1 Setup

set.seed(1701)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.5     v dplyr   1.0.7
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.0.2     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(caret)
## Loading required package: lattice
## 
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
## 
##     lift
diab_pop <- readRDS('C:/Users/jkyle/Documents/GitHub/Intro_Jeff_Data_Science/DATA/diab_pop.RDS') %>%
  select(-seqn) %>%
  mutate(diq010 = fct_relevel(diq010, c('No Diabetes','Diabetes')))


glimpse(diab_pop)
## Rows: 5,719
## Columns: 9
## $ riagendr <fct> Male, Male, Male, Female, Female, Female, Male, Female, Male,~
## $ ridageyr <dbl> 62, 53, 78, 56, 42, 72, 22, 32, 56, 46, 45, 30, 67, 67, 57, 8~
## $ ridreth1 <fct> Non-Hispanic White, Non-Hispanic White, Non-Hispanic White, N~
## $ dmdeduc2 <fct> College grad or above, High school graduate/GED, High school ~
## $ dmdmartl <fct> Married, Divorced, Married, Living with partner, Divorced, Se~
## $ indhhin2 <fct> "$65,000-$74,999", "$15,000-$19,999", "$20,000-$24,999", "$65~
## $ bmxbmi   <dbl> 27.8, 30.8, 28.8, 42.4, 20.3, 28.6, 28.0, 28.2, 33.6, 27.6, 2~
## $ diq010   <fct> Diabetes, No Diabetes, Diabetes, No Diabetes, No Diabetes, No~
## $ lbxglu   <dbl> NA, 101, 84, NA, 84, 107, 95, NA, NA, NA, 84, NA, 130, 284, 3~

1.0.1 Let’s try to predict diq010:

df <- diab_pop %>% 
  na.omit()

my_factor_vars_1 <- df %>% select_if(is.factor) %>% colnames()

my_factor_vars <- setdiff(my_factor_vars_1, 'diq010')

df_as_nums <- df %>%
  mutate_at(all_of(my_factor_vars), as.integer) %>%
  mutate_at(all_of(my_factor_vars), as.factor)

glimpse(df_as_nums)
## Rows: 1,876
## Columns: 9
## $ riagendr <fct> 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1~
## $ ridageyr <dbl> 53, 78, 72, 45, 67, 67, 57, 24, 68, 66, 56, 37, 20, 24, 80, 7~
## $ ridreth1 <fct> 3, 3, 1, 5, 2, 4, 2, 5, 1, 3, 3, 2, 4, 3, 2, 3, 4, 1, 1, 4, 2~
## $ dmdeduc2 <fct> 3, 3, 2, 2, 5, 5, 1, 5, 1, 5, 1, 4, 3, 4, 1, 5, 4, 1, 3, 3, 4~
## $ dmdmartl <fct> 3, 1, 4, 5, 1, 2, 4, 5, 3, 6, 1, 1, 5, 3, 2, 6, 5, 5, 1, 5, 1~
## $ indhhin2 <fct> 4, 5, 13, 10, 6, 5, 5, 1, 4, 10, 4, 13, 13, 6, 3, 10, 6, 3, 4~
## $ bmxbmi   <dbl> 30.8, 28.8, 28.6, 24.1, 43.7, 28.8, 35.4, 25.3, 33.5, 34.0, 2~
## $ diq010   <fct> No Diabetes, Diabetes, No Diabetes, No Diabetes, No Diabetes,~
## $ lbxglu   <dbl> 101, 84, 107, 84, 130, 284, 398, 95, 111, 113, 397, 100, 94, ~

