Atividade Final

Grupo 12 - Rafael Abreu, David Lage, Jo?o Paulo Quirino

1/25/2022

Biblioteca Usada

library(quantmod)
library(tidyverse)
library(readxl)
library(AER)
library(strucchange)
library(fBasics)
library(dynlm)
library(quantreg)

Banco de Dados

dataInicial = as.Date("2010-01-01") 
dataFinal = as.Date("2021-10-31") 
dataInicial = as.Date("2010-01-01") 
dataFinal = as.Date("2021-10-31") 
tickers <- c("BBAS3.SA","PETR4.SA")
getSymbols(tickers, src = "yahoo", from = dataInicial, to = dataFinal)
## [1] "BBAS3.SA" "PETR4.SA"

Dados diários obtidos em (http://nefin.com.br/risk_factors.html), foram devidamente ajustados para obter as taxas acumuladas mensais.

Fama_French<-read_xlsx("Fama-French.xlsx")
attach(Fama_French)
head(Fama_French)
## # A tibble: 6 x 4
##   Rm_minus_Rf_M   SMB_M    HML_M Risk_free_M
##           <dbl>   <dbl>    <dbl>       <dbl>
## 1      -0.0438   0.0517  0.0269      0.00628
## 2       0.00384  0.0254  0.0117      0.00597
## 3       0.0382  -0.0684 -0.0117      0.00768
## 4      -0.0364   0.0225 -0.0321      0.00687
## 5      -0.0654  -0.0120 -0.0271      0.00770
## 6      -0.0456   0.0406 -0.00135     0.00813

head(BBAS3.SA)
##            BBAS3.SA.Open BBAS3.SA.High BBAS3.SA.Low BBAS3.SA.Close
## 2010-01-04         29.80         30.00        29.70          29.90
## 2010-01-05         30.10         30.10        29.19          29.60
## 2010-01-06         29.49         30.00        29.42          29.64
## 2010-01-07         29.44         29.71        29.41          29.65
## 2010-01-08         29.70         29.82        29.47          29.82
## 2010-01-11         29.98         30.07        29.62          30.05
##            BBAS3.SA.Volume BBAS3.SA.Adjusted
## 2010-01-04         3624700          13.93330
## 2010-01-05         3064900          13.79351
## 2010-01-06         2733100          13.81214
## 2010-01-07         1542200          13.81681
## 2010-01-08         2038900          13.89602
## 2010-01-11         2412800          14.00320

head(PETR4.SA)
##            PETR4.SA.Open PETR4.SA.High PETR4.SA.Low PETR4.SA.Close
## 2010-01-04         36.95         37.32        36.82          37.32
## 2010-01-05         37.38         37.43        36.80          37.00
## 2010-01-06         36.80         37.50        36.80          37.50
## 2010-01-07         37.27         37.45        37.07          37.15
## 2010-01-08         37.16         37.39        36.86          36.95
## 2010-01-11         37.21         37.34        36.62          36.83
##            PETR4.SA.Volume PETR4.SA.Adjusted
## 2010-01-04        13303600          23.64364
## 2010-01-05        21396400          23.44091
## 2010-01-06        18720600          23.75768
## 2010-01-07        10964600          23.53594
## 2010-01-08        14624200          23.40923
## 2010-01-11        15317700          23.33322

Encaixando as variáveis para o modelo

## [1] "BBAS3.SA.Open"     "BBAS3.SA.High"     "BBAS3.SA.Low"     
## [4] "BBAS3.SA.Close"    "BBAS3.SA.Volume"   "BBAS3.SA.Adjusted"

## [1] "PETR4.SA.Open"     "PETR4.SA.High"     "PETR4.SA.Low"     
## [4] "PETR4.SA.Close"    "PETR4.SA.Volume"   "PETR4.SA.Adjusted"

Selecionando só os preços de fechamento ajustados pelos proventos

bbsa3<- Ad(BBAS3.SA)
head(bbsa3)
##            BBAS3.SA.Adjusted
## 2010-01-04          13.93330
## 2010-01-05          13.79351
## 2010-01-06          13.81214
## 2010-01-07          13.81681
## 2010-01-08          13.89602
## 2010-01-11          14.00320
tail(bbsa3)  
##            BBAS3.SA.Adjusted
## 2021-10-22          28.36336
## 2021-10-25          28.95201
## 2021-10-26          28.64787
## 2021-10-27          28.61844
## 2021-10-28          28.36336
## 2021-10-29          27.96111

retornomesBBSA3<-as.ts(monthlyReturn(bbsa3))
tail(retornomesBBSA3)  
## [1]  0.14422769 -0.03602018 -0.01556181 -0.02663065 -0.04432085 -0.01384077

