echarts4r (Coene 2022) 是 R 中的一个画图工具包,作者是 John Coene。这个包的名字读起来是 Echarts for R,顾名思义就是在 R 中应用 Apache Echarts。Apache ECharts 是一个基于 JavaScript 的开源可视化图表库。
echarts4官网:https://echarts4r.john-coene.com/articles/chart_types.html
本教程主要是对charts4进行较为全面的讲解,该教程原文:https://cosx.org/2021/12/introduction-to-echarts4r/。
在正式画图之前,先编一份数据方便复现。下面的data数据集中有4列,分别是month(月份),Evaporation(蒸发量),Precipitation(降水量),Temperature(温度)。
library(echarts4r)
## Warning: package 'echarts4r' was built under R version 4.1.2
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
## ✓ tibble 3.1.3 ✓ dplyr 1.0.7
## ✓ tidyr 1.1.3 ✓ stringr 1.4.0
## ✓ readr 2.0.2 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
data <- data.frame(
month = paste0(c(1:12), "月"),
Evaporation = sample(2:200, 12),
Precipitation = sample(2:200, 12),
Temperature = sample(2:25, 12, replace = TRUE)
)
要画一个最普通的柱状图只需两行或三行代码即可,用data %>% e_charts(month)或e_charts(data, month)指定数据集中作为横轴的变量,再用e_bar(Evaporation)指定作为纵轴的变量。
# 形式一
e_charts(data, month) %>% # 横轴
e_bar(Evaporation) # 纵轴
# 形式二
data %>%
e_charts(month) %>% # 横轴
e_bar(Evaporation) # 纵轴
图形的横轴属性可在e_x_axis()函数中修改。由于ehcarts4r 包画出来的图形是根据页面大小自适应的,若是遇上横轴的坐标轴标签显示不全的情况,可以在e_x_axis()里面加上axisLabel = list(interval = 0)来修改坐标轴标签的显示间隔,若是坐标轴标签全部显示出来很拥挤的话,还可以再加上rotate = 30来调整坐标轴标签的旋转角度(默认逆时针旋转)。
data %>%
e_charts(month) %>% # 横轴
e_bar(Evaporation) %>% # 纵轴
e_x_axis(
axisLabel = list(interval = 0, rotate = 30),
name = "X轴", # 坐标轴标题
nameLocation = "center", # 横坐标轴标题的位置
nameGap = 30
) # 坐标轴标题与坐标轴之间的距离
##纵轴(e_y_axis)
图形的纵轴属性可在e_y_axis()函数中修改。
data %>%
e_charts(month) %>% # 横轴
e_bar(Evaporation) %>% # 纵轴
e_y_axis(
min = 0, # 最小值
max = 200, # 最大值
interval = 50, # 显示间隔
name = "Y轴", # 坐标轴名称
formatter = "{value} ml"
) # 坐标轴标签的格式化文本
要在一个图形容器中显示多个变量时,将要展示的变量一个接一个用管道符引入即可。
data %>%
e_charts(month) %>% # 横轴
e_bar(Evaporation) %>% # 纵轴的第一个变量
e_bar(Precipitation) %>% # 纵轴的第二个变量
e_line(Temperature) # 纵轴的第三个变量
1.5. 双Y轴(y_index) 若是想要在图形中同时展示多个变量,但是各个变量不在一个数量级,那么可以使用双Y轴。一般的直角坐标系中默认左轴为主轴,在e_y_axis()函数中设定y_index = 0可修改主轴属性,设定y_index = 1可修改副轴属性。另,一般情况下主轴都是默认的,所以下面代码中y_index = 0全部注释掉也会是一样的效果。
data %>%
e_charts(month) %>% # 横轴
e_bar(Evaporation, y_index = 0) %>% # 指定主轴变量
e_bar(Precipitation, y_index = 0) %>% # 指定主轴变量
e_line(Temperature, y_index = 1) %>% # 指定副轴变量
e_y_axis(
y_index = 0, # 修改主Y轴属性
min = 0,
max = 200,
interval = 50,
name = "主Y轴",
formatter = "{value} ml"
) %>%
e_y_axis(
index = 1, # 修改副Y轴属性
min = 0,
max = 28,
interval = 7,
name = "副Y轴",
formatter = "{value}°C"
)
若是想把两个并列的柱子堆到一起展示,只需在引入两个变量的e_bar()函数中加上一样的stack = “group1”即可,这里的“group1”可以是任意内容。
data %>%
e_charts(month) %>%
e_bar(Evaporation, stack = "group1") %>% # 堆第一堆
e_bar(Precipitation, stack = "group1") %>% # 堆第一堆
e_line(Temperature, stack = "group2") # 堆第二堆
按比例堆叠和按数值堆叠的方式是一样的,只是需要先计算占比。
# 计算占比
data.new <- transform(data,
Evaporation_rate = round(Evaporation / (Evaporation + Precipitation), 2)
) %>%
transform(
Precipitation_rate = round(Precipitation / (Evaporation + Precipitation), 2)
)
data.new %>%
e_charts(month) %>% # 横轴
e_bar(Evaporation_rate, stack = "group1") %>% # 堆一堆
e_bar(Precipitation_rate, stack = "group1") %>% # 堆一堆
# 设定纵轴的轴标签为百分比
e_y_axis(
max = 1,
interval = 0.5,
formatter = e_axis_formatter("percent", digits = 1)
) %>%
# 设定悬浮提示框的内容为百分比
e_tooltip(formatter = e_tooltip_item_formatter("percent"))
将代表正数、负数及总和的三个变量堆叠在一起,并且把总和的柱子设为透明就可以巧妙地画出阶梯瀑布图。
data.waterfall <- data.frame(
date = paste0("Nov", c(1:11)),
transparent = c(0, 900, 1245, 1530, 1376, 1376, 1511, 1689, 1856, 1495, 1292), # 总和
