Background and Data file

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement - a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).

The training data for this project are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv

The test data are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv

The data for this project come from this source: http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har. If you use the document you create for this class for any purpose please cite them as they have been very generous in allowing their data to be used for this kind of assignment.

Loading Libraries

library(knitr)
## Warning: package 'knitr' was built under R version 4.1.2
library(caret)
## Warning: package 'caret' was built under R version 4.1.2
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.1.2
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 4.1.2
library(rpart)
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.1.2
library(rattle)
## Warning: package 'rattle' was built under R version 4.1.2
## Loading required package: tibble
## Warning: package 'tibble' was built under R version 4.1.2
## Loading required package: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.4.0 Copyright (c) 2006-2020 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(randomForest)
## Warning: package 'randomForest' was built under R version 4.1.2
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:rattle':
## 
##     importance
## The following object is masked from 'package:ggplot2':
## 
##     margin
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.1.2
## corrplot 0.92 loaded
set.seed(1234)

Analysing and Cleaning Data

traincsv <- read.csv("C:/Users/ef_al/OneDrive/Desktop/Coursera/Data Science  Course/Practical Machine Learning/pml-training.csv")
testcsv <- read.csv("C:/Users/ef_al/OneDrive/Desktop/Coursera/Data Science  Course/Practical Machine Learning/pml-testing.csv")

dim(traincsv)
## [1] 19622   160
dim(testcsv)
## [1]  20 160
traincsv <- traincsv[,colMeans(is.na(traincsv)) < .9] 
traincsv <- traincsv[,-c(1:7)] 

nvz <- nearZeroVar(traincsv)
traincsv <- traincsv[,-nvz]
dim(traincsv)
## [1] 19622    53
inTrain <- createDataPartition(y=traincsv$classe, p=0.7, list=F)
train <- traincsv[inTrain,]
valid <- traincsv[-inTrain,]

control <- trainControl(method="cv", number=3, verboseIter=F)

Representation of Predictions

For this Project, three prediction methods are utilized namely:

  1. Random Forests
  2. Decision Tree
  3. Generalized Boosted Model (GBM)

Random Forest

mod_rf <- train(classe~., data=train, method="rf", trControl = control, tuneLength = 5)

pred_rf <- predict(mod_rf, valid)
cmrf <- confusionMatrix(pred_rf, factor(valid$classe))
cmrf
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 1673    3    0    0    0
##          B    1 1132   11    0    0
##          C    0    4 1014    6    0
##          D    0    0    1  957    0
##          E    0    0    0    1 1082
## 
## Overall Statistics
##                                          
##                Accuracy : 0.9954         
##                  95% CI : (0.9933, 0.997)
##     No Information Rate : 0.2845         
##     P-Value [Acc > NIR] : < 2.2e-16      
##                                          
##                   Kappa : 0.9942         
##                                          
##  Mcnemar's Test P-Value : NA             
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            0.9994   0.9939   0.9883   0.9927   1.0000
## Specificity            0.9993   0.9975   0.9979   0.9998   0.9998
## Pos Pred Value         0.9982   0.9895   0.9902   0.9990   0.9991
## Neg Pred Value         0.9998   0.9985   0.9975   0.9986   1.0000
## Prevalence             0.2845   0.1935   0.1743   0.1638   0.1839
## Detection Rate         0.2843   0.1924   0.1723   0.1626   0.1839
## Detection Prevalence   0.2848   0.1944   0.1740   0.1628   0.1840
## Balanced Accuracy      0.9993   0.9957   0.9931   0.9963   0.9999

Plot

plot(mod_rf)

Decision Trees

mod_trees <- train(classe~., data=train, method="rpart", trControl = control, tuneLength = 5)
fancyRpartPlot(mod_trees$finalModel)

Prediction

pred_trees <- predict(mod_trees, valid)
cmtrees <- confusionMatrix(pred_trees, factor(valid$classe))
cmtrees
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 1519  473  484  451  156
##          B   28  355   45   10  130
##          C   83  117  423  131  131
##          D   40  194   74  372  176
##          E    4    0    0    0  489
## 
## Overall Statistics
##                                           
##                Accuracy : 0.5366          
##                  95% CI : (0.5238, 0.5494)
##     No Information Rate : 0.2845          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.3957          
##                                           
##  Mcnemar's Test P-Value : < 2.2e-16       
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            0.9074  0.31168  0.41228  0.38589  0.45194
## Specificity            0.6286  0.95512  0.90492  0.90165  0.99917
## Pos Pred Value         0.4927  0.62500  0.47797  0.43458  0.99189
## Neg Pred Value         0.9447  0.85255  0.87940  0.88228  0.89002
## Prevalence             0.2845  0.19354  0.17434  0.16381  0.18386
## Detection Rate         0.2581  0.06032  0.07188  0.06321  0.08309
## Detection Prevalence   0.5239  0.09652  0.15038  0.14545  0.08377
## Balanced Accuracy      0.7680  0.63340  0.65860  0.64377  0.72555

Generalized Boosted Model (GBM)

mod_gbm <- train(classe~., data=train, method="gbm", trControl = control, tuneLength = 5, verbose = F)

pred_gbm <- predict(mod_gbm, valid)
cmgbm <- confusionMatrix(pred_gbm, factor(valid$classe))
cmgbm
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 1670    5    0    0    0
##          B    2 1128   13    0    0
##          C    2    6 1011    9    3
##          D    0    0    2  953    1
##          E    0    0    0    2 1078
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9924          
##                  95% CI : (0.9898, 0.9944)
##     No Information Rate : 0.2845          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.9903          
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            0.9976   0.9903   0.9854   0.9886   0.9963
## Specificity            0.9988   0.9968   0.9959   0.9994   0.9996
## Pos Pred Value         0.9970   0.9869   0.9806   0.9969   0.9981
## Neg Pred Value         0.9990   0.9977   0.9969   0.9978   0.9992
## Prevalence             0.2845   0.1935   0.1743   0.1638   0.1839
## Detection Rate         0.2838   0.1917   0.1718   0.1619   0.1832
## Detection Prevalence   0.2846   0.1942   0.1752   0.1624   0.1835
## Balanced Accuracy      0.9982   0.9936   0.9906   0.9940   0.9979

Plot

plot(mod_gbm)

Random Forest to predict test results (QUIZ)

pred <- predict(mod_rf, testcsv)
print(pred)
##  [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E

Apendix

corrPlot <- cor(train[, -length(names(train))])
corrplot(corrPlot, method="color")

plot(mod_trees)