1.0.2 preProcess

pP <- preProcess(df_as_nums, c('center','scale')) 

df_as_nums <- predict(pP,df_as_nums) 

glimpse(df_as_nums)
## Rows: 1,876
## Columns: 9
## $ riagendr <fct> 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1~
## $ ridageyr <dbl> 0.15617810, 1.59749118, 1.25157604, -0.30504208, 0.96331342, ~
## $ ridreth1 <fct> 3, 3, 1, 5, 2, 4, 2, 5, 1, 3, 3, 2, 4, 3, 2, 3, 4, 1, 1, 4, 2~
## $ dmdeduc2 <fct> 3, 3, 2, 2, 5, 5, 1, 5, 1, 5, 1, 4, 3, 4, 1, 5, 4, 1, 3, 3, 4~
## $ dmdmartl <fct> 3, 1, 4, 5, 1, 2, 4, 5, 3, 6, 1, 1, 5, 3, 2, 6, 5, 5, 1, 5, 1~
## $ indhhin2 <fct> 4, 5, 13, 10, 6, 5, 5, 1, 4, 10, 4, 13, 13, 6, 3, 10, 6, 3, 4~
## $ bmxbmi   <dbl> 0.20545760, -0.08208648, -0.11084088, -0.75781505, 2.06011687~
## $ diq010   <fct> No Diabetes, Diabetes, No Diabetes, No Diabetes, No Diabetes,~
## $ lbxglu   <dbl> -0.30006288, -0.70905532, -0.15571260, -0.70905532, 0.3976301~
dV.df <- dummyVars( ~ . , 
                   data = df_as_nums, 
                   fullRank=TRUE)

df_dV <- as_tibble(predict(dV.df,df_as_nums)) %>%
  mutate(diq010.Diabetes = as.factor(diq010.Diabetes))

target <- 'diq010.Diabetes'

features <- colnames(df_dV)[!colnames(df_dV) %in% c('seqn' , 'diq010.Diabetes')]

length(features)
## [1] 28

We have {r} length(features) features.

1.0.3 test sampling function

sample_features <- sample(features, 4, replace = FALSE)

curent_formula <- paste0(target, ' ~ ', paste0(sample_features, collapse = " + "))

as.formula(curent_formula)
## diq010.Diabetes ~ dmdeduc2.3 + dmdmartl.6 + indhhin2.11 + dmdeduc2.2

2 make_model_order_num

This function will return a formula with a provided number of selected features selected at random

make_model_order_num <- function(num_features){
  
  set.seed(NULL)
  
  sample_features <- sample(features, num_features, replace = FALSE)

  curent_formula <- paste0(target,  ' ~ ', paste0(sample_features, collapse = " + "))

return(as.formula(curent_formula))
}

2.1 test

make_model_order_num(3)
## diq010.Diabetes ~ dmdeduc2.4 + indhhin2.6 + indhhin2.13
## <environment: 0x000000002db60e68>
make_model_order_num(3)
## diq010.Diabetes ~ ridreth1.4 + dmdeduc2.2 + indhhin2.8
## <environment: 0x000000002dcac938>
make_model_order_num(6)
## diq010.Diabetes ~ ridreth1.5 + dmdeduc2.3 + indhhin2.11 + dmdeduc2.5 + 
##     indhhin2.6 + dmdmartl.2
## <environment: 0x000000002e054508>

3 df_model

This is a dataframe to hold the model options

df_model <- tribble(
    ~model_name, ~model_id,
#    "zero", make_model(0)
    "Fold1", 1,
    "Fold2", 2,
    "Fold3", 3,
    "Fold4", 4,
    "Fold5", 5,
    "Fold6", 6,
    "Fold7", 7,
    "Fold8", 8,
  )

df_model
## # A tibble: 8 x 2
##   model_name model_id
##   <chr>         <dbl>
## 1 Fold1             1
## 2 Fold2             2
## 3 Fold3             3
## 4 Fold4             4
## 5 Fold5             5
## 6 Fold6             6
## 7 Fold7             7
## 8 Fold8             8
map(df_model,4)$model_creator
## NULL

\(~\)


\(~\)

4 Split data

library(rsample)

train_test <- initial_split(df_dV, prop = .6)
TRAIN <- training(train_test)
TEST <- testing(train_test)