petr4<- Ad(PETR4.SA)
head(petr4)
##            PETR4.SA.Adjusted
## 2010-01-04          23.64364
## 2010-01-05          23.44091
## 2010-01-06          23.75768
## 2010-01-07          23.53594
## 2010-01-08          23.40923
## 2010-01-11          23.33322
tail(petr4)
##            PETR4.SA.Adjusted
## 2021-10-22          24.19526
## 2021-10-25          25.85101
## 2021-10-26          25.60176
## 2021-10-27          25.53944
## 2021-10-28          25.77979
## 2021-10-29          24.16856

retornomesPETR4<-as.ts(monthlyReturn(petr4))
tail(retornomesPETR4)  
## [1]  0.137595194  0.095273601 -0.085626917  0.070584731  0.001471069
## [6] -0.002937940

Questão 1

CAPM Modelo restrito

names(Fama_French)
## [1] "Rm_minus_Rf_M" "SMB_M"         "HML_M"         "Risk_free_M"
pr<-(Rm_minus_Rf_M)
tail(pr)
## [1]  0.05696287  0.00156415 -0.03852380 -0.02654470 -0.06892806 -0.06375572

ri_a<-(retornomesBBSA3-Risk_free_M)
tail(ri_a)  
## [1]  0.14130072 -0.03933633 -0.01927295 -0.03113645 -0.04916106 -0.01915802
capm1<-lm(ri_a~pr)
summary(capm1)
## 
## Call:
## lm(formula = ri_a ~ pr)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.139410 -0.045759 -0.003795  0.037983  0.268390 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.004511   0.005421   0.832    0.407    
## pr          1.731447   0.094801  18.264   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0646 on 140 degrees of freedom
## Multiple R-squared:  0.7044, Adjusted R-squared:  0.7023 
## F-statistic: 333.6 on 1 and 140 DF,  p-value: < 2.2e-16

ri_b<-(retornomesPETR4-Risk_free_M)
tail(ri_b)
## [1]  0.134668224  0.091957451 -0.089338057  0.066078931 -0.003369141
## [6] -0.008255190
capm_b<-lm(ri_b~pr)
summary(capm_b)
## 
## Call:
## lm(formula = ri_b ~ pr)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.16413 -0.04448 -0.00176  0.04639  0.31776 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.001441   0.006246   0.231    0.818    
## pr          1.925615   0.109231  17.629   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.07443 on 140 degrees of freedom
## Multiple R-squared:  0.6894, Adjusted R-squared:  0.6872 
## F-statistic: 310.8 on 1 and 140 DF,  p-value: < 2.2e-16

Fama-French Modelo irrestrito

names(Fama_French)
## [1] "Rm_minus_Rf_M" "SMB_M"         "HML_M"         "Risk_free_M"
hml<-(HML_M)
smb<-(SMB_M)
tail(pr)
## [1]  0.05696287  0.00156415 -0.03852380 -0.02654470 -0.06892806 -0.06375572
tail(hml)
## [1] -0.00155541 -0.01154161 -0.01536266  0.00945124  0.00780595  0.02010171
tail(smb)
## [1]  0.01606525  0.06624945 -0.03216930 -0.05023366 -0.04015110 -0.05633318

tail(ri_a)
## [1]  0.14130072 -0.03933633 -0.01927295 -0.03113645 -0.04916106 -0.01915802
ffrench1<-lm(ri_a~pr+hml+smb)
summary(ffrench1)
## 
## Call:
## lm(formula = ri_a ~ pr + hml + smb)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.119418 -0.043432 -0.003974  0.041127  0.264902 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.004238   0.005442   0.779    0.437    
## pr           1.685066   0.111293  15.141   <2e-16 ***
## hml          0.202187   0.158346   1.277    0.204    
## smb         -0.083109   0.141805  -0.586    0.559    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.06468 on 138 degrees of freedom
## Multiple R-squared:  0.7078, Adjusted R-squared:  0.7015 
## F-statistic: 111.4 on 3 and 138 DF,  p-value: < 2.2e-16

tail(ri_b)
## [1]  0.134668224  0.091957451 -0.089338057  0.066078931 -0.003369141
## [6] -0.008255190
ffrench_b<-lm(ri_b~pr+hml+smb)
summary(ffrench_b)
## 
## Call:
## lm(formula = ri_b ~ pr + hml + smb)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.16301 -0.04319 -0.00454  0.04667  0.30837 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.0013746  0.0062636   0.219    0.827    
## pr           1.8405877  0.1280905  14.369   <2e-16 ***
## hml          0.2336257  0.1822453   1.282    0.202    
## smb         -0.0007991  0.1632078  -0.005    0.996    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.07445 on 138 degrees of freedom
## Multiple R-squared:  0.6937, Adjusted R-squared:  0.6871 
## F-statistic: 104.2 on 3 and 138 DF,  p-value: < 2.2e-16

