Install needed packages

if (!requireNamespace("BiocManager", quietly = TRUE)) {
    install.packages("BiocManager")
}

BiocManager::install("bugsigdbr")
devtools::install_github("waldronlab/bugSigSimple")
devtools::install_github("waldronlab/bugSigdbstats")
install.packages(c("tidyverse", "kableExtra"))
BiocManager::install("ComplexHeatmap")
BiocManager::install("InteractiveComplexHeatmap")

Setup and initial packages

library(bugsigdbr)
library(dplyr)
library(bugSigSimple)
library(tidyverse)
library(kableExtra)
library(ComplexHeatmap)
library(BugSigDBStats)
library(InteractiveComplexHeatmap)

Import BSDB data

bsdb <- bugsigdbr::importBugSigDB(version="10.5281/zenodo.5819260")
## Using cached version from 2022-01-24 21:34:32

Figure out number of unique antibiotics studies in BSDB

There are currently 21 antimicrobial studies

bsdb %>% filter(Condition=="parkinson's disease") %>% group_by(PMID) %>% summarize(PMID=first(PMID))

Modify CreateStudyTable to be more informative

createStudyTable <- function(dat) 
{
  studies <- data.frame(Study = paste0(str_extract(dat$Authors, 
                                                   "[A-Za-z]+[:space:]"), dat$Year), Condition = dat$Condition, 
                        Cases = dat$`Group 1 sample size`, Controls = dat$`Group 0 sample size`, 
                        `Study Design` = dat$`Study design`, Location = dat$`Location of subjects`)
  studies %>% group_by(Study) %>% summarize(Condition = first(Condition), 
                                            Cases = max(Cases), Controls = max(Controls), `Study Design` = first(Study.Design),
                                            Location = first(Location)) %>% 
    kbl() %>% kable_styling()
}

Create table of studies

park <- subsetByCondition(bsdb, "parkinson's disease")
createStudyTable(park)
Study Condition Cases Controls Study Design Location
Barichella 2019 parkinson’s disease 193 113 case-control Italy
Bedarf 2017 parkinson’s disease 30 28 case-control Germany
Li 2019 parkinson’s disease 51 48 case-control China
Mihaila 2019 parkinson’s disease 48 36 case-control United States of America
Petrov 2017 parkinson’s disease 89 66 cross-sectional observational, not case-control Russian Federation

Examine body sites

park$`Body site` %>% unique()
## [1] "feces"                "Major salivary gland"

Recode body sites to gut

park <- park %>% mutate(site = recode(`Body site`, "feces" = "Gut", "meconium" = "Gut"))
park$site %>% unique()
## [1] "Gut"                  "Major salivary gland"

Create binomial test taxonomic table

kableExtra::kbl(createTaxonTable(park, 10))
Taxon Name Taxonomic Level total_signatures increased_signatures decreased_signatures Binomial Test pval kingdom phylum class order family genus species n_signatures metaphlan_name
Lachnospiraceae family 8 1 7 0.0700 Bacteria Firmicutes Clostridia Eubacteriales Lachnospiraceae NA NA 9 k__Bacteria|p__Firmicutes|c__Clostridia|o__Eubacteriales|f__Lachnospiraceae
Verrucomicrobia phylum 8 8 0 0.0078 Bacteria Verrucomicrobia NA NA NA NA NA 12 k__Bacteria|p__Verrucomicrobia
Akkermansia genus 8 8 0 0.0078 Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Akkermansiaceae Akkermansia NA 8 k__Bacteria|p__Verrucomicrobia|c__Verrucomicrobiae|o__Verrucomicrobiales|f__Akkermansiaceae|g__Akkermansia
Verrucomicrobiaceae family 8 8 0 0.0078 Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae NA NA 8 k__Bacteria|p__Verrucomicrobia|c__Verrucomicrobiae|o__Verrucomicrobiales|f__Verrucomicrobiaceae
Lactobacillaceae family 5 3 2 1.0000 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae NA NA 6 k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Lactobacillaceae
Parabacteroides genus 4 4 0 0.1200 Bacteria Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae Parabacteroides NA 4 k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Tannerellaceae|g__Parabacteroides
Christensenellaceae family 4 4 0 0.1200 Bacteria Firmicutes Clostridia Eubacteriales Christensenellaceae NA NA 5 k__Bacteria|p__Firmicutes|c__Clostridia|o__Eubacteriales|f__Christensenellaceae
Enterobacteriaceae family 4 4 0 0.1200 Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae NA NA 4 k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacterales|f__Enterobacteriaceae
Lactobacillus genus 3 2 1 1.0000 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus NA 3 k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Lactobacillaceae|g__Lactobacillus
Roseburia genus 3 1 2 1.0000 Bacteria Firmicutes Clostridia Eubacteriales Lachnospiraceae Roseburia NA 3 k__Bacteria|p__Firmicutes|c__Clostridia|o__Eubacteriales|f__Lachnospiraceae|g__Roseburia

Writing a scientific paper

Introduction

  1. General issue (Antibiotics affect gut microbiome, disruptions to gut microbiome can affect health)
  2. Specific issue (Taxonomic effects of abx on gut microbiome are not well understood)
  3. What is missing (We need to know if abx change specific taxa in the gut microbiome)
  4. What you did to fill in the gap? (Review of recent lit. examining role of abx on gut microbiome taxa)

Methods

Results

Discussion

Conclusion

One paragraph summary of results and discussion