – 0.29 0.283 0.283
NIC nM * infusionno [3rd] 0.10 -0.11 – 0.32 0.337 0.337
Random Effects
σ2 40.49
τ00 patientno 0.00
τ00 Site_Location 7.62
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.593 / 0.657

74 MODEL 2: MADRS by NIC_nM_LLOD*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+NIC_nM_LLOD*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by NIC_nM_LLOD*infusionno")
Mixed model: MADRS by NIC_nM_LLOD*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.35 <0.001 <0.001
age 0.01 -0.07 – 0.10 0.801 0.801
sex [female] 0.17 -0.00 – 0.34 0.053 0.053
BMI 0.02 -0.06 – 0.11 0.576 0.576
NIC nM LLOD -0.03 -0.15 – 0.09 0.604 0.604
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
NIC nM LLOD * infusionno
[1st]
0.10 -0.09 – 0.29 0.283 0.283
NIC nM LLOD * infusionno
[3rd]
0.10 -0.11 – 0.32 0.337 0.337
Random Effects
σ2 40.49
τ00 patientno 0.00
τ00 Site_Location 7.62
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.593 / 0.657

75 MODEL 2: MADRS by NTA_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+NTA_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by NTA_nM*infusionno")
Mixed model: MADRS by NTA_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.37 <0.001 <0.001
age 0.01 -0.07 – 0.10 0.770 0.770
sex [female] 0.18 0.01 – 0.35 0.043 0.043
BMI 0.02 -0.06 – 0.11 0.579 0.579
NTA nM -0.05 -0.18 – 0.08 0.420 0.420
infusionno [1st] -1.30 -1.50 – -1.10 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.64 <0.001 <0.001
NTA nM * infusionno [1st] 0.05 -0.15 – 0.26 0.593 0.593
NTA nM * infusionno [3rd] 0.14 -0.06 – 0.34 0.181 0.181
Random Effects
σ2 40.69
τ00 patientno 0.00
τ00 Site_Location 8.20
ICC 0.17
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.587 / 0.657

76 MODEL 2: MADRS by SAA_ng_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+SAA_ng_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## [1] 85 13
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by SAA_ng_mL*infusionno")
Mixed model: MADRS by SAA_ng_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.02 0.71 – 1.33 <0.001 <0.001
age 0.01 -0.08 – 0.10 0.823 0.823
sex [female] 0.16 -0.02 – 0.34 0.084 0.084
BMI 0.01 -0.09 – 0.10 0.880 0.880
SAA ng mL 0.01 -0.14 – 0.16 0.867 0.867
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.83 -2.03 – -1.63 <0.001 <0.001
SAA ng mL * infusionno
[1st]
-0.01 -0.21 – 0.19 0.919 0.919
SAA ng mL * infusionno
[3rd]
0.12 -0.09 – 0.33 0.257 0.257
Random Effects
σ2 41.99
τ00 patientno 0.00
τ00 Site_Location 6.68
ICC 0.14
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.586 / 0.643

77 MODEL 2: MADRS by VCAM_1_ng_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+VCAM_1_ng_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by VCAM_1_ng_mL*infusionno")
Mixed model: MADRS by VCAM_1_ng_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.69 – 1.34 <0.001 <0.001
age 0.01 -0.07 – 0.10 0.787 0.787
sex [female] 0.19 0.01 – 0.36 0.039 0.039
BMI 0.03 -0.06 – 0.11 0.537 0.537
VCAM 1 ng mL -0.01 -0.16 – 0.14 0.899 0.899
infusionno [1st] -1.29 -1.49 – -1.09 0.005 <0.001
infusionno [3rd] -1.85 -2.05 – -1.64 <0.001 <0.001
VCAM 1 ng mL * infusionno
[1st]
0.03 -0.18 – 0.23 0.811 0.811
VCAM 1 ng mL * infusionno
[3rd]
0.06 -0.14 – 0.26 0.527 0.527
Random Effects
σ2 41.11
τ00 patientno 0.00
τ00 Site_Location 7.55
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.588 / 0.652