positive = c(900, 345, 393, "-", "-", 135, 178, 286, "-", "-", "-"), # 正数
negative = c("-", "-", "-", 108, 154, "-", "-", "-", 119, 361, 203)
) # 负数
data.waterfall %>%
e_charts(date) %>%
e_bar(
transparent,
stack = "total",
name = "总和",
itemStyle = list(borderColor = "transparent", color = "transparent"), # 将柱子和描边的颜色都设为透明
legend = list(show = FALSE), # 去掉总和的图例
tooltip = list(show = FALSE)
) %>%
e_bar(positive, stack = "total", name = "收入") %>%
e_bar(negative, stack = "total", name = "支出") %>%
e_x_axis(type = "category", axisLabel = list(interval = 0)) %>%
e_tooltip(
trigger = "axis",
axisPointer = list(type = "shadow")
)
转置,即交换横轴和纵轴。转置之前一般可先按数值排序,也可按数据本身含义排序如人口金字塔图。
data.flip <- data[order(data$Evaporation), ] # 按 Evaporation 排序
data.flip %>%
e_charts(month) %>% # 横轴
e_bar(Evaporation) %>% # 纵轴
e_bar(Precipitation) %>%
e_flip_coords() # 转置
反向是一种专门针对“轴”起作用的功能,Echarts 里面所有的轴都可以设置反向,不管是直角坐标系中的横轴、纵轴,还是组件中的时间轴,或是单轴坐标系中的单轴、平行坐标系中的平行坐标轴。
在e_y_axis()中针对某个纵轴设置inverse = TRUE,这个轴上的所有变量就会反过来显示(垂直旋转180度)。
data %>%
e_charts(month) %>% # 横轴
e_area(Evaporation) %>% # 纵轴
e_area(Precipitation, x_index = 1, y_index = 1) %>%
e_y_axis(index = 0, min = 0, max = 200) %>%
e_y_axis(
index = 1,
inverse = TRUE, # 反向
min = 0,
max = 200
)
在e_x_axis()中针对某个轴设置inverse = TRUE,这个轴上的所有变量就会反过来显示(水平旋转180度)。
data %>%
e_charts(month) %>% # 横轴
e_area(Evaporation) %>% # 纵轴
e_area(Precipitation, x_index = 1, y_index = 1) %>%
e_x_axis(
index = 1,
inverse = TRUE
) # 反向
对某个变量取负数,也可以得到反向的效果。举个例子。
data.inverse <- transform(data, Evaporation_i = -Evaporation)
data.inverse %>%
e_charts(month) %>%
e_bar(Precipitation, stack = "group1", name = "男") %>%
e_bar(Evaporation_i, stack = "group1", name = "女") %>%
e_y_axis(show = FALSE) %>%
e_flip_coords()
若要同时展示多组数据,可引入group_by()函数来指定需要分组的变量。下面代码中新编的data.ab数据集中包含A区域、B区域两组数据。指定分组变量后,图例的名称就会变成各个组的名称,若引入多个变量的话,每一组数据的多个变量都会是一个颜色而难以区分。因此,仅仅只是分组的话,最好不要同时引入多个变量。
data.ab <- data.frame(
type = c(
sample("A区域", 12, replace = TRUE),
sample("B区域", 12, replace = TRUE)
),
month = paste0(c(1:12, 1:12), "月"),
Evaporation = sample(2:200, 24),
Precipitation = sample(2:200, 24),
Temperature = sample(2:25, 24, replace = TRUE)
)
data.ab %>%
group_by(type) %>% # 指定分组变量
e_charts(month) %>% # 横轴
e_bar(Evaporation) # 纵轴
虽然名字叫“时间轴”,但其实可以看成“分组”的加强版,指定分组变量且同时启用时间轴,相当于整个图形容器中多了一个可以切换各组数据的组件。启用时间轴就可以同时分组和引入多个变量。时间轴的类型有三种:时间轴(axis_type = “time”),对应的分组变量须是时序型数据;数值轴(axis_type = “value”),对应的分组变量须是连续型数据;类目轴(axis_type = “category”),对应的分组变量须是离散型数据。
时间轴通常默认在图形下方显示,且播放按钮通常默认在时间轴左边显示,可引入e_timeline_opts()函数来修改时间轴的各项属性:
data.ab %>%
group_by(type) %>% # 指定分组变量
e_charts(month, timeline = TRUE) %>% # 启用时间轴
e_bar(Evaporation) %>%
e_bar(Precipitation) %>%
e_timeline_opts(
axis_type = "category", # 类目轴
top = 5, # 指定时间轴距离图形容器上侧的距离
left = "center", # 指定时间轴中间对齐
controlPosition = "right"
) %>% # 指定播放按钮的位置
e_legend(bottom = "bottom") # 时间轴挪到图形上侧了,就把图例挪到图像下侧
echarts4r 包提供e_timeline_serie()函数来设定可以随时间轴变动的参数,比如随时间轴变动的标题。需要注意的是,作为时间轴的变量中的每一项数据对应的主、副标题,都需要在e_timeline_serie(title = list())里面用list(text = ‘主标题’, subtext = ‘副标题’)从头到尾写一遍。
data.ab %>%
group_by(type) %>%
e_charts(month, timeline = TRUE) %>%
e_line(Evaporation) %>%
e_title(left = "center", top = 10) %>%
e_legend(show = FALSE) %>%
e_timeline_serie(title = list(
list(
text = "各区域每月降水量",
textStyle = list(
fontWeight = "normal",
fontSize = 20
),
subtext = "A区域",
subtextStyle = list(
fontWeight = "bold",
fontSize = 40
)
),
list(text = "各区域每月降水量", subtext = "B区域")
))
