library(RcmdrMisc) ## Carregando pacotes exigidos: car
## Carregando pacotes exigidos: carData
## Carregando pacotes exigidos: sandwich
.x <- seq(-3.291, 3.291, length.out=1000) #P(X<0) = P(-3<x<0) = 0,5
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="x",
ylab="Densidade",regions=list(c(-3, 0)),
col=c("darkblue"), legend=FALSE)#P(0<X<0,11) = 0,04380
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="x",
ylab="Densidade",regions=list(c(0, 0.11)),
col=c("darkblue"), legend=FALSE)#P(-2,2<X<0,12) = P(-2.2<x<0)+P(0<x<0.12) = 0.53386
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="x",
ylab="Densidade",regions=list(c(-2.2, 0.12)),
col=c("darkblue"), legend=FALSE)#P(-1<X<2,1) = P(-1<x<0)+P(0<x<2.1) = 0.82348
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="x",
ylab="Densidade",regions=list(c(-1, 2.1)),
col=c("darkblue"), legend=FALSE)#P(0<X<1,83) = 0.46638
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="x",
ylab="Densidade",regions=list(c(0, 1.83)),
col=c("darkblue"), legend=FALSE)#P(-0,87<X<1,54) = P(-0,87<X<0)+P(0<X<1,54) = 0.74607
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="x",
ylab="Densidade",regions=list(c(-0.87, 1.54)),
col=c("darkblue"), legend=FALSE)#P(X=1,54) = 0,016667. Pois se temos um universo de 30 unidades decimais positivas e 30 unidades decimais negativas, a probabilidade de ser exatamente um valor é de 1/60, logo, 0.0166667
#P(x>2,5) = P(0<x<3)- P(2,5<x<3) = 0.00052
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="x",
ylab="Densidade",regions=list(c(2.5, 3)),
col=c("darkblue"), legend=FALSE)#P(x>-2) = P(-3<X<3)-P(-3<x<-2) = 0.97580
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="x",
ylab="Densidade",regions=list(c(-2, 3)),
col=c("darkblue"), legend=FALSE)