78 MODEL 2: MADRS by ICAM_1_ng_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+ICAM_1_ng_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by ICAM_1_ng_mL*infusionno")
Mixed model: MADRS by ICAM_1_ng_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 0.98 0.68 – 1.28 <0.001 <0.001
age 0.01 -0.08 – 0.10 0.819 0.819
sex [female] 0.20 0.03 – 0.37 0.023 0.023
BMI 0.01 -0.07 – 0.10 0.776 0.776
ICAM 1 ng mL 0.06 -0.08 – 0.21 0.374 0.374
infusionno [1st] -1.28 -1.48 – -1.08 0.001 <0.001
infusionno [3rd] -1.84 -2.04 – -1.64 <0.001 <0.001
ICAM 1 ng mL * infusionno
[1st]
0.03 -0.17 – 0.22 0.802 0.802
ICAM 1 ng mL * infusionno
[3rd]
0.03 -0.17 – 0.23 0.750 0.750
Random Effects
σ2 40.16
τ00 patientno 0.00
τ00 Site_Location 5.99
ICC 0.13
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.603 / 0.654

79 MODEL 3: MADRS_Score_3rd by TRP_nM_BL

Biok_wide_new$TRP_nM_BL<-exp(Biok_wide_new$TRP_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+TRP_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

##  4 25 
##  2 23
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by TRP_nM_BL")
Multiple linear model: MADRS_Score_3rd by TRP_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.27 -0.67 – 0.12 0.090
age 0.08 -0.17 – 0.32 0.536
sex [female] 0.43 -0.08 – 0.93 0.095
BMI 0.04 -0.20 – 0.28 0.727
MADRS Score BL 0.23 -0.00 – 0.47 0.052
TRP nM BL 0.27 0.03 – 0.51 0.030
Observations 70
R2 / R2 adjusted 0.152 / 0.086

80 MODEL 3: MADRS_Score_3rd by five_HT_nM_BL

Biok_wide_new$five_HT_nM_BL<-exp(Biok_wide_new$five_HT_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+five_HT_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by five_HT_nM_BL")
Multiple linear model: MADRS_Score_3rd by five_HT_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.13 -0.52 – 0.25 0.262
age 0.10 -0.14 – 0.35 0.404
sex [female] 0.21 -0.27 – 0.69 0.390
BMI 0.04 -0.20 – 0.28 0.718
MADRS Score BL 0.28 0.05 – 0.52 0.020
five HT nM BL 0.28 0.05 – 0.52 0.020
Observations 70
R2 / R2 adjusted 0.161 / 0.095

81 MODEL 3: MADRS_Score_3rd by KYN_nM_BL

Biok_wide_new$KYN_nM_BL<-exp(Biok_wide_new$KYN_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+KYN_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by KYN_nM_BL")
Multiple linear model: MADRS_Score_3rd by KYN_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.23 -0.63 – 0.17 0.356
age -0.01 -0.28 – 0.25 0.916
sex [female] 0.36 -0.15 – 0.86 0.165
BMI -0.01 -0.25 – 0.24 0.965
MADRS Score BL 0.25 0.01 – 0.49 0.040
KYN nM BL 0.19 -0.08 – 0.45 0.163
Observations 70
R2 / R2 adjusted 0.114 / 0.045

82 MODEL 3: MADRS_Score_3rd by three_HK_nM_BL

Biok_wide_new$three_HK_nM_BL<-exp(Biok_wide_new$three_HK_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+three_HK_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by three_HK_nM_BL")
Multiple linear model: MADRS_Score_3rd by three_HK_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.58 – 0.22 0.625
age 0.05 -0.21 – 0.30 0.702
sex [female] 0.28 -0.22 – 0.78 0.272
BMI 0.01 -0.24 – 0.27 0.912
MADRS Score BL 0.26 0.01 – 0.50 0.043
three HK nM BL 0.02 -0.23 – 0.26 0.895
Observations 70
R2 / R2 adjusted 0.087 / 0.015