TRAIN.v_fold <- vfold_cv(TRAIN, v = 8, 
                         repeats = 321)

glimpse(TRAIN.v_fold)
## Rows: 2,568
## Columns: 3
## $ splits <list> [<vfold_split[984 x 141 x 1125 x 29]>], [<vfold_split[984 x 14~
## $ id     <chr> "Repeat001", "Repeat001", "Repeat001", "Repeat001", "Repeat001"~
## $ id2    <chr> "Fold1", "Fold2", "Fold3", "Fold4", "Fold5", "Fold6", "Fold7", ~
TRAIN.v_fold %>% select(id2) %>% distinct()
## # A tibble: 8 x 1
##   id2  
##   <chr>
## 1 Fold1
## 2 Fold2
## 3 Fold3
## 4 Fold4
## 5 Fold5
## 6 Fold6
## 7 Fold7
## 8 Fold8

4.1 Let’s Take a look at the 6th fold

TRAIN.v_fold %>%
  filter(id2=='Fold6') %>%
  glimpse()
## Rows: 321
## Columns: 3
## $ splits <list> [<vfold_split[985 x 140 x 1125 x 29]>], [<vfold_split[985 x 14~
## $ id     <chr> "Repeat001", "Repeat002", "Repeat003", "Repeat004", "Repeat005"~
## $ id2    <chr> "Fold6", "Fold6", "Fold6", "Fold6", "Fold6", "Fold6", "Fold6", ~

4.1.1 This is the TRAINing data from the 56th sample of the 6th Fold

TRAIN.56.6 <- (TRAIN.v_fold %>%
  filter(id2=='Fold6'))$splits[[56]] %>% 
  analysis()

TRAIN.56.6
## # A tibble: 985 x 29
##    riagendr.2 ridageyr ridreth1.2 ridreth1.3 ridreth1.4 ridreth1.5 dmdeduc2.2
##         <dbl>    <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>
##  1          1    1.02           1          0          0          0          0
##  2          1   -0.997          0          1          0          0          0
##  3          0    1.14           0          1          0          0          0
##  4          0    0.214          0          0          1          0          0
##  5          0   -0.247          0          0          0          0          1
##  6          1    1.42           0          1          0          0          0
##  7          0   -0.132          0          0          0          1          0
##  8          0   -0.593          0          0          1          0          0
##  9          1   -1.63           1          0          0          0          0
## 10          0    0.560          0          0          0          0          0
## # ... with 975 more rows, and 22 more variables: dmdeduc2.3 <dbl>,
## #   dmdeduc2.4 <dbl>, dmdeduc2.5 <dbl>, dmdmartl.2 <dbl>, dmdmartl.3 <dbl>,
## #   dmdmartl.4 <dbl>, dmdmartl.5 <dbl>, dmdmartl.6 <dbl>, indhhin2.2 <dbl>,
## #   indhhin2.3 <dbl>, indhhin2.4 <dbl>, indhhin2.5 <dbl>, indhhin2.6 <dbl>,
## #   indhhin2.8 <dbl>, indhhin2.10 <dbl>, indhhin2.11 <dbl>, indhhin2.12 <dbl>,
## #   indhhin2.13 <dbl>, indhhin2.14 <dbl>, bmxbmi <dbl>, diq010.Diabetes <fct>,
## #   lbxglu <dbl>

4.1.2 This is the TESTing data from the 56th sample of the 6th Fold

TEST.56.6 <- (TRAIN.v_fold %>%
  filter(id2=='Fold6'))$splits[[56]] %>% 
  assessment()

