Grupo 12 - Rafael Abreu, David Lage, Jo?o Paulo Quirino
1/25/2022
dataInicial = as.Date("2010-01-01")
dataFinal = as.Date("2021-10-31")
dataInicial = as.Date("2010-01-01")
dataFinal = as.Date("2021-10-31")
tickers <- c("BBAS3.SA","PETR4.SA")
getSymbols(tickers, src = "yahoo", from = dataInicial, to = dataFinal)## [1] "BBAS3.SA" "PETR4.SA"
Dados diários obtidos em (http://nefin.com.br/risk_factors.html), foram devidamente ajustados para obter as taxas acumuladas mensais.
## # A tibble: 6 x 4
## Rm_minus_Rf_M SMB_M HML_M Risk_free_M
## <dbl> <dbl> <dbl> <dbl>
## 1 -0.0438 0.0517 0.0269 0.00628
## 2 0.00384 0.0254 0.0117 0.00597
## 3 0.0382 -0.0684 -0.0117 0.00768
## 4 -0.0364 0.0225 -0.0321 0.00687
## 5 -0.0654 -0.0120 -0.0271 0.00770
## 6 -0.0456 0.0406 -0.00135 0.00813
## BBAS3.SA.Open BBAS3.SA.High BBAS3.SA.Low BBAS3.SA.Close
## 2010-01-04 29.80 30.00 29.70 29.90
## 2010-01-05 30.10 30.10 29.19 29.60
## 2010-01-06 29.49 30.00 29.42 29.64
## 2010-01-07 29.44 29.71 29.41 29.65
## 2010-01-08 29.70 29.82 29.47 29.82
## 2010-01-11 29.98 30.07 29.62 30.05
## BBAS3.SA.Volume BBAS3.SA.Adjusted
## 2010-01-04 3624700 13.93330
## 2010-01-05 3064900 13.79351
## 2010-01-06 2733100 13.81214
## 2010-01-07 1542200 13.81681
## 2010-01-08 2038900 13.89602
## 2010-01-11 2412800 14.00320
## PETR4.SA.Open PETR4.SA.High PETR4.SA.Low PETR4.SA.Close
## 2010-01-04 36.95 37.32 36.82 37.32
## 2010-01-05 37.38 37.43 36.80 37.00
## 2010-01-06 36.80 37.50 36.80 37.50
## 2010-01-07 37.27 37.45 37.07 37.15
## 2010-01-08 37.16 37.39 36.86 36.95
## 2010-01-11 37.21 37.34 36.62 36.83
## PETR4.SA.Volume PETR4.SA.Adjusted
## 2010-01-04 13303600 23.64364
## 2010-01-05 21396400 23.44091
## 2010-01-06 18720600 23.75768
## 2010-01-07 10964600 23.53594
## 2010-01-08 14624200 23.40923
## 2010-01-11 15317700 23.33322
## [1] "BBAS3.SA.Open" "BBAS3.SA.High" "BBAS3.SA.Low"
## [4] "BBAS3.SA.Close" "BBAS3.SA.Volume" "BBAS3.SA.Adjusted"
## [1] "PETR4.SA.Open" "PETR4.SA.High" "PETR4.SA.Low"
## [4] "PETR4.SA.Close" "PETR4.SA.Volume" "PETR4.SA.Adjusted"
Selecionando só os preços de fechamento ajustados pelos proventos
## BBAS3.SA.Adjusted
## 2010-01-04 13.93330
## 2010-01-05 13.79351
## 2010-01-06 13.81214
## 2010-01-07 13.81681
## 2010-01-08 13.89602
## 2010-01-11 14.00320
## BBAS3.SA.Adjusted
## 2021-10-22 28.36336
## 2021-10-25 28.95201
## 2021-10-26 28.64787
## 2021-10-27 28.61844
## 2021-10-28 28.36336
## 2021-10-29 27.96111
## [1] 0.14422769 -0.03602018 -0.01556181 -0.02663065 -0.04432085 -0.01384077
## PETR4.SA.Adjusted
## 2010-01-04 23.64364
## 2010-01-05 23.44091
## 2010-01-06 23.75768
## 2010-01-07 23.53594
## 2010-01-08 23.40923
## 2010-01-11 23.33322
## PETR4.SA.Adjusted
## 2021-10-22 24.19526
## 2021-10-25 25.85101
## 2021-10-26 25.60176
## 2021-10-27 25.53944
## 2021-10-28 25.77979
## 2021-10-29 24.16856
## [1] 0.137595194 0.095273601 -0.085626917 0.070584731 0.001471069
## [6] -0.002937940
CAPM Modelo restrito
## [1] "Rm_minus_Rf_M" "SMB_M" "HML_M" "Risk_free_M"
## [1] 0.05696287 0.00156415 -0.03852380 -0.02654470 -0.06892806 -0.06375572
## [1] 0.14130072 -0.03933633 -0.01927295 -0.03113645 -0.04916106 -0.01915802
##
## Call:
## lm(formula = ri_a ~ pr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.139410 -0.045759 -0.003795 0.037983 0.268390
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.004511 0.005421 0.832 0.407