83 MODEL 3: MADRS_Score_3rd by KYNA_nM_BL

Biok_wide_new$KYNA_nM_BL<-exp(Biok_wide_new$KYNA_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+KYNA_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by KYNA_nM_BL")
Multiple linear model: MADRS_Score_3rd by KYNA_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.58 – 0.24 0.697
age 0.05 -0.20 – 0.31 0.682
sex [female] 0.27 -0.25 – 0.79 0.303
BMI 0.02 -0.23 – 0.27 0.893
MADRS Score BL 0.25 0.00 – 0.50 0.050
KYNA nM BL -0.02 -0.28 – 0.25 0.907
Observations 70
R2 / R2 adjusted 0.087 / 0.015

84 MODEL 3: MADRS_Score_3rd by PIC_nM_BL

Biok_wide_new$PIC_nM_BL<-exp(Biok_wide_new$PIC_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+PIC_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by PIC_nM_BL")
Multiple linear model: MADRS_Score_3rd by PIC_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.58 – 0.22 0.697
age 0.06 -0.20 – 0.31 0.656
sex [female] 0.28 -0.22 – 0.78 0.268
BMI 0.01 -0.24 – 0.26 0.922
MADRS Score BL 0.25 0.00 – 0.49 0.047
PIC nM BL -0.05 -0.29 – 0.19 0.687
Observations 70
R2 / R2 adjusted 0.089 / 0.018

85 MODEL 3: MADRS_Score_3rd by Quin_nM_BL

Biok_wide_new$Quin_nM_BL<-exp(Biok_wide_new$Quin_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+Quin_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by Quin_nM_BL")
Multiple linear model: MADRS_Score_3rd by Quin_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.12 -0.53 – 0.29 0.904
age 0.08 -0.17 – 0.34 0.520
sex [female] 0.19 -0.33 – 0.71 0.465
BMI 0.03 -0.22 – 0.28 0.802
MADRS Score BL 0.26 0.02 – 0.50 0.037
Quin nM BL -0.14 -0.40 – 0.12 0.282
Observations 70
R2 / R2 adjusted 0.103 / 0.033

86 MODEL 3: MADRS_Score_3rd by AA_nM_BL

Biok_wide_new$AA_nM_BL<-exp(Biok_wide_new$AA_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+AA_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

##  2 25 
##  1 23
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by AA_nM_BL")
Multiple linear model: MADRS_Score_3rd by AA_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.20 -0.59 – 0.18 0.680
age 0.10 -0.15 – 0.34 0.446
sex [female] 0.31 -0.17 – 0.80 0.201
BMI 0.10 -0.15 – 0.35 0.446
MADRS Score BL 0.21 -0.03 – 0.45 0.086
AA nM BL -0.27 -0.53 – -0.02 0.034
Observations 70
R2 / R2 adjusted 0.149 / 0.082

87 MODEL 3: MADRS_Score_3rd by KYN_TRP_ratio_BL

Biok_wide_new$KYN_TRP_ratio_BL<-exp(Biok_wide_new$KYN_TRP_ratio_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+KYN_TRP_ratio_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by KYN_TRP_ratio_BL")
Multiple linear model: MADRS_Score_3rd by KYN_TRP_ratio_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.58 – 0.22 0.683
age 0.06 -0.21 – 0.33 0.670
sex [female] 0.28 -0.22 – 0.78 0.271
BMI 0.02 -0.23 – 0.28 0.867
MADRS Score BL 0.25 0.00 – 0.50 0.046
KYN TRP ratio BL -0.02 -0.30 – 0.25 0.872
Observations 70
R2 / R2 adjusted 0.087 / 0.016