TEST.56.6
## # A tibble: 140 x 29
##    riagendr.2 ridageyr ridreth1.2 ridreth1.3 ridreth1.4 ridreth1.5 dmdeduc2.2
##         <dbl>    <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>
##  1          1   0.156           0          0          1          0          0
##  2          0  -0.478           0          0          0          0          0
##  3          1   0.156           0          1          0          0          0
##  4          0  -0.0168          0          0          0          0          0
##  5          1  -0.766           0          1          0          0          0
##  6          1  -1.52            0          0          1          0          1
##  7          0   0.675           0          0          1          0          0
##  8          0  -0.882           0          0          0          0          1
##  9          0  -1.11            0          1          0          0          0
## 10          0   1.71            0          1          0          0          0
## # ... with 130 more rows, and 22 more variables: dmdeduc2.3 <dbl>,
## #   dmdeduc2.4 <dbl>, dmdeduc2.5 <dbl>, dmdmartl.2 <dbl>, dmdmartl.3 <dbl>,
## #   dmdmartl.4 <dbl>, dmdmartl.5 <dbl>, dmdmartl.6 <dbl>, indhhin2.2 <dbl>,
## #   indhhin2.3 <dbl>, indhhin2.4 <dbl>, indhhin2.5 <dbl>, indhhin2.6 <dbl>,
## #   indhhin2.8 <dbl>, indhhin2.10 <dbl>, indhhin2.11 <dbl>, indhhin2.12 <dbl>,
## #   indhhin2.13 <dbl>, indhhin2.14 <dbl>, bmxbmi <dbl>, diq010.Diabetes <fct>,
## #   lbxglu <dbl>

\(~\)


\(~\)

5 Join df_model to folds

We’re joining the model tuning grid to the folds

glimpse(TRAIN.v_fold)
## Rows: 2,568
## Columns: 3
## $ splits <list> [<vfold_split[984 x 141 x 1125 x 29]>], [<vfold_split[984 x 14~
## $ id     <chr> "Repeat001", "Repeat001", "Repeat001", "Repeat001", "Repeat001"~
## $ id2    <chr> "Fold1", "Fold2", "Fold3", "Fold4", "Fold5", "Fold6", "Fold7", ~
glimpse(df_model)
## Rows: 8
## Columns: 2
## $ model_name <chr> "Fold1", "Fold2", "Fold3", "Fold4", "Fold5", "Fold6", "Fold~
## $ model_id   <dbl> 1, 2, 3, 4, 5, 6, 7, 8
df_model <- TRAIN.v_fold %>% 
  left_join(df_model, by = c('id2'="model_name")) 

glimpse(df_model)
## Rows: 2,568
## Columns: 4
## $ splits   <list> [<vfold_split[984 x 141 x 1125 x 29]>], [<vfold_split[984 x ~
## $ id       <chr> "Repeat001", "Repeat001", "Repeat001", "Repeat001", "Repeat00~
## $ id2      <chr> "Fold1", "Fold2", "Fold3", "Fold4", "Fold5", "Fold6", "Fold7"~
## $ model_id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5~

\(~\)


\(~\)

6 Adjusted R2

The lm_model function below will take in:

  • an rsample::analysis data set from the sample
  • a formula that we will pass in later with ...:

From those inputs it is instructed to only return Adjusted R2 which is a numerical value.

lm_model <- function(splits, ...){
  
  LM <- glm(... , analysis(splits), family = 'binomial')
  
  holdout <- assessment(splits)
  
  holdout$estimate <- predict(LM , holdout)
  
  yardstick::rsq(holdout,
                     truth=as.numeric(diq010.Diabetes), estimate)$.estimate
}
glimpse(df_model)
## Rows: 2,568
## Columns: 4
## $ splits   <list> [<vfold_split[984 x 141 x 1125 x 29]>], [<vfold_split[984 x ~
## $ id       <chr> "Repeat001", "Repeat001", "Repeat001", "Repeat001", "Repeat00~
## $ id2      <chr> "Fold1", "Fold2", "Fold3", "Fold4", "Fold5", "Fold6", "Fold7"~
## $ model_id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5~

6.1 Get Estimates

The purrr library in R is mysterious and powerful; here, map2_dbl is going to look to return a numeric value, a double from the computation.

If you run ?map2_dbl it will display:

map2_dbl(.x, .y, .f, ...)