## pr 1.731447 0.094801 18.264 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0646 on 140 degrees of freedom
## Multiple R-squared: 0.7044, Adjusted R-squared: 0.7023
## F-statistic: 333.6 on 1 and 140 DF, p-value: < 2.2e-16
## [1] 0.134668224 0.091957451 -0.089338057 0.066078931 -0.003369141
## [6] -0.008255190
##
## Call:
## lm(formula = ri_b ~ pr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.16413 -0.04448 -0.00176 0.04639 0.31776
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.001441 0.006246 0.231 0.818
## pr 1.925615 0.109231 17.629 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07443 on 140 degrees of freedom
## Multiple R-squared: 0.6894, Adjusted R-squared: 0.6872
## F-statistic: 310.8 on 1 and 140 DF, p-value: < 2.2e-16
Fama-French Modelo irrestrito
## [1] "Rm_minus_Rf_M" "SMB_M" "HML_M" "Risk_free_M"
## [1] 0.05696287 0.00156415 -0.03852380 -0.02654470 -0.06892806 -0.06375572
## [1] -0.00155541 -0.01154161 -0.01536266 0.00945124 0.00780595 0.02010171
## [1] 0.01606525 0.06624945 -0.03216930 -0.05023366 -0.04015110 -0.05633318
## [1] 0.14130072 -0.03933633 -0.01927295 -0.03113645 -0.04916106 -0.01915802
##
## Call:
## lm(formula = ri_a ~ pr + hml + smb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.119418 -0.043432 -0.003974 0.041127 0.264902
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.004238 0.005442 0.779 0.437
## pr 1.685066 0.111293 15.141 <2e-16 ***
## hml 0.202187 0.158346 1.277 0.204
## smb -0.083109 0.141805 -0.586 0.559
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06468 on 138 degrees of freedom
## Multiple R-squared: 0.7078, Adjusted R-squared: 0.7015
## F-statistic: 111.4 on 3 and 138 DF, p-value: < 2.2e-16
## [1] 0.134668224 0.091957451 -0.089338057 0.066078931 -0.003369141
## [6] -0.008255190
##
## Call:
## lm(formula = ri_b ~ pr + hml + smb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.16301 -0.04319 -0.00454 0.04667 0.30837
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0013746 0.0062636 0.219 0.827
## pr 1.8405877 0.1280905 14.369 <2e-16 ***
## hml 0.2336257 0.1822453 1.282 0.202
## smb -0.0007991 0.1632078 -0.005 0.996
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07445 on 138 degrees of freedom
## Multiple R-squared: 0.6937, Adjusted R-squared: 0.6871
## F-statistic: 104.2 on 3 and 138 DF, p-value: < 2.2e-16
Presença de Heteroscedasticidade
Uma hipotese importante da regress?o linear ? que os erros da regress?o sejam homoced?sticos,ou seja, apresentam a mesma vari?ncia. Essa heterocedasticidade, quando a vari?ncia dos erros n?o ? constante, pode ocorrer devido a presen?a de outliers no modelo, que seriam dados muito discrepantes do restante da amostra. A principal consequencia da heterocedasticidade ? que os erros padr?o dos coeficientes do modelo s?o superestimados,ent?o as estatisticas t e F s?o incorretas, j? que s?o baseadas nesse erro.
Foi realizado o Teste de Breusch-Pagan para verificar a presença de Heteroscedasticidade
##
## studentized Breusch-Pagan test
##
## data: capm1
## BP = 8.9176, df = 1, p-value = 0.002824
##
## studentized Breusch-Pagan test
##
## data: ffrench1
## BP = 11.316, df = 3, p-value = 0.01013
O pvalor de ambos os modelos é abaixo de 0.05, portanto a hipótese nula é rejeitada e pode-se afirmar que há heteroscedasticidade nos modelos.
##
## studentized Breusch-Pagan test
##
## data: capm_b
## BP = 9.0118, df = 1, p-value = 0.002682
##
## studentized Breusch-Pagan test
##
## data: ffrench_b
## BP = 12.755, df = 3, p-value = 0.005198
O pvalor de ambos os modelos é abaixo de 0.05, portanto a hipótese nula é rejeitada e pode-se afirmar que há heteroscedasticidade nos modelos.
A correla??o serial ocorre quando os termos de erro em s?rie s?o apresentam uma correla??o, ou seja,os erros est?o relacionados ao longo do tempo, o que pode dar ind?cios de especifica??es incorretas no modelo.Caso seja desconsiderada a vari?ncia dos erros podem ser subestimadas, o R2 ser? superestimado e assim os testes comuns de signific?ncia t e F deixam de ser v?lidos.
Foi realizado o Teste de Breusch-Godfrey para verificar a presença de correlação serial
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: capm1
## LM test = 0.021969, df = 1, p-value = 0.8822
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: ffrench1
## LM test = 0.12799, df = 1, p-value = 0.7205
Nos dois modelos o pvalor ? maior que 0.05, ent?o a hip?tese de aus?ncia de correla??o serial n?o foi rejeitada.
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: capm_b
## LM test = 9.8027, df = 1, p-value = 0.001743
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: ffrench_b
## LM test = 8.8562, df = 1, p-value = 0.002921
Nos dois modelos o pvalor ? menor que 0.05, ent?o a hip?tese de aus?ncia de correla??o serial foi rejeitada.
Regressão Quantilica (LAD - Least Absolute Deviations - Desvios Absolutos Médios)
Foi feita uma regressão quantilica para diminuir o peso dos outliers atraves de uma estimação robusta
Banco do Brasil
CAPM
## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be nonunique
##
## Call: rq(formula = capm_a)
##
## tau: [1] 0.5
##
## Coefficients:
## coefficients lower bd upper bd
## (Intercept) 0.00545 -0.00859 0.00980
## pr 1.63337 1.40918 1.91427
##
## Call: rq(formula = ffrench_a)
##
## tau: [1] 0.5
##
## Coefficients:
## coefficients lower bd upper bd
## (Intercept) 0.00340 -0.00803 0.01144
## pr 1.59560 1.44089 1.83173
## hml 0.06137 -0.23902 0.41316
## smb -0.16753 -0.53740 0.21190
Petrobras
CAPM
## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be nonunique
##
## Call: rq(formula = capm_b_b)
##
## tau: [1] 0.5
##
## Coefficients:
## coefficients lower bd upper bd
## (Intercept) -0.00433 -0.01321 0.01052
## pr 1.81497 1.56010 2.19962
##
## Call: rq(formula = ffrench_b_b)
##
## tau: [1] 0.5
##
## Coefficients:
## coefficients lower bd upper bd
## (Intercept) -0.00738 -0.01536 0.01212
## pr 1.66781 1.48458 2.17667
## hml 0.20138 -0.12892 0.79445
## smb -0.03526 -0.51767 0.33211
Teste de Jarque-Bera
– Banco do Brasil
— CAPM
##
## Title:
## Jarque - Bera Normalality Test
##
## Test Results:
## STATISTIC:
## X-squared: 21.3801
## P VALUE:
## Asymptotic p Value: 2.277e-05
##
## Description:
## Tue Jan 25 18:20:11 2022 by user: ddlag
O pvalor é menor que 0.05, portanto a normalidade é rejeitada
— FFRENCH
##
## Title:
## Jarque - Bera Normalality Test
##
## Test Results:
## STATISTIC:
## X-squared: 18.4679
## P VALUE:
## Asymptotic p Value: 9.767e-05
##
## Description:
## Tue Jan 25 18:20:11 2022 by user: ddlag
O pvalor é menor que 0.05, portanto a normalidade é rejeitada
– Petrobras
— CAPM
##
## Title:
## Jarque - Bera Normalality Test
##
## Test Results:
## STATISTIC:
## X-squared: 19.4069
## P VALUE:
## Asymptotic p Value: 6.107e-05
##
## Description:
## Tue Jan 25 18:20:11 2022 by user: ddlag
O pvalor é menor que 0.05, portanto a normalidade é rejeitada
— FFRENCH
##
## Title:
## Jarque - Bera Normalality Test
##
## Test Results:
## STATISTIC:
## X-squared: 16.1006
## P VALUE:
## Asymptotic p Value: 0.000319
##
## Description:
## Tue Jan 25 18:20:11 2022 by user: ddlag
O pvalor é menor que 0.05, portanto a normalidade é rejeitada
– Banco do Brasil
— CAPM
##
## Title:
## Jarque - Bera Normalality Test
##
## Test Results:
## STATISTIC:
## X-squared: 33.7932
## P VALUE:
## Asymptotic p Value: 4.591e-08
##
## Description:
## Tue Jan 25 18:20:11 2022 by user: ddlag
O pvalor é menor que 0.05, portanto a normalidade é rejeitada
— FFRENCH
##
## Title:
## Jarque - Bera Normalality Test
##
## Test Results:
## STATISTIC:
## X-squared: 18.4679
## P VALUE:
## Asymptotic p Value: 9.767e-05
##
## Description:
## Tue Jan 25 18:20:11 2022 by user: ddlag
O pvalor é menor que 0.05, portanto a normalidade é rejeitada
– Petrobras
— CAPM
