Contents

1 RAV184

ind <- 184
getRAVInfo(RAVmodel_C2, ind)
## $clusterSize
## [1] 22
## 
## $silhouetteWidth
## [1] 0.01
## 
## $enrichedPathways
## [1] 15
## 
## $members
##    studyName PC Variance explained (%)
## 1  ERP013206  1                  45.63
## 2  ERP022034  1                  12.46
## 3  ERP023424  1                  18.07
## 4  ERP106487  1                  29.73
## 5  ERP111913  3                   5.21
## 6  SRP001540  1                  15.28
## 7  SRP015640  1                  44.23
## 8  SRP059057  1                  22.50
## 9  SRP059557  1                  21.22
## 10 SRP071965  1                  12.20
## 11 SRP073061  1                  43.22
## 12 SRP073813  1                  22.14
## 13 SRP074198  1                  23.64
## 14 SRP075449  1                  41.47
## 15 SRP076944  1                  28.55
## 16 SRP099844  1                  17.28
## 17 SRP115956  1                  36.78
## 18 SRP140795  1                  44.72
## 19 SRP144003  1                  44.49
## 20 SRP149978  1                  11.87
## 21 SRP174668  1                  61.09
## 22 SRP182096  1                  51.58
findStudiesInCluster(RAVmodel_C2, ind, studyTitle = TRUE)
##    studyName PC Variance explained (%)
## 1  ERP013206  1                  45.63
## 2  ERP022034  1                  12.46
## 3  ERP023424  1                  18.07
## 4  ERP106487  1                  29.73
## 5  ERP111913  3                   5.21
## 6  SRP001540  1                  15.28
## 7  SRP015640  1                  44.23
## 8  SRP059057  1                  22.50
## 9  SRP059557  1                  21.22
## 10 SRP071965  1                  12.20
## 11 SRP073061  1                  43.22
## 12 SRP073813  1                  22.14
## 13 SRP074198  1                  23.64
## 14 SRP075449  1                  41.47
## 15 SRP076944  1                  28.55
## 16 SRP099844  1                  17.28
## 17 SRP115956  1                  36.78
## 18 SRP140795  1                  44.72
## 19 SRP144003  1                  44.49
## 20 SRP149978  1                  11.87
## 21 SRP174668  1                  61.09
## 22 SRP182096  1                  51.58
##                                                                                                                                                                      title
## 1                                                                                                 Whole transcriptome profiling of Esophageal adenocarcinoma and Barrett's
## 2                                                                                                     RNA sequencing of pancreatic adenocarcinoma (PDAC) xenograft samples
## 3                                                                                                       Transcriptional profiling of Th1, Th2, Th9, and Th17 T cell clones
## 4                                RNA sequencing of purified intestinal epithelial cells from paediatric biopsies including Inflammatory Bowel Disease and healthy controls
## 5                                                                                                                       RNA-seq from knee and hip osteoarthritis cartilage
## 6                                                                                   Understaning mechanisms underlying human gene expression variation with RNA sequencing
## 7                                                                           Comprehensive comparative analysis of RNA sequencing methods for degraded or low input samples
## 8                                                                                      Transcriptome analysis of CD4+ T cells reveals imprint of BACH2 and IFN? regulation
## 9                                                                                                                                Salivary adenoid cystic carcinoma RNA-seq
## 10                                                                                         A blood RNA signature for tuberculosis disease risk: a prospective cohort study
## 11                                                                            GEO accession GSE80098 is currently private and is scheduled to be released on Jun 01, 2016.
## 12                                                                                                                       RNA-sequencing of human post-mortem brain tissues
## 13                                                                                                              Gene expression profiling of melanoma cell lines by RNASeq
## 14                                                                                                                  Nuclear Surveillance of long intervening noncoding RNA
## 15                                                        RNA-seq transcriptome analysis of epidermal CD8+CD103+CD49a+ and CD8+CD103+CD49- T cells from healthy human skin
## 16                                                                    Chemoprevention with COX2 and EGFR inhibition in FAP patients: mRNA signatures of duodenal neoplasia
## 17                                                                                                             Sex-specific Transcriptional Signatures in Human Depression
## 18 Using RNA sequencing to examine age-dependent skeletal muscle transcriptome response to bed rest-induced atrophy, and age independent disuse-induced insulin resistance
## 19                                                                                                                             RNA-seq from HNSCC and melanoma populations
## 20                                                                                                                        RNA-seq of HIV bnAb and control individuals PBMC
## 21                                                                                                                                                                    NASH
## 22                                                                              Transcriptomic profiling of peripheral blood NK cells of chronic HBV, HCV and HIV patients
subsetEnrichedPathways(RAVmodel_C2, ind, n = 20, both = TRUE, include_nes = TRUE) %>% as.data.frame
##                                      RAV184.Description RAV184.NES
## Up_1                                    KEGG_PROTEASOME   4.460750
## Up_2                           PARK_APL_PATHOGENESIS_DN   4.446250
## Up_3                       MALONEY_RESPONSE_TO_17AAG_DN   4.426264
## Up_4        SCHLOSSER_MYC_TARGETS_AND_SERUM_RESPONSE_DN   4.270178
## Up_5                   TIEN_INTESTINE_PROBIOTICS_6HR_UP   4.149628
## Up_6                  CROONQUIST_STROMAL_STIMULATION_UP   4.100296
## Up_7    YAO_TEMPORAL_RESPONSE_TO_PROGESTERONE_CLUSTER_8   4.098125
## Up_8                          MODY_HIPPOCAMPUS_PRENATAL   4.075175
## Up_9                                