绘制一个带有时间轴组件的图形,将时间轴设为自动播放且隐藏,再为柱状图开启实时排序效果,就能巧妙地得到动态排序柱状图。
data.sort <- data.frame(
year = c(rep(2010, times = 5), rep(2015, times = 5), rep(2020, times = 5)),
country = rep(c("India", "China", "Japan", "Canada", "American"), 3),
value = sample(1:50, 15)
)
data.sort %>%
group_by(year) %>%
e_chart(country, timeline = TRUE) %>%
e_bar(value,
realtimeSort = TRUE, # 开启实时排序效果
seriesLayoutBy = "column"
) %>%
e_flip_coords() %>%
e_legend(show = FALSE) %>%
e_title(left = "center", top = 10) %>%
e_timeline_opts(autoPlay = TRUE, show = FALSE) %>% # 自动播放且隐藏
e_timeline_serie(title = list(
list(
text = "2010",
textStyle = list(
fontWeight = "bold",
fontSize = 40
)
),
list(text = "2015"),
list(text = "2020")
))
本章节暂不涉及修改组件中线、文本的属性等相关内容。
Echarts 里面组件的位置通常用以下四个参数来组合设定,在 echarts4r 包里也是一致的:
left:组件距离图形容器左侧的距离,可以是0到100间的任意数值,可以是0%到100%间的任意比例,也可以是left、center、right等会自动对齐的参数。
top:组件距离图形容器上侧的距离,可以是0到100间的任意数值,可以是0%到100%间的任意比例,也可以是top、middle、bottom等会自动对齐的参数。
right:组件距离图形容器右侧的距离,可以是0到100间的任意数值,可以是0%到100%间的任意比例。
bottom:组件距离图形容器下侧的距离,可以是0到100间的任意数值,可以是0%到100%间的任意比例。
Echarts 里面图例、数据标签、提示框等组件,以及坐标轴的轴标签都支持设定格式化文本,且支持用字符串模板和回调函数两种形式来设定。
字符串模板中支持用以下模板变量,且可以组合任意字符:
支持。 {name} 、{value}:分别表示各个变量的名称和数据值 {a}、 {b}、{c}、{d}、{e}:分别表示系列名,数据名,数据值等。 {@xxx}:数据中名为 ‘xxx’ 的变量的值,如 {@Evaporation} 表示名为 ‘Evaporation’ 的变量的值,echarts4r 包里会把横轴的月份数也带出来。 {@[n]}:数据中维度 n 的值,如 {@[3]} 表示维度 3 的值,从 0 开始计数。 data %>% e_charts(month) %>% e_bar(Evaporation, name = “蒸发量”) %>% e_labels(formatter = “{@[1]}:标签”) %>% # 给数据标签设定格式化文本 # e_labels(formatter = ‘{@Evaporation}:标签’) %>% e_legend(formatter = “{name} 图例”) %>% # 给图例设定格式化文本 e_y_axis(formatter = “{value} Y轴”) %>% # 给Y轴轴标签设定格式化文本 e_x_axis(formatter = “{value} X轴”) # 给X轴轴标签设定格式化文本 下面举个简单例子介绍回调函数的写法,主要写法是引用htmlwidgets::JS()函数来直接调用JavaScript。
data %>%
e_charts(Evaporation) %>%
e_scatter(Precipitation, symbol_size = 10, symbol = "circle") %>%
e_x_axis(name = "蒸发量") %>%
e_y_axis(name = "降水量") %>%
e_labels(
formatter = htmlwidgets::JS(
"function(params){
return('降水量: ' + params.value[0] +
'蒸发量: ' + params.value[1])}"
)
) %>%
e_tooltip(
trigger = "item",
formatter = htmlwidgets::JS(
"function(params){
return('变量:' +
'<br />降水量: ' + params.value[0] +
'<br />蒸发量: ' + params.value[1])}"
)
)
在 echarts4r 包里面图形的标题默认不显示,可通过管道符引入e_title()函数来修改标题的属性。主标题的文字属性可以通过textStyle = list()来设定,副标题的文字属性可以通过subtextStyle = list()来设定。
data %>%
e_charts(month) %>%
e_bar(Evaporation) %>%
e_bar(Precipitation) %>%
e_title(
text = "图表的主标题", # 主标题
link = "https://echarts.apache.org/zh/option.html#title.link", # 主标题的超链接
subtext = "图表的副标题\n换行", # 副标题
sublink = "https://echarts.apache.org/zh/option.html#title.sublink", # 副标题的超链接
left = "right",
top = 5,
itemGap = 10, # 主副标题之间的间距
textAlign = "center", # 主副标题整体上水平对齐方式,可选auto、left、right、center
textVerticalAlign = "middle"
) # 主副标题整体上垂直对齐方式,可选auto、top、bottom、middle
在 echarts4r 包里面图形的图例默认水平、平铺显示,可通过管道符引入e_legend()函数来修改图例的属性,其中通过itemStyle = list()设定图例的图形属性,通过lineStyle = list()设定图例中的线的属性,通过textStyle = list()设定图例中文字的属性。
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>% # 修改变量的名称,图例上的文字会随之改变
e_bar(Precipitation, name = "降水量") %>%
e_legend(
# show = FALSE, # 不显示图例
type = "plain", # 默认平铺展示
left = "center",
orient = "vertical", # 图例的布局方式,vertical为垂直,horizontal为水平
itemGap = 5
) # 各项图例之间的距离
图例很多的时候,可设置图例类型为滚动展示,还可加入图例选项的全选、反选按钮。
data %>%
e_chart(month) %>%
e_pie(Evaporation) %>%
e_legend(
type = "scroll", # 图例类型为滚动展示
selector = c("all", "inverse"), # 增加全选、反选的选择器按钮
selectorPosition = "start", # 选择器按钮的位置,start表示放在图例前面,end表示放在图例后面