Questão 2

Presença de Heteroscedasticidade

Uma hipotese importante da regress?o linear ? que os erros da regress?o sejam homoced?sticos,ou seja, apresentam a mesma vari?ncia. Essa heterocedasticidade, quando a vari?ncia dos erros n?o ? constante, pode ocorrer devido a presen?a de outliers no modelo, que seriam dados muito discrepantes do restante da amostra. A principal consequencia da heterocedasticidade ? que os erros padr?o dos coeficientes do modelo s?o superestimados,ent?o as estatisticas t e F s?o incorretas, j? que s?o baseadas nesse erro.

Foi realizado o Teste de Breusch-Pagan para verificar a presença de Heteroscedasticidade

bptest(capm1)
## 
##  studentized Breusch-Pagan test
## 
## data:  capm1
## BP = 8.9176, df = 1, p-value = 0.002824
bptest(ffrench1)
## 
##  studentized Breusch-Pagan test
## 
## data:  ffrench1
## BP = 11.316, df = 3, p-value = 0.01013

O pvalor de ambos os modelos é abaixo de 0.05, portanto a hipótese nula é rejeitada e pode-se afirmar que há heteroscedasticidade nos modelos.

bptest(capm_b)
## 
##  studentized Breusch-Pagan test
## 
## data:  capm_b
## BP = 9.0118, df = 1, p-value = 0.002682
bptest(ffrench_b)
## 
##  studentized Breusch-Pagan test
## 
## data:  ffrench_b
## BP = 12.755, df = 3, p-value = 0.005198

O pvalor de ambos os modelos é abaixo de 0.05, portanto a hipótese nula é rejeitada e pode-se afirmar que há heteroscedasticidade nos modelos.

Presença de Correlação Serial

A correla??o serial ocorre quando os termos de erro em s?rie s?o apresentam uma correla??o, ou seja,os erros est?o relacionados ao longo do tempo, o que pode dar ind?cios de especifica??es incorretas no modelo.Caso seja desconsiderada a vari?ncia dos erros podem ser subestimadas, o R2 ser? superestimado e assim os testes comuns de signific?ncia t e F deixam de ser v?lidos.

Foi realizado o Teste de Breusch-Godfrey para verificar a presença de correlação serial

bgtest(capm1)
## 
##  Breusch-Godfrey test for serial correlation of order up to 1
## 
## data:  capm1
## LM test = 0.021969, df = 1, p-value = 0.8822
bgtest(ffrench1)
## 
##  Breusch-Godfrey test for serial correlation of order up to 1
## 
## data:  ffrench1
## LM test = 0.12799, df = 1, p-value = 0.7205

Nos dois modelos o pvalor ? maior que 0.05, ent?o a hip?tese de aus?ncia de correla??o serial n?o foi rejeitada.

bgtest(capm_b)
## 
##  Breusch-Godfrey test for serial correlation of order up to 1
## 
## data:  capm_b
## LM test = 9.8027, df = 1, p-value = 0.001743
bgtest(ffrench_b)
## 
##  Breusch-Godfrey test for serial correlation of order up to 1
## 
## data:  ffrench_b
## LM test = 8.8562, df = 1, p-value = 0.002921

Nos dois modelos o pvalor ? menor que 0.05, ent?o a hip?tese de aus?ncia de correla??o serial foi rejeitada.

Corrigindo os modelos

Regressão Quantilica (LAD - Least Absolute Deviations - Desvios Absolutos Médios)

Foi feita uma regressão quantilica para diminuir o peso dos outliers atraves de uma estimação robusta

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be nonunique
## 
## Call: rq(formula = capm_a)
## 
## tau: [1] 0.5
## 
## Coefficients:
##             coefficients lower bd upper bd
## (Intercept)  0.00545     -0.00859  0.00980
## pr           1.63337      1.40918  1.91427

## 
## Call: rq(formula = ffrench_a)
## 
## tau: [1] 0.5
## 
## Coefficients:
##             coefficients lower bd upper bd
## (Intercept)  0.00340     -0.00803  0.01144
## pr           1.59560      1.44089  1.83173
## hml          0.06137     -0.23902  0.41316
## smb         -0.16753     -0.53740  0.21190