In the context of our current status:

  • df_model$spilts gives us a list of data - .x
  • map() is a function who returns a list , .y
    • map is mapping the values of df_model$model_id into the function make_model_order_num
  • lm_model is a function .f
    • this function takes in two values data and ...
  • The value it will return from us will be the Adj_R2 from lm_model

We will now run all the models and store the results in Adj_R2:

toc <- Sys.time()

df_model$Adj_R2 <- map2_dbl(
  df_model$splits,
  map(df_model$model_id, make_model_order_num),
  lm_model
)
## Warning: A correlation computation is required, but `estimate` is constant
## and has 0 standard deviation, resulting in a divide by 0 error. `NA` will be
## returned.
tic <- Sys.time()

print(paste0("Adj R2 estimates in ", round(tic - toc , 4 ) , " seconds " ))
## [1] "Adj R2 estimates in 32.8164 seconds "

We just ran a bunch of models and computed R2 for each of them!:

glimpse(df_model)
## Rows: 2,568
## Columns: 5
## $ splits   <list> [<vfold_split[984 x 141 x 1125 x 29]>], [<vfold_split[984 x ~
## $ id       <chr> "Repeat001", "Repeat001", "Repeat001", "Repeat001", "Repeat00~
## $ id2      <chr> "Fold1", "Fold2", "Fold3", "Fold4", "Fold5", "Fold6", "Fold7"~
## $ model_id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5~
## $ Adj_R2   <dbl> 4.095442e-03, 2.586026e-03, 3.911438e-02, 3.933703e-04, 5.628~

6.1.1 Display Results

df_model %>%
  ggplot(aes(x=id, 
         y=Adj_R2,
         fill = Adj_R2)) +
  geom_bar(stat = 'identity') +
  scale_fill_gradient(low = "yellow", high = "red", na.value = NA) +
  coord_flip() +
  facet_wrap( ~ model_id) 
## Warning: Removed 1 rows containing missing values (position_stack).

\(~\)


\(~\)

7 ROC_AUC

To compute RMSE we need to know how the model performs it’s holdout set:

holdout_results <- function(splits, ...) {
  
  mod <- glm(..., data = analysis(splits), family ='binomial')
  
  holdout <- assessment(splits)
  
  holdout$estimate <- predict(mod,holdout)
  
  yardstick::roc_auc(holdout,
                     truth=diq010.Diabetes, estimate)$.estimate
}

7.1 Compute Errors

toc <- Sys.time()

df_model$roc_auc <- map2_dbl(
  df_model$splits,
  map(df_model$model_id, make_model_order_num),
  holdout_results
)

tic <- Sys.time()

print(paste0("roc_auc estimates in ", round(tic - toc , 4 ) , " seconds " ))
## [1] "roc_auc estimates in 43.3728 seconds "

\(~\)


\(~\)

8 Compare Results

glimpse(df_model)
## Rows: 2,568
## Columns: 6
## $ splits   <list> [<vfold_split[984 x 141 x 1125 x 29]>], [<vfold_split[984 x ~
## $ id       <chr> "Repeat001", "Repeat001", "Repeat001", "Repeat001", "Repeat00~
## $ id2      <chr> "Fold1", "Fold2", "Fold3", "Fold4", "Fold5", "Fold6", "Fold7"~
## $ model_id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5~
## $ Adj_R2   <dbl> 4.095442e-03, 2.586026e-03, 3.911438e-02, 3.933703e-04, 5.628~
## $ roc_auc  <dbl> 0.4668803, 0.4564280, 0.4915876, 0.4476190, 0.3150794, 0.4306~

8.1 Graphs

While we see that models with higher number of features have larger Adjusted R2 There appears to be little correlation between Adjusted R2 and model performance:

df_model %>%
  ggplot(aes(x=Adj_R2,
             y=roc_auc,
             color=id)) +
  geom_point() +
  facet_wrap(~model_id) + 
  theme(legend.position = "none")
## Warning: Removed 1 rows containing missing values (geom_point).