orient = "horizontal", # 水平布局
left = 20
)
在 echarts4r 包里面图形的数据标签默认不显示,可通过管道符引入e_labels()函数来修改数据标签的属性。
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_bar(Precipitation, name = "降水量") %>%
e_labels(
fontSize = 12, # 标签的字体大小
fontWeight = "bold", # 字体粗细normal/bold/bolder/lighter
fontStyle = "normal", # 字体风格normal/italic/oblique
fontFamily = "serif", # 字体,可选'sans-serif','monospace','Arial','Microsoft YaHei' ...
position = "top", # 标签位置
rotate = 30, # 旋转角度
align = "middle", # 水平对齐:left/middle/right
verticalAlign = "bottom", # 垂直对齐:top/middle/bottom
color = "black"
) # 数据标签的颜色
图形中含有多个变量时,数据标签的属性可以在各个图形系列中单独设定。下图的例子中将柱形的数据标签设定为内部靠上,将折线的数据标签设定为线的上方。Echarts 里面一般的数据标签的位置选项很丰富,可选的有: top left right bottom inside insideLeft insideRight insideTop insideBottom insideTopLeft insideBottomLeft insideTopRight insideBottomRight
data %>%
e_charts(month) %>%
e_bar(Evaporation,
name = "蒸发量",
label = list(
show = TRUE,
position = "insideTop"
)
) %>%
e_line(Precipitation,
name = "降水量",
label = list(
show = TRUE,
position = "top"
)
)
Echarts 中但凡涉及文本的地方如标题、图例、数据标签或轴标签都可以自定义富文本。echarts4r 包的官网没有给出富文本相关的例子,笔者复现了一个Echarts 官网的例子,更多定义方式还是得去翻echarts官网对富文本的介绍。
df.outer <- data.frame(
name = c(
"Baidu", "Direct", "Email", "Google", "Union Ads", "Bing", "Video Ads", "Others"
),
value = c(1048, 335, 310, 251, 234, 147, 135, 102)
)
df.outer %>%
e_chart(name) %>%
e_pie(value, radius = c("20%", "40%")) %>%
e_labels(
position = "outside", # 显示数据标签的引导线
labelLine = list(length = 30),
formatter = "{a|{a}}{abg|}\n{hr|}\n {b|{b}:}{c} {per|{d}%}",
backgroundColor = "#F6F8FC",
borderColor = "#8C8D8E",
borderWidth = 1,
borderRadius = 4,
rich = list(
a = list(
color = "#6E7079",
lineHeight = 22,
align = "center"
),
hr = list(
borderColor = "#8C8D8E",
width = "100%",
borderWidth = 1,
height = 0
),
b = list(
color = "#4C5058",
fontSize = 14,
fontWeight = "bold",
lineHeight = 33
),
per = list(
color = "#fff",
backgroundColor = "#4C5058",
padding = c(3, 4),
borderRadius = 4
)
)
) %>%
e_legend(type = "scroll", bottom = "bottom")
图形中的悬浮提示框默认不显示,可通过管道符引入e_tootip()函数来修改提示框的属性。
数据项触发 鼠标悬停在图形中时仅触发单个变量的提示内容,多应用在饼图、散点图上。
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_bar(Precipitation, name = "降水量") %>%
e_tooltip(trigger = "item")
坐标轴触发 鼠标悬停在图形中时会触发同一根轴上多个变量的提示内容,多应用在柱状图、折线图上。
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_bar(Precipitation, name = "降水量") %>%
e_tooltip(trigger = "axis")
echarts4r 包为提示框组件的格式化文本单独提供了三个参数,设置单个变量时可用e_tooltip_item_formatter(),为饼图设置时可用e_tooltip_pie_formatter(),为散点图设置时可用e_tooltip_pointer_formatter()。
data %>%
e_charts(month) %>%
e_bar(Precipitation) %>%
# decimal 表示数值的类型为小数型,还可选 percent、currency
# digits 表示小数点后位数
e_tooltip(formatter = e_tooltip_item_formatter(style = "decimal", digits = 1))
data %>%
e_charts(Evaporation) %>%
e_scatter(Precipitation, symbol_size = 10) %>%
e_tooltip(
formatter = e_tooltip_pointer_formatter(style = "decimal"),
axisPointer = list(type = "cross")
) # 增加十字准星的坐标轴指示器
点的标注可以针对单个变量单独标注,也可以对多个变量批量标注。
标记形状的类型(symbol):可选’circle’, ‘rect’, ‘roundRect’, ‘triangle’, ‘diamond’, ‘pin’, ‘arrow’, ‘none’。 标记形状的大小(symbolSize):默认50。
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_bar(Precipitation, name = "降水量") %>%
e_mark_point(c("蒸发量", "降水量"), data = list(type = "average")) %>% # 批量标注平均值
e_mark_point("蒸发量", data = list(type = "min")) %>% # 标记最小值
e_mark_point("蒸发量", data = list(type = "max")) %>% # 标记最大值
e_mark_point("蒸发量", data = list(type = "median")) %>% # 标记中位数