88 MODEL 3: MADRS_Score_3rd by KYN_SER_ratio_BL

Biok_wide_new$KYN_SER_ratio_BL<-exp(Biok_wide_new$KYN_SER_ratio_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+KYN_SER_ratio_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by KYN_SER_ratio_BL")
Multiple linear model: MADRS_Score_3rd by KYN_SER_ratio_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.20 -0.60 – 0.20 0.477
age 0.07 -0.18 – 0.32 0.574
sex [female] 0.31 -0.19 – 0.81 0.221
BMI 0.02 -0.23 – 0.26 0.895
MADRS Score BL 0.30 0.04 – 0.55 0.022
KYN SER ratio BL -0.15 -0.40 – 0.10 0.239
Observations 70
R2 / R2 adjusted 0.106 / 0.036

89 MODEL 3: MADRS_Score_3rd by QUIN_PIC_ratio_BL

Biok_wide_new$QUIN_PIC_ratio_BL<-exp(Biok_wide_new$QUIN_PIC_ratio_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+QUIN_PIC_ratio_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by QUIN_PIC_ratio_BL")
Multiple linear model: MADRS_Score_3rd by QUIN_PIC_ratio_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.20 -0.59 – 0.20 0.579
age 0.07 -0.19 – 0.32 0.590
sex [female] 0.30 -0.19 – 0.80 0.228
BMI 0.05 -0.21 – 0.30 0.709
MADRS Score BL 0.28 0.03 – 0.52 0.029
QUIN PIC ratio BL -0.13 -0.38 – 0.12 0.300
Observations 70
R2 / R2 adjusted 0.102 / 0.032

90 MODEL 3: MADRS_Score_3rd by QUIN_KYNA_ratio_BL

Biok_wide_new$QUIN_KYNA_ratio_BL<-exp(Biok_wide_new$QUIN_KYNA_ratio_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+QUIN_KYNA_ratio_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by QUIN_KYNA_ratio_BL")
Multiple linear model: MADRS_Score_3rd by QUIN_KYNA_ratio_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.19 -0.59 – 0.21 0.660
age 0.05 -0.20 – 0.31 0.680
sex [female] 0.30 -0.20 – 0.80 0.240
BMI 0.03 -0.22 – 0.27 0.839
MADRS Score BL 0.27 0.02 – 0.53 0.034
QUIN KYNA ratio BL -0.08 -0.33 – 0.17 0.536
Observations 70
R2 / R2 adjusted 0.092 / 0.021

91 MODEL 3: MADRS_Score_3rd by threeHK_KYN_ratio_BL

Biok_wide_new$threeHK_KYN_ratio_BL<-exp(Biok_wide_new$threeHK_KYN_ratio_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+threeHK_KYN_ratio_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by threeHK_KYN_ratio_BL")
Multiple linear model: MADRS_Score_3rd by threeHK_KYN_ratio_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.20 -0.60 – 0.20 0.934
age 0.03 -0.22 – 0.29 0.788
sex [female] 0.31 -0.19 – 0.81 0.226
BMI 0.04 -0.21 – 0.29 0.776
MADRS Score BL 0.23 -0.01 – 0.48 0.062
threeHK KYN ratio BL -0.11 -0.36 – 0.13 0.360
Observations 70
R2 / R2 adjusted 0.098 / 0.028

92 MODEL 3: MADRS_Score_3rd by threeHK_KYNA_ratio_BL

Biok_wide_new$threeHK_KYNA_ratio_BL<-exp(Biok_wide_new$threeHK_KYNA_ratio_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+threeHK_KYNA_ratio_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

##  2 25 
##  1 23
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by threeHK_KYNA_ratio_BL")
Multiple linear model: MADRS_Score_3rd by threeHK_KYNA_ratio_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.14 -0.54 – 0.27 0.629
age 0.05 -0.20 – 0.30 0.680
sex [female] 0.21 -0.31 – 0.73 0.416
BMI -0.01 -0.26 – 0.24 0.943
MADRS Score BL 0.24 -0.00 – 0.49 0.051
threeHK KYNA ratio BL 0.12 -0.14 – 0.37 0.362
Observations 70
R2 / R2 adjusted 0.098 / 0.028