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be nonunique
## 
## Call: rq(formula = capm_b_b)
## 
## tau: [1] 0.5
## 
## Coefficients:
##             coefficients lower bd upper bd
## (Intercept) -0.00433     -0.01321  0.01052
## pr           1.81497      1.56010  2.19962

## 
## Call: rq(formula = ffrench_b_b)
## 
## tau: [1] 0.5
## 
## Coefficients:
##             coefficients lower bd upper bd
## (Intercept) -0.00738     -0.01536  0.01212
## pr           1.66781      1.48458  2.17667
## hml          0.20138     -0.12892  0.79445
## smb         -0.03526     -0.51767  0.33211

Questão 3

Teste de Jarque-Bera

– Banco do Brasil

— CAPM

ecapm1 <- resid(capm1)
jarqueberaTest(ecapm1)
## 
## Title:
##  Jarque - Bera Normalality Test
## 
## Test Results:
##   STATISTIC:
##     X-squared: 21.3801
##   P VALUE:
##     Asymptotic p Value: 2.277e-05 
## 
## Description:
##  Tue Jan 25 18:20:11 2022 by user: ddlag

O pvalor é menor que 0.05, portanto a normalidade é rejeitada

— FFRENCH

effrench1 <- resid(ffrench1)
jarqueberaTest(effrench1)
## 
## Title:
##  Jarque - Bera Normalality Test
## 
## Test Results:
##   STATISTIC:
##     X-squared: 18.4679
##   P VALUE:
##     Asymptotic p Value: 9.767e-05 
## 
## Description:
##  Tue Jan 25 18:20:11 2022 by user: ddlag

O pvalor é menor que 0.05, portanto a normalidade é rejeitada

– Petrobras

— CAPM

ecapm_b <- resid(capm_b)
jarqueberaTest(ecapm_b)
## 
## Title:
##  Jarque - Bera Normalality Test
## 
## Test Results:
##   STATISTIC:
##     X-squared: 19.4069
##   P VALUE:
##     Asymptotic p Value: 6.107e-05 
## 
## Description:
##  Tue Jan 25 18:20:11 2022 by user: ddlag

O pvalor é menor que 0.05, portanto a normalidade é rejeitada

— FFRENCH

effrench_b <- resid(ffrench_b)
jarqueberaTest(effrench_b)
## 
## Title:
##  Jarque - Bera Normalality Test
## 
## Test Results:
##   STATISTIC:
##     X-squared: 16.1006
##   P VALUE:
##     Asymptotic p Value: 0.000319 
## 
## Description:
##  Tue Jan 25 18:20:11 2022 by user: ddlag

O pvalor é menor que 0.05, portanto a normalidade é rejeitada

– Banco do Brasil

— CAPM

ecapm1_corrigido <- resid(capm1_corrigido)
jarqueberaTest(ecapm1_corrigido)
## 
## Title:
##  Jarque - Bera Normalality Test
## 
## Test Results:
##   STATISTIC:
##     X-squared: 33.7932
##   P VALUE:
##     Asymptotic p Value: 4.591e-08 
## 
## Description:
##  Tue Jan 25 18:20:11 2022 by user: ddlag

O pvalor é menor que 0.05, portanto a normalidade é rejeitada

— FFRENCH

effrench1_corrigido <- resid(ffrench1_corrigido)
jarqueberaTest(effrench1)
## 
## Title:
##  Jarque - Bera Normalality Test
## 
## Test Results:
##   STATISTIC:
##     X-squared: 18.4679
##   P VALUE:
##     Asymptotic p Value: 9.767e-05 
## 
## Description:
##  Tue Jan 25 18:20:11 2022 by user: ddlag

O pvalor é menor que 0.05, portanto a normalidade é rejeitada

– Petrobras

— CAPM

ecapm_b_corrigido <- resid(capm_b_corrigido)
jarqueberaTest(ecapm_b_corrigido)
## 
## Title:
##  Jarque - Bera Normalality Test
## 
## Test Results:
##   STATISTIC:
##     X-squared: 33.1349
##   P VALUE:
##     Asymptotic p Value: 6.38e-08 
## 
## Description:
##  Tue Jan 25 18:20:11 2022 by user: ddlag

O pvalor é menor que 0.05, portanto a normalidade é rejeitada

— FFRENCH

effrench_b_corrigido <- resid(ffrench_b_corrigido)
jarqueberaTest(effrench_b_corrigido)
## 
## Title:
##  Jarque - Bera Normalality Test
## 
## Test Results:
##   STATISTIC:
##     X-squared: 40.4976
##   P VALUE:
##     Asymptotic p Value: 1.607e-09 
## 
## Description:
##  Tue Jan 25 18:20:11 2022 by user: ddlag