e_mark_point("降水量",
data = list(type = "min", symbol = "triangle")
) %>% # 修改标记形状的类型
e_mark_point("降水量",
data = list(type = "max", symbolSize = 80)
) # 修改标记形状的大小
线的标注与点的标注方式相似,但并不仅限于标注最大值、最小值、平均值等统计学专有名词,还可以指定具体数值,以及给标注的线命名。
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_bar(Precipitation, name = "降水量") %>%
e_mark_line(c("蒸发量", "降水量"), data = list(type = "max"), title = "最大值") %>% # 批量标注最大值
e_mark_line("蒸发量", data = list(yAxis = 30)) %>% # 标注Y轴的具体值
e_mark_line("降水量", data = list(type = "average"), precision = 1) # 标注平均值
区域的标注与线的标注相似,区域的范围可以填X轴、Y轴的具体数据值,也可以填最大值、最小值等。
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_bar(Precipitation, name = "降水量") %>%
e_mark_area(
serie = "蒸发量", # 指定变量单独标注
data = list(
list(xAxis = "8月", yAxis = 150),
list(xAxis = "12月", yAxis = 200)
),
itemStyle = list(color = "lightblue")
) %>%
e_mark_area(
serie = c("蒸发量", "降水量"), # 多个变量批量标注
data = list(
list(xAxis = "min", yAxis = "min"),
list(xAxis = "average", yAxis = "average")
),
itemStyle = list(color = "lightgrey")
)
在分组展示的情况下,数据标注会对分组后的每组数据起作用,而不再对单个或多个变量起作用。若不具体指定,数据标注会对每组数据都起作用。
data.ab %>%
group_by(type) %>% # 指定分组变量
e_charts(Evaporation, name = "n") %>%
e_scatter(serie = Precipitation, symbol_size = 10) %>%
e_mark_area(
silent = TRUE,
itemStyle = list(
color = "transparent",
borderWidth = 1, # 线宽
borderType = "dashed"
), # 线的类型
data = list(
list(xAxis = "min", yAxis = "min"),
list(xAxis = "max", yAxis = "max")
)
) %>%
e_mark_point(data = list(type = "average")) %>%
e_mark_line(
serie = "A区域", # 指定标注A区域
data = list(xAxis = 160)
) %>%
e_mark_line(
serie = "B区域", # 指定标注B区域
data = list(yAxis = 170)
)
滑动条型:可以左右拖动或拉长拖拽条以改变数据展示范围。
data %>%
e_charts(month) %>%
e_line(Evaporation, name = "蒸发量") %>%
e_line(Precipitation, name = "降水量") %>%
e_datazoom(type = "slider")
内置型:可以在图形上通过滑动鼠标滚轮的方式来改变数据展示范围。
data %>%
e_charts(month) %>%
e_line(Evaporation, name = "蒸发量") %>%
e_line(Precipitation, name = "降水量") %>%
e_datazoom(type = "inside")
数据区域缩放组件默认对横轴起作用,也可以对不同的轴单独指定。
data %>%
e_charts(month) %>%
e_line(Evaporation, name = "蒸发量") %>%
e_line(Precipitation, name = "降水量") %>%
e_datazoom(
x_index = 0, # 指定主X轴
start = 80, # 指定缩放组件的起点
end = 100
) %>% # 指定缩放组件的终点
e_datazoom(y_index = 0) # 指定主Y轴
echarts4r 包延续了 Echarts 的工具栏组件,可通过管道符引入,一共有六种:saveAsImage(保存为图片)、brush(刷选)、restore(重置)、dataView(数据视图)、dataZoom(数据缩放)、magicType(动态类型切换)。引入单个工具栏的写法是e_toolbox_feature(feature = “brush”),引入多个工具栏的写法是e_toolbox_feature(feature = c(“dataView”, “saveAsImage”))。
比如,下图中点一下图形右上角像一页书的图标就能看到图中的具体数据。
data %>%
e_charts(month, height = 450) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_bar(Precipitation, name = "降水量") %>%
e_toolbox_feature(feature = c("dataView", "saveAsImage"))
视觉映射:把颜色深浅赋予到一个维度上。
赋予X轴:X轴的数据需为数值型
data %>%
e_charts(Evaporation) %>%
e_scatter(serie = Precipitation, size = Temperature) %>%
e_visual_map(dimension = 0)
赋予Y轴:Y轴的数据需为数值型
data %>%
e_charts(month) %>%
e_line(Evaporation, name = "蒸发量") %>%
e_visual_map(dimension = 1)
赋予Z轴:Z轴的数据需为数值型
data %>%
e_charts(month) %>%
e_bar_3d(Evaporation, Precipitation) %>%
e_visual_map(dimension = 2)
赋予大小:大小(size)的数据需为数值型
data %>%
e_charts(Evaporation) %>%
e_scatter(serie = Precipitation, size = Temperature, name = "降水量") %>%
e_visual_map(Temperature,
dimension = 3
)
增加自定义的文字:
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_bar(Precipitation, name = "降水量") %>%
e_text_g(
left = "center",
top = 40,
z = -1000,
style = list(
text = "自定义的文字\n自定义的文字\n自定义的文字",
fontSize = 12
)
)
增加水印:
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_bar(Precipitation, name = "降水量") %>%
e_draft(text = "水印")
排列组合是 echarts4r 包中特有的组件,可以将毫不相干的图拼接在一个图形容器中。
e1 <- data %>%
e_charts(month, height = 250) %>%
e_bar(Evaporation, name = "蒸发量")
e2 <- data %>%
e_charts(month, height = 250) %>%
e_line(Precipitation, name = "降水量")
liquid <- data.frame(val = c(0.6, 0.5, 0.4))
e3 <- liquid %>%
e_charts(height = 250) %>%
e_liquid(val)
funnel <-
data.frame(
stage = c("View", "Click", "Purchase"),
value = c(80, 30, 20)
)
e4 <- funnel %>%
e_charts(height = 250) %>%
e_funnel(value, stage) %>%
e_legend(show = FALSE)
e_arrange(e1, e2, e3, e4, cols = 2, rows = 2)
连接也是 echarts4r 包中特有的组件。
可使用e_connect函数来连接,但需要在连接的图中设定elementId参数。
e1 <- data %>%
e_charts(month,
height = 200, elementId = "图1"
) %>%
e_bar(Evaporation, name = "蒸发量")
e2 <- data %>%
e_charts(month,
height = 200, elementId = "图2"
) %>%
e_bar(Precipitation, name = "降水量")
e3 <- data %>%
e_charts(month,
height = 200
) %>%
e_line(Temperature, name = "平均温度") %>%
e_connect(c("图1", "图2"))
e_arrange(e1, e2, e3)
也可使用e_group()函数来连接。
e1 <- data %>%
e_charts(month,
height = 200
) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_group("4charts")
e2 <- data %>%
e_charts(month,
height = 200, elementId = "图3"
) %>%
e_bar(Precipitation, name = "降水量") %>%
e_group("4charts") %>%
e_connect_group("4charts")
e_arrange(e1, e2)
echarts4r 包中可以采用嵌套的方式来丰富图形属性。
funnel <- data.frame(
stage = c("View", "Click", "Purchase"),
value = c(80, 30, 20),
color = c("blue", "red", "green")
)
funnel %>%
dplyr::mutate(show = TRUE, fontSize = c(15, 10, 5)) %>%
e_charts() %>%
e_funnel(value, stage) %>%
e_add_nested("label", show, fontSize) %>% # 显示数据标签,且指定大小
e_add_nested("itemStyle", color) %>% # 指定数据标签的颜色
e_labels(
position = "outside",
formatter = "{b} : {c}"
)
用 echarts4r 包绘制直角坐标系上的图形时,必须从e_charts()函数中引入唯一变量作为横轴,因此可以将一个图形容器分为上下两片、左右两片,但不能分为上下左右四片。
将一个直角坐标系的图形容器分为上下两片:
data %>%
e_charts(month) %>%
e_line(Evaporation, name = "蒸发量") %>%
e_line(Precipitation,
name = "降水量",
x_index = 1,
y_index = 1
) %>%
e_grid(height = "35%") %>% # 网格高度
e_grid(height = "35%", top = "60%") %>%
e_y_axis(
gridIndex = 1,
name = "主Y轴",
nameLocation = "center",
nameGap = 30
) %>%
e_x_axis(
gridIndex = 1,
name = "主X轴",
nameLocation = "end"
) %>%
e_y_axis(
index = 1,
name = "次Y轴",
nameLocation = "center",
nameGap = 30
) %>%
e_x_axis(
index = 1,
name = "次X轴",
nameLocation = "end"
)
将一个直角坐标系的图形容器分为左右两片:
data %>%
e_charts(month) %>%
e_line(Evaporation, name = "蒸发量") %>%
e_line(Precipitation,
name = "降水量",
x_index = 1,
y_index = 1
) %>%
e_grid(width = "30%") %>% # 网格宽度
e_grid(width = "30%", left = "50%") %>%
e_y_axis(gridIndex = 1) %>%
e_x_axis(gridIndex = 1)
在极坐标系上绘制图形时,在e_angle_axis()函数中设定角度轴,在e_radius_axis()设定径向(半径)轴。
将echarts()中的数据放入角度轴时,相当于把直角坐标系中的横轴卷起来。
data %>%
e_charts(month) %>%
e_polar() %>%
e_angle_axis(month) %>%
e_radius_axis() %>%
e_bar(Evaporation, name = "蒸发量", coord_system = "polar") %>%
e_line(Precipitation, name = "降水量", coord_system = "polar")
将echarts()中的数据放入径向轴时,相当于把直角坐标系中的纵轴卷起来。
data %>%
e_charts(month) %>%
e_polar() %>%
e_angle_axis() %>%
e_radius_axis(month, axisLabel = list(interval = 0)) %>%
e_bar(Evaporation,
name = "蒸发量",
coord_system = "polar",
stack = "堆一堆"
) %>%
e_bar(
Precipitation,
name = "降水量",
coord_system = "polar",
stack = "堆一堆"
)
单轴坐标系通常被应用到散点图中。
data %>%
e_charts(month, height = 120) %>% # 设置图形容器的高度
e_single_axis(
bottom = 30,
left = 50,
axisLabel = list(interval = 0)
) %>% # 单轴横轴标签间隔为0