93 MODEL 3: MADRS_Score_3rd by IL1B_pg_mL_BL

Biok_wide_new$IL1B_pg_mL_BL<-exp(Biok_wide_new$IL1B_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL1B_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 19 63 
##  2 13
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL1B_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL1B_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) 0.42 -0.49 – 1.33 0.809
age -0.21 -0.94 – 0.53 0.548
sex [female] -0.83 -2.30 – 0.64 0.235
BMI -0.04 -0.77 – 0.69 0.898
MADRS Score BL 0.50 -0.44 – 1.43 0.263
IL1B pg mL BL 0.43 -0.20 – 1.06 0.158
Observations 16
R2 / R2 adjusted 0.386 / 0.079

94 MODEL 3: MADRS_Score_3rd by IL1B_pg_mL_LLOD_BL

Biok_wide_new$IL1B_pg_mL_LLOD_BL<-exp(Biok_wide_new$IL1B_pg_mL_LLOD_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL1B_pg_mL_LLOD_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL1B_pg_mL_LLOD_BL")
Multiple linear model: MADRS_Score_3rd by IL1B_pg_mL_LLOD_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.23 0.568
age 0.05 -0.20 – 0.30 0.692
sex [female] 0.27 -0.24 – 0.77 0.292
BMI 0.02 -0.23 – 0.27 0.880
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL1B pg mL LLOD BL 0.05 -0.19 – 0.29 0.698
Observations 70
R2 / R2 adjusted 0.089 / 0.018

95 MODEL 3: MADRS_Score_3rd by IL2_pg_mL_BL

Biok_wide_new$IL2_pg_mL_BL<-exp(Biok_wide_new$IL2_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL2_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

##  2 22 
##  1 13
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL2_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL2_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) 0.14 -0.37 – 0.65 0.895
age 0.19 -0.13 – 0.51 0.242
sex [female] -0.21 -0.85 – 0.42 0.499
BMI -0.10 -0.41 – 0.21 0.505
MADRS Score BL 0.33 0.02 – 0.64 0.036
IL2 pg mL BL 0.27 -0.04 – 0.57 0.087
Observations 44
R2 / R2 adjusted 0.195 / 0.089

96 MODEL 3: MADRS_Score_3rd by IL2_pg_mL_LLOD_BL

Biok_wide_new$IL2_pg_mL_LLOD_BL<-exp(Biok_wide_new$IL2_pg_mL_LLOD_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL2_pg_mL_LLOD_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL2_pg_mL_LLOD_BL")
Multiple linear model: MADRS_Score_3rd by IL2_pg_mL_LLOD_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.56 – 0.23 0.593
age 0.07 -0.19 – 0.32 0.603
sex [female] 0.26 -0.24 – 0.75 0.305
BMI 0.03 -0.22 – 0.27 0.819
MADRS Score BL 0.24 -0.00 – 0.48 0.054
IL2 pg mL LLOD BL 0.16 -0.09 – 0.40 0.201
Observations 70
R2 / R2 adjusted 0.110 / 0.040

97 MODEL 3: MADRS_Score_3rd by IL4_pg_mL_BL

Biok_wide_new$IL4_pg_mL_BL<-exp(Biok_wide_new$IL4_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL4_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL4_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL4_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.23 0.515
age 0.07 -0.19 – 0.33 0.606
sex [female] 0.27 -0.24 – 0.77 0.293
BMI 0.00 -0.25 – 0.26 0.969
MADRS Score BL 0.27 0.02 – 0.52 0.037
IL4 pg mL BL 0.06 -0.19 – 0.32 0.622
Observations 70
R2 / R2 adjusted 0.090 / 0.019