##
## Title:
## Jarque - Bera Normalality Test
##
## Test Results:
## STATISTIC:
## X-squared: 33.1349
## P VALUE:
## Asymptotic p Value: 6.38e-08
##
## Description:
## Tue Jan 25 18:20:11 2022 by user: ddlag
O pvalor é menor que 0.05, portanto a normalidade é rejeitada
— FFRENCH
##
## Title:
## Jarque - Bera Normalality Test
##
## Test Results:
## STATISTIC:
## X-squared: 40.4976
## P VALUE:
## Asymptotic p Value: 1.607e-09
##
## Description:
## Tue Jan 25 18:20:11 2022 by user: ddlag
O pvalor é menor que 0.05, portanto a normalidade é rejeitada
H0:Beta igual a 1 H1:Beta diferente de 1
##
## Call:
## lm(formula = ri_a ~ pr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.139410 -0.045759 -0.003795 0.037983 0.268390
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.004511 0.005421 0.832 0.407
## pr 1.731447 0.094801 18.264 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0646 on 140 degrees of freedom
## Multiple R-squared: 0.7044, Adjusted R-squared: 0.7023
## F-statistic: 333.6 on 1 and 140 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = ri_a ~ pr + hml + smb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.119418 -0.043432 -0.003974 0.041127 0.264902
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.004238 0.005442 0.779 0.437
## pr 1.685066 0.111293 15.141 <2e-16 ***
## hml 0.202187 0.158346 1.277 0.204
## smb -0.083109 0.141805 -0.586 0.559
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06468 on 138 degrees of freedom
## Multiple R-squared: 0.7078, Adjusted R-squared: 0.7015
## F-statistic: 111.4 on 3 and 138 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = ri_b ~ pr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.16413 -0.04448 -0.00176 0.04639 0.31776
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.001441 0.006246 0.231 0.818
## pr 1.925615 0.109231 17.629 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07443 on 140 degrees of freedom
## Multiple R-squared: 0.6894, Adjusted R-squared: 0.6872
## F-statistic: 310.8 on 1 and 140 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = ri_b ~ pr + hml + smb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.16301 -0.04319 -0.00454 0.04667 0.30837
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0013746 0.0062636 0.219 0.827
## pr 1.8405877 0.1280905 14.369 <2e-16 ***
## hml 0.2336257 0.1822453 1.282 0.202
## smb -0.0007991 0.1632078 -0.005 0.996
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07445 on 138 degrees of freedom
## Multiple R-squared: 0.6937, Adjusted R-squared: 0.6871
## F-statistic: 104.2 on 3 and 138 DF, p-value: < 2.2e-16
O coeficiente da vari?vel pr ? o beta e em todos os modelos ele ? diferente de 1 com um n?vel de signific?ncia menor que 0.05. Os betas dos modelos da Petrobras s?o maiores que os do Banco do Brasil, portanto PETR4 ? um ativo mais arriscado, sendo capm_b o modelo com maior beta.
## Warning in summary.rq(x, se = se, R = R, covariance = TRUE): 1 non-positive fis
## Quantile Regression Analysis of Deviance Table
##
## Model 1: ri_b ~ pr + hml + smb
## Model 2: ri_b ~ pr
## Df Resid Df F value Pr(>F)
## 1 2 138 0.4511 0.6379
O pvalor é maior que 0.05 e a estatística F é baixa, o que indica que o modelo restrito(CAPM) é preferível.
A hip?tese de que alfa=0 ? falsa,pois o coeficiente do intercepto ? maior que 0, dessa forma conclui-se que o ativo apresenta retornos anormais.
##
## Call:
## lm(formula = ri_b ~ pr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.16413 -0.04448 -0.00176 0.04639 0.31776
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.001441 0.006246 0.231 0.818
## pr 1.925615 0.109231 17.629 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07443 on 140 degrees of freedom
## Multiple R-squared: 0.6894, Adjusted R-squared: 0.6872
## F-statistic: 310.8 on 1 and 140 DF, p-value: < 2.2e-16
Pode se observar que entre o mes 60 e 80 os res?duos s?o maiores, e percebe-se que eles n?o se mant?m constantes.
Como ajustes na vari?ncia do erro: É possivel atribuir pesos maiores a observações sujeitas a menor vari?ncia. É possivel utilizar o método dos mínimos quadrados ponderados, quando erros não são heterocedasticos. É possivel utilizar o erro residual ou erro puro da soma dos quadrados ajustadas.