e_scatter(
serie = Evaporation,
name = "蒸发量",
size = Temperature, # 点的大小
coord_system = "singleAxis"
)
多个单轴散点图可以结合e_arrange()组合在一起:
data.single <- data.frame(
hours = c(
"12a", "1a", "2a", "3a", "4a", "5a", "6a", "7a", "8a", "9a", "10a", "11a",
"12p", "1p", "2p", "3p", "4p", "5p", "6p", "7p", "8p", "9p", "10p", "11p"
),
Saturday_value = c(1:24),
Saturday_size = sample(0:14, 24, replace = TRUE),
Sunday_value = c(1:24),
Sunday_size = sample(0:14, 24, replace = TRUE)
)
e1 <- data.single %>%
e_charts(hours, height = 100) %>% # 横轴
e_single_axis(
bottom = 20,
left = 150,
axisLabel = list(interval = 2)
) %>%
e_scatter(Saturday_value, # 纵轴
Saturday_size, # 气泡大小
scale_js = "function (dataItem) {return dataItem[2] * 4;}", # 写入JavaScript语言的缩放函数
color = "#5470c6", # 气泡颜色
coord_system = "singleAxis"
) %>%
e_legend(show = FALSE) %>%
e_title("Saturday", left = "left", top = "middle")
e2 <- data.single %>%
e_charts(hours, height = 100) %>%
e_single_axis(
bottom = 20,
left = 150,
axisLabel = list(interval = 2)
) %>%
e_scatter(
Sunday_value,
Sunday_size,
color = "#fc8452",
scale_js = "function (dataItem) {return dataItem[2] * 4;}",
coord_system = "singleAxis"
) %>%
e_legend(show = FALSE) %>%
e_title("Sunday", left = "left", top = "middle")
e_arrange(e1, e2, cols = 1)
展示一个月:
dates <-
seq.Date(as.Date("2021-01-01"), as.Date("2021-12-31"), by = "day")
values <- rnorm(length(dates), 20, 6)
year <- data.frame(date = dates, values = values)
year %>%
e_charts(date, height = 200) %>%
e_calendar(range = "2021-09", orient = "vertical") %>% # 垂直布局
e_heatmap(values, coord_system = "calendar") %>%
e_visual_map(max = 30)
展示多个月:
year %>%
e_charts(date, height = 200) %>%
e_calendar(range = c("2021-01", "2021-07"), orient = "horizontal") %>% # 水平布局
e_heatmap(values, coord_system = "calendar") %>%
e_visual_map(max = 30)
改主题主要是修改图形容器中出现的线、图形、文本的属性,即改动lineStyle()、itemStyle()、textStyle()中的参数。
echarts4r包官网提供了很丰富的主题样式,不喜欢默认主题的话,可以换其他的主题。
主题:inspired
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "降水量") %>%
e_line(Precipitation, name = "蒸发量") %>%
e_theme("inspired")
主题:dark-fresh-cut
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "降水量") %>%
e_line(Precipitation, name = "蒸发量") %>%
e_theme("dark-fresh-cut")
指定背景颜色,标签与网格线的属性会自动改变:
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_labels() %>%
e_color(background = "black")
同时修改图形的颜色和背景颜色:
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_labels() %>%
e_color("orange", "lightgrey") #
第一个引号里指定的是图形的颜色,第二个引号里指定的是背景的颜色
symbol = c(“none”, “arrow”)表示只在轴线末端显示箭头,默认symbol=“none”即不显示箭头,symbol=“arrow”即两端都显示箭头。 symbolSize = c(20, 15)箭头的大小,第一个数字表示宽度(垂直坐标轴方向),第二个数字表示高度(平行坐标轴方向)。
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_y_axis(
name = "Y轴",
axisLine = list(
show = TRUE, # 显示坐标轴轴线
symbol = c("none", "arrow"),
symbolSize = c(20, 15), # 箭头的大小
lineStyle = list(
color = "red", # 轴线的颜色
width = 2, # 轴线的线宽
type = "dashed", # solid为实线,dashed为虚线,dotted为点线
opacity = 0.5 # 轴线的透明度
)
)
)
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_y_axis(
name = "Y轴",
axisLine = list(show = TRUE),
axisTick = list(
show = TRUE, # 显示坐标轴刻度
inside = TRUE, # 刻度朝内,默认朝外
length = 10, # 刻度的长度
lineStyle = list(
color = "red", # 刻度线的颜色
width = 5, # 刻度线的线宽
type = "solid", # 刻度线的类型
opacity = 0.5 # 刻度线的透明度
)
)
) %>%
e_x_axis(
boundaryGap = TRUE,
axisTick = list(alignWithLabel = TRUE)
) # 使刻度线和标签对齐
data %>%
e_charts(month) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_bar(Precipitation, name = "降水量") %>%