98 MODEL 3: MADRS_Score_3rd by IL4_pg_mL_LLOD_BL

Biok_wide_new$IL4_pg_mL_LLOD_BL<-exp(Biok_wide_new$IL4_pg_mL_LLOD_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL4_pg_mL_LLOD_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL4_pg_mL_LLOD_BL")
Multiple linear model: MADRS_Score_3rd by IL4_pg_mL_LLOD_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.23 0.515
age 0.07 -0.19 – 0.33 0.606
sex [female] 0.27 -0.24 – 0.77 0.293
BMI 0.00 -0.25 – 0.26 0.969
MADRS Score BL 0.27 0.02 – 0.52 0.037
IL4 pg mL LLOD BL 0.06 -0.19 – 0.32 0.622
Observations 70
R2 / R2 adjusted 0.090 / 0.019

99 MODEL 3: MADRS_Score_3rd by IL6_pg_mL_BL

Biok_wide_new$IL6_pg_mL_BL<-exp(Biok_wide_new$IL6_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL6_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL6_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL6_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.20 -0.61 – 0.20 0.553
age 0.06 -0.19 – 0.32 0.624
sex [female] 0.31 -0.20 – 0.83 0.226
BMI 0.05 -0.22 – 0.32 0.716
MADRS Score BL 0.26 0.02 – 0.51 0.036
IL6 pg mL BL -0.08 -0.36 – 0.19 0.539
Observations 70
R2 / R2 adjusted 0.092 / 0.021

100 MODEL 3: MADRS_Score_3rd by IL8_pg_mL_BL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

101 MODEL 3: MADRS_Score_3rd by IL10_pg_mL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

102 MODEL 3: MADRS_Score_3rd by IL8_pg_mL_BL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

103 MODEL 3: MADRS_Score_3rd by IL8_pg_mL_BL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

104 MODEL 3: MADRS_Score_3rd by IL8_pg_mL_BL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

105 MODEL 3: MADRS_Score_3rd by IL8_pg_mL_BL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

106 MODEL 3: MADRS_Score_3rd by IL8_pg_mL_BL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

107 MODEL 3: MADRS_Score_3rd by IL10_pg_mL_BL

Biok_wide_new$IL10_pg_mL_BL<-exp(Biok_wide_new$IL10_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL10_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL10_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL10_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.21 -0.60 – 0.19 0.634
age 0.07 -0.18 – 0.32 0.590
sex [female] 0.32 -0.17 – 0.82 0.200
BMI 0.01 -0.23 – 0.26 0.914
MADRS Score BL 0.25 0.01 – 0.49 0.043
IL10 pg mL BL -0.18 -0.42 – 0.06 0.137
Observations 70
R2 / R2 adjusted 0.118 / 0.049

108 MODEL 3: MADRS_Score_3rd by IL12p70_pg_mL_BL

Biok_wide_new$IL12p70_pg_mL_BL<-exp(Biok_wide_new$IL12p70_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL12p70_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL12p70_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL12p70_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.19 -0.59 – 0.21 0.599
age 0.07 -0.19 – 0.33 0.612
sex [female] 0.30 -0.21 – 0.81 0.243
BMI 0.00 -0.25 – 0.26 0.972
MADRS Score BL 0.26 0.01 – 0.51 0.038
IL12p70 pg mL BL 0.07 -0.19 – 0.32 0.604
Observations 70
R2 / R2 adjusted 0.090 / 0.019

109 MODEL 3: MADRS_Score_3rd by IL12p70_pg_mL_LLOD_BL

Biok_wide_new$IL12p70_pg_mL_LLOD_BL<-exp(Biok_wide_new$IL12p70_pg_mL_LLOD_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL12p70_pg_mL_LLOD_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL12p70_pg_mL_LLOD_BL")
Multiple linear model: MADRS_Score_3rd by IL12p70_pg_mL_LLOD_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.19 -0.59 – 0.21 0.599
age 0.07 -0.19 – 0.33 0.612
sex [female] 0.30 -0.21 – 0.81 0.243
BMI 0.00 -0.25 – 0.26 0.972
MADRS Score BL 0.26 0.01 – 0.51 0.038
IL12p70 pg mL LLOD BL 0.07 -0.19 – 0.32 0.604
Observations 70
R2 / R2 adjusted 0.090 / 0.019