O pvalor é menor que 0.05, portanto a normalidade é rejeitada

Questão 4

H0:Beta igual a 1 H1:Beta diferente de 1

summary(capm1)
## 
## Call:
## lm(formula = ri_a ~ pr)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.139410 -0.045759 -0.003795  0.037983  0.268390 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.004511   0.005421   0.832    0.407    
## pr          1.731447   0.094801  18.264   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0646 on 140 degrees of freedom
## Multiple R-squared:  0.7044, Adjusted R-squared:  0.7023 
## F-statistic: 333.6 on 1 and 140 DF,  p-value: < 2.2e-16
summary(ffrench1)
## 
## Call:
## lm(formula = ri_a ~ pr + hml + smb)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.119418 -0.043432 -0.003974  0.041127  0.264902 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.004238   0.005442   0.779    0.437    
## pr           1.685066   0.111293  15.141   <2e-16 ***
## hml          0.202187   0.158346   1.277    0.204    
## smb         -0.083109   0.141805  -0.586    0.559    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.06468 on 138 degrees of freedom
## Multiple R-squared:  0.7078, Adjusted R-squared:  0.7015 
## F-statistic: 111.4 on 3 and 138 DF,  p-value: < 2.2e-16
summary(capm_b)
## 
## Call:
## lm(formula = ri_b ~ pr)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.16413 -0.04448 -0.00176  0.04639  0.31776 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.001441   0.006246   0.231    0.818    
## pr          1.925615   0.109231  17.629   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.07443 on 140 degrees of freedom
## Multiple R-squared:  0.6894, Adjusted R-squared:  0.6872 
## F-statistic: 310.8 on 1 and 140 DF,  p-value: < 2.2e-16
summary(ffrench_b)
## 
## Call:
## lm(formula = ri_b ~ pr + hml + smb)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.16301 -0.04319 -0.00454  0.04667  0.30837 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.0013746  0.0062636   0.219    0.827    
## pr           1.8405877  0.1280905  14.369   <2e-16 ***
## hml          0.2336257  0.1822453   1.282    0.202    
## smb         -0.0007991  0.1632078  -0.005    0.996    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.07445 on 138 degrees of freedom
## Multiple R-squared:  0.6937, Adjusted R-squared:  0.6871 
## F-statistic: 104.2 on 3 and 138 DF,  p-value: < 2.2e-16

O coeficiente da vari?vel pr ? o beta e em todos os modelos ele ? diferente de 1 com um n?vel de signific?ncia menor que 0.05. Os betas dos modelos da Petrobras s?o maiores que os do Banco do Brasil, portanto PETR4 ? um ativo mais arriscado, sendo capm_b o modelo com maior beta.

Questão 5

anova(capm_b_corrigido,ffrench_b_corrigido)
## Warning in summary.rq(x, se = se, R = R, covariance = TRUE): 1 non-positive fis
## Quantile Regression Analysis of Deviance Table
## 
## Model 1: ri_b ~ pr + hml + smb
## Model 2: ri_b ~ pr
##   Df Resid Df F value Pr(>F)
## 1  2      138  0.4511 0.6379

O pvalor é maior que 0.05 e a estatística F é baixa, o que indica que o modelo restrito(CAPM) é preferível.

Questão 6

A hip?tese de que alfa=0 ? falsa,pois o coeficiente do intercepto ? maior que 0, dessa forma conclui-se que o ativo apresenta retornos anormais.

summary(capm_b)
## 
## Call:
## lm(formula = ri_b ~ pr)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.16413 -0.04448 -0.00176  0.04639  0.31776 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.001441   0.006246   0.231    0.818    
## pr          1.925615   0.109231  17.629   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.07443 on 140 degrees of freedom
## Multiple R-squared:  0.6894, Adjusted R-squared:  0.6872 
## F-statistic: 310.8 on 1 and 140 DF,  p-value: < 2.2e-16

Questão 7

plot(ecapm_b_corrigido )

plot(ecapm_b_corrigido^2)

Pode se observar que entre o mes 60 e 80 os res?duos s?o maiores, e percebe-se que eles n?o se mant?m constantes.

Como ajustes na vari?ncia do erro: É possivel atribuir pesos maiores a observações sujeitas a menor vari?ncia. É possivel utilizar o método dos mínimos quadrados ponderados, quando erros não são heterocedasticos. É possivel utilizar o erro residual ou erro puro da soma dos quadrados ajustadas.