e_y_axis(
name = "Y轴",
axisLine = list(show = TRUE),
splitLine = list(
show = TRUE, # 显示坐标轴分割线
lineStyle = list(
color = "red", # 分割线的颜色
width = 2, # 分割线的线宽
type = "dashed", # 分割线的类型
opacity = 0.5 # 分割线的透明度
)
)
) %>%
e_x_axis(
type = "category", # 类目轴
splitLine = list(
show = TRUE, # 显示坐标轴分割线
interval = 1, # 坐标轴分隔线的显示间隔
lineStyle = list(
color = "red", # 分割线的颜色
width = 2, # 分割线的线宽
type = "dashed", # 分割线的类型
opacity = 0.5 # 分割线的透明度
)
)
)
maxSurfaceAngle设置为小于 90 度的值保证引导线不会和扇区交叉。 也可以在labelLine()通过设置lineStyle=list()改变引导线的颜色、线宽、类型、透明度等等属性。
data %>%
e_charts(month) %>%
e_pie(Evaporation,
name = "蒸发量",
radius = "40%"
) %>%
e_labels(
position = "outside", # 显示数据标签的引导线
fontSize = 9,
alignTo = "edge", # 对齐方式
formatter = "名称:{b} \n 值:{c} 单位",
minMargin = 5,
edgeDistance = 10,
lineHeight = 15,
distanceToLabelLine = 1,
labelLine = list(
length = 20,
length2 = 0,
maxSurfaceAngle = 80
)
) %>%
e_legend(type = "scroll")
可以改文本属性的有:坐标轴标题、坐标轴标签、图表标题、图例、数据标签、提示框。
data %>%
e_charts(month, height = 400) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_line(Precipitation, name = "降水量", color = "red") %>%
e_x_axis(
name = "X轴的名称",
nameLocation = "center",
nameTextStyle = list(color = "red"), # 修改坐标轴标题的文字属性
axisLabel = list(color = "orange")
) %>% # 修改坐标轴标签的文字属性
e_y_axis(
name = "Y轴的名称",
nameTextStyle = list(color = "red"), # 修改坐标轴标题的文字属性
axisLabel = list(color = "orange")
) %>% # 修改坐标轴标签的文字属性
e_title(
text = "主标题",
textStyle = list(color = "lightblue")
) %>% # 修改图表标题的文字属性
e_legend(
textStyle = list(color = "lightgreen"), # 修改图例的文字属性
itemStyle = list(color = "grey"), # 修改图例的图形属性
lineStyle = list(color = "red") # 修改图例的图形中线的属性
) %>%
e_labels(
show = TRUE,
position = "top",
color = "green"
) %>%
e_tooltip(
show = TRUE,
trigger = "axis",
textStyle = list(color = "pink")
)
以坐标轴标题为例。
data %>%
e_charts(month, height = 400) %>%
e_bar(Evaporation, name = "蒸发量") %>%
e_x_axis(
name = "X轴\n的名称",
nameLocation = "center",
nameGap = 45,
nameTextStyle = list(
color = "red", # 颜色
fontStyle = "normal", # 字体风格,还有italic/oblique
fontWeight = "bolder", # 字体粗细,还有normal/bold/lighter
fontFamily = "Microsoft YaHei", # 字体系列
fontSize = 12, # 字体大小
align = "center", # 字体水平对齐方式,还有left/right
verticalAlign = "middle", # 字体垂直对齐方式,还有top/bottom
lineHeight = 10, # 字体行高,默认56
backgroundColor = "grey", # 文字块背景颜色
borderColor = "blue", # 文字块边框颜色
borderWidth = 2, # 文字块边框宽度
borderType = "dashed", # 文字块边框描边类型
borderDashOffset = 0, # 虚线偏移量
backgroundColor = "lightgrey", # 字块背景颜色
borderRadius = 20, # 文字块的圆角
padding = c(1, 2, 3, 6), # 文字块的内边距,(上,右,下,左)
shadowColor = "red", # 文字块背景阴影颜色
shadowBlur = 2, # 文字块背景阴影长度
shadowOffsetX = 1, # 文字块背景阴影X偏移
shadowOffsetY = 1, # 文字块背景阴影Y偏移
width = 20, # 文字本身的显示宽度
height = 20, # 文字本身的显示高度
textBorderColor = "blue", # 文字本身的描边颜色
textBorderWidth = 0.2, # 文字本身的描边宽度
textBorderType = "solid", # 文字本身的描边类型
textBorderDahOffset = 0 # 文字本身虚线描边时的偏移量
)
)
每种图形的图形属性都是可以改的,以柱状图为例。
data %>%
e_charts(month, height = 400) %>%
e_bar(
Evaporation,
name = "蒸发量",
itemStyle = list(
color = "lightblue", # 柱条的颜色
borderColor = "red", # 柱条的描边颜色
borderWidth = 1, # 柱条的描边宽度
borderType = "dashed", # 柱条的描边类型,还有solid、dotted
borderRadius = 5, # 柱条的四个圆角半径
shadowBlur = 10, # 图形阴影的模糊大小
shadowColor = "lightgrey", # 图形阴影的颜色
shadowOffsetX = 2, # 阴影水平方向上的偏移距离
shadowOffsetY = 2, # 阴影垂直方向上的偏移距离
opacity = 1 # 图形透明度,为0时不绘制该图形
)
) %>%
e_legend(itemStyle = list(
borderType = "dashed",
borderWidth = 0.8
)) %>%
e_aria(enabled = TRUE, decal = list(show = TRUE)) # 贴花