110 MODEL 3: MADRS_Score_3rd by IL13_pg_mL_BL

Biok_wide_new$IL13_pg_mL_BL<-exp(Biok_wide_new$IL13_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL13_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL13_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL13_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.59 – 0.24 0.645
age 0.06 -0.20 – 0.33 0.627
sex [female] 0.27 -0.25 – 0.78 0.304
BMI 0.00 -0.25 – 0.26 0.978
MADRS Score BL 0.26 0.01 – 0.51 0.044
IL13 pg mL BL 0.06 -0.20 – 0.31 0.650
Observations 69
R2 / R2 adjusted 0.082 / 0.009

111 MODEL 3: MADRS_Score_3rd by IL13_pg_mL_LLOD_BL

Biok_wide_new$IL13_pg_mL_LLOD_BL<-exp(Biok_wide_new$IL13_pg_mL_LLOD_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL13_pg_mL_LLOD_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL13_pg_mL_LLOD_BL")
Multiple linear model: MADRS_Score_3rd by IL13_pg_mL_LLOD_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.19 -0.59 – 0.21 0.585
age 0.07 -0.19 – 0.33 0.607
sex [female] 0.30 -0.21 – 0.80 0.244
BMI 0.00 -0.25 – 0.26 0.976
MADRS Score BL 0.26 0.02 – 0.51 0.038
IL13 pg mL LLOD BL 0.07 -0.19 – 0.32 0.605
Observations 70
R2 / R2 adjusted 0.090 / 0.019

112 MODEL 3: MADRS_Score_3rd by TNFa_pg_mL_BL

Biok_wide_new$TNFa_pg_mL_BL<-exp(Biok_wide_new$TNFa_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+TNFa_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by TNFa_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by TNFa_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.19 -0.59 – 0.22 0.588
age 0.05 -0.21 – 0.30 0.714
sex [female] 0.29 -0.22 – 0.81 0.259
BMI 0.02 -0.23 – 0.26 0.898
MADRS Score BL 0.26 0.01 – 0.51 0.042
TNFa pg mL BL 0.03 -0.22 – 0.29 0.793
Observations 70
R2 / R2 adjusted 0.088 / 0.016

113 MODEL 3: MADRS_Score_3rd by IFNy_pg_mL_BL

Biok_wide_new$IFNy_pg_mL_BL<-exp(Biok_wide_new$IFNy_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IFNy_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IFNy_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IFNy_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.23 0.699
age 0.06 -0.20 – 0.31 0.657
sex [female] 0.27 -0.23 – 0.76 0.292
BMI -0.00 -0.25 – 0.25 0.997
MADRS Score BL 0.28 0.03 – 0.53 0.029
IFNy pg mL BL -0.11 -0.36 – 0.13 0.368
Observations 70
R2 / R2 adjusted 0.098 / 0.028

114 MODEL 3: MADRS_Score_3rd by CRP_ng_mL_BL

Biok_wide_new$CRP_ng_mL_BL<-exp(Biok_wide_new$CRP_ng_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+CRP_ng_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by CRP_ng_mL_BL")
Multiple linear model: MADRS_Score_3rd by CRP_ng_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.16 -0.56 – 0.24 0.797
age 0.06 -0.20 – 0.31 0.660
sex [female] 0.25 -0.25 – 0.75 0.321
BMI -0.03 -0.30 – 0.23 0.805
MADRS Score BL 0.25 0.01 – 0.49 0.045
CRP ng mL BL 0.13 -0.13 – 0.38 0.335
Observations 70
R2 / R2 adjusted 0.100 / 0.029

115 MODEL 3: MADRS_Score_3rd by NIC_nM_BL

Biok_wide_new$NIC_nM_BL<-exp(Biok_wide_new$NIC_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+NIC_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by NIC_nM_BL")
Multiple linear model: MADRS_Score_3rd by NIC_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.23 0.619
age 0.05 -0.20 – 0.30 0.685
sex [female] 0.26 -0.24 – 0.76 0.301
BMI 0.01 -0.23 – 0.26 0.915
MADRS Score BL 0.26 0.02 – 0.51 0.038
NIC nM BL 0.07 -0.17 – 0.31 0.568
Observations 70
R2 / R2 adjusted 0.091 / 0.020