# Normalize RMSE and R2 , remove outliers 
COR <-df_model %>%
  mutate_at(vars(Adj_R2,roc_auc),scale) %>%
  filter(abs(Adj_R2) <2 ) %>%
  filter(abs(roc_auc) <2 )


COR %>%
  ggplot(aes(x= roc_auc,
             y= Adj_R2 ,
             color=id)) +
  geom_point() +
  facet_wrap(~model_id) + 
  theme(legend.position = "none")

cor.test(COR$Adj_R2, COR$roc_auc, method=c("pearson"))
## 
##  Pearson's product-moment correlation
## 
## data:  COR$Adj_R2 and COR$roc_auc
## t = -2.0378, df = 2255, p-value = 0.04168
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.08398542 -0.00161775
## sample estimates:
##         cor 
## -0.04287444
t.test(COR$Adj_R2, COR$roc_auc,paired=TRUE)
## 
##  Paired t-test
## 
## data:  COR$Adj_R2 and COR$roc_auc
## t = -15.996, df = 2256, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3901790 -0.3049597
## sample estimates:
## mean of the differences 
##              -0.3475693

9 Top 5 Formulas

9.1 RMSE

(df_model %>%
  arrange(-roc_auc) %>%
  filter(row_number() < 5))$roc_auc
## [1] 0.7299006 0.7141933 0.6740696 0.6587931
# Top_5_RMSE_formulas <- (df_model %>%
#   arrange(RMSE) %>%
#   filter(row_number() < 5))$model_creator
# 
# Top_5_RMSE_formulas

9.2 Adj_R2

(df_model %>%
  arrange(-Adj_R2) %>%
  filter(row_number() < 5))$Adj_R2 %>%
  signif(4)
## [1] 0.5591 0.5532 0.5397 0.5357
# Top_5_AdjR2_formulas <- (df_model %>%
#   arrange(Adj_R2) %>%
#   filter(row_number() < 5))$model_creator
# 
# Top_5_AdjR2_formulas

\(~\)

\(~\)

10 Code Appendix

\(~\)

set.seed(1701)
library(tidyverse)
library(caret)

diab_pop <- readRDS('C:/Users/jkyle/Documents/GitHub/Intro_Jeff_Data_Science/DATA/diab_pop.RDS') %>%
  select(-seqn) %>%
  mutate(diq010 = fct_relevel(diq010, c('No Diabetes','Diabetes')))


glimpse(diab_pop)
df <- diab_pop %>% 
  na.omit()

my_factor_vars_1 <- df %>% select_if(is.factor) %>% colnames()

my_factor_vars <- setdiff(my_factor_vars_1, 'diq010')

df_as_nums <- df %>%
  mutate_at(all_of(my_factor_vars), as.integer) %>%
  mutate_at(all_of(my_factor_vars), as.factor)

glimpse(df_as_nums)
pP <- preProcess(df_as_nums, c('center','scale')) 

df_as_nums <- predict(pP,df_as_nums) 

glimpse(df_as_nums)


dV.df <- dummyVars( ~ . , 
                   data = df_as_nums, 
                   fullRank=TRUE)

df_dV <- as_tibble(predict(dV.df,df_as_nums)) %>%
  mutate(diq010.Diabetes = as.factor(diq010.Diabetes))

target <- 'diq010.Diabetes'

features <- colnames(df_dV)[!colnames(df_dV) %in% c('seqn' , 'diq010.Diabetes')]

length(features)

sample_features <- sample(features, 4, replace = FALSE)

curent_formula <- paste0(target, ' ~ ', paste0(sample_features, collapse = " + "))

as.formula(curent_formula)


make_model_order_num <- function(num_features){
  
  set.seed(NULL)
  
  sample_features <- sample(features, num_features, replace = FALSE)

  curent_formula <- paste0(target,  ' ~ ', paste0(sample_features, collapse = " + "))

return(as.formula(curent_formula))
}
make_model_order_num(3)
make_model_order_num(3)
make_model_order_num(6)

df_model <- tribble(
    ~model_name, ~model_id,
#    "zero", make_model(0)
    "Fold1", 1,
    "Fold2", 2,
    "Fold3", 3,
    "Fold4", 4,
    "Fold5", 5,
    "Fold6", 6,
    "Fold7", 7,
    "Fold8", 8,
  )

df_model
map(df_model,4)$model_creator


library(rsample)

train_test <- initial_split(df_dV, prop = .6)
TRAIN <- training(train_test)
TEST <- testing(train_test)

TRAIN.v_fold <- vfold_cv(TRAIN, v = 8, 
                         repeats = 321)

glimpse(TRAIN.v_fold)

TRAIN.v_fold %>% select(id2) %>% distinct()
TRAIN.v_fold %>%
  filter(id2=='Fold6') %>%
  glimpse()

TRAIN.56.6 <- (TRAIN.v_fold %>%
  filter(id2=='Fold6'))$splits[[56]] %>% 
  analysis()

TRAIN.56.6

TEST.56.6 <- (TRAIN.v_fold %>%
  filter(id2=='Fold6'))$splits[[56]] %>% 
  assessment()

TEST.56.6
glimpse(TRAIN.v_fold)
glimpse(df_model)
df_model <- TRAIN.v_fold %>% 
  left_join(df_model, by = c('id2'="model_name")) 

glimpse(df_model)
lm_model <- function(splits, ...){
  
  LM <- glm(... , analysis(splits), family = 'binomial')
  
  holdout <- assessment(splits)
  
  holdout$estimate <- predict(LM , holdout)
  
  yardstick::rsq(holdout,
                     truth=as.numeric(diq010.Diabetes), estimate)$.estimate
}
glimpse(df_model)
toc <- Sys.time()

df_model$Adj_R2 <- map2_dbl(
  df_model$splits,
  map(df_model$model_id, make_model_order_num),
  lm_model
)

tic <- Sys.time()

print(paste0("Adj R2 estimates in ", round(tic - toc , 4 ) , " seconds " ))

glimpse(df_model)
df_model %>%
  ggplot(aes(x=id, 
         y=Adj_R2,
         fill = Adj_R2)) +
  geom_bar(stat = 'identity') +
  scale_fill_gradient(low = "yellow", high = "red", na.value = NA) +
  coord_flip() +
  facet_wrap( ~ model_id) 
holdout_results <- function(splits, ...) {
  
  mod <- glm(..., data = analysis(splits), family ='binomial')
  
  holdout <- assessment(splits)
  
  holdout$estimate <- predict(mod,holdout)
  
  yardstick::roc_auc(holdout,
                     truth=diq010.Diabetes, estimate)$.estimate
}

toc <- Sys.time()

df_model$roc_auc <- map2_dbl(
  df_model$splits,
  map(df_model$model_id, make_model_order_num),
  holdout_results
)

tic <- Sys.time()

print(paste0("roc_auc estimates in ", round(tic - toc , 4 ) , " seconds " ))



glimpse(df_model)



df_model %>%
  ggplot(aes(x=Adj_R2,
             y=roc_auc,
             color=id)) +
  geom_point() +
  facet_wrap(~model_id) + 
  theme(legend.position = "none")

# Normalize RMSE and R2 , remove outliers 
COR <-df_model %>%
  mutate_at(vars(Adj_R2,roc_auc),scale) %>%
  filter(abs(Adj_R2) <2 ) %>%
  filter(abs(roc_auc) <2 )


COR %>%
  ggplot(aes(x= roc_auc,
             y= Adj_R2 ,
             color=id)) +
  geom_point() +
  facet_wrap(~model_id) + 
  theme(legend.position = "none")

cor.test(COR$Adj_R2, COR$roc_auc, method=c("pearson"))
t.test(COR$Adj_R2, COR$roc_auc,paired=TRUE)
(df_model %>%
  arrange(-roc_auc) %>%
  filter(row_number() < 5))$roc_auc

# Top_5_RMSE_formulas <- (df_model %>%
#   arrange(RMSE) %>%
#   filter(row_number() < 5))$model_creator
# 
# Top_5_RMSE_formulas

(df_model %>%
  arrange(-Adj_R2) %>%
  filter(row_number() < 5))$Adj_R2 %>%
  signif(4)

# Top_5_AdjR2_formulas <- (df_model %>%
#   arrange(Adj_R2) %>%
#   filter(row_number() < 5))$model_creator
# 
# Top_5_AdjR2_formulas