116 MODEL 3: MADRS_Score_3rd by NIC_nM_LLOD_BL

Biok_wide_new$NIC_nM_LLOD_BL<-exp(Biok_wide_new$NIC_nM_LLOD_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+NIC_nM_LLOD_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by NIC_nM_LLOD_BL")
Multiple linear model: MADRS_Score_3rd by NIC_nM_LLOD_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.23 0.619
age 0.05 -0.20 – 0.30 0.685
sex [female] 0.26 -0.24 – 0.76 0.301
BMI 0.01 -0.23 – 0.26 0.915
MADRS Score BL 0.26 0.02 – 0.51 0.038
NIC nM LLOD BL 0.07 -0.17 – 0.31 0.568
Observations 70
R2 / R2 adjusted 0.091 / 0.020

117 MODEL 3: MADRS_Score_3rd by NTA_nM_BL

Biok_wide_new$NTA_nM_BL<-exp(Biok_wide_new$NTA_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+NTA_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by NTA_nM_BL")
Multiple linear model: MADRS_Score_3rd by NTA_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.20 -0.60 – 0.21 0.472
age 0.07 -0.19 – 0.32 0.612
sex [female] 0.30 -0.20 – 0.81 0.234
BMI 0.02 -0.22 – 0.27 0.846
MADRS Score BL 0.26 0.02 – 0.51 0.037
NTA nM BL 0.08 -0.16 – 0.33 0.500
Observations 70
R2 / R2 adjusted 0.093 / 0.022

118 MODEL 3: MADRS_Score_3rd by SAA_ng_mL_BL

Biok_wide_new$SAA_ng_mL_BL<-exp(Biok_wide_new$SAA_ng_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+SAA_ng_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by SAA_ng_mL_BL")
Multiple linear model: MADRS_Score_3rd by SAA_ng_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.16 -0.57 – 0.24 0.722
age 0.05 -0.21 – 0.30 0.708
sex [female] 0.25 -0.26 – 0.76 0.333
BMI -0.01 -0.28 – 0.26 0.938
MADRS Score BL 0.25 0.00 – 0.49 0.048
SAA ng mL BL 0.07 -0.20 – 0.34 0.616
Observations 70
R2 / R2 adjusted 0.090 / 0.019

119 MODEL 3: MADRS_Score_3rd by VCAM_1_ng_mL_BL

Biok_wide_new$VCAM_1_ng_mL_BL<-exp(Biok_wide_new$VCAM_1_ng_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+VCAM_1_ng_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by VCAM_1_ng_mL_BL")
Multiple linear model: MADRS_Score_3rd by VCAM_1_ng_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.24 0.869
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.26 -0.25 – 0.77 0.312
BMI 0.02 -0.23 – 0.27 0.882
MADRS Score BL 0.25 -0.00 – 0.49 0.052
VCAM 1 ng mL BL -0.04 -0.29 – 0.21 0.763
Observations 70
R2 / R2 adjusted 0.088 / 0.017

120 MODEL 3: MADRS_Score_3rd by ICAM_1_ng_mL_BL

Biok_wide_new$ICAM_1_ng_mL_BL<-exp(Biok_wide_new$ICAM_1_ng_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+ICAM_1_ng_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by ICAM_1_ng_mL_BL")
Multiple linear model: MADRS_Score_3rd by ICAM_1_ng_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.21 -0.61 – 0.19 0.440
age 0.04 -0.21 – 0.29 0.738
sex [female] 0.32 -0.18 – 0.82 0.208
BMI 0.01 -0.23 – 0.26 0.912
MADRS Score BL 0.23 -0.02 – 0.47 0.074
ICAM 1 ng mL BL 0.13 -0.12 – 0.37 0.307
Observations 70
R2 / R2 adjusted 0.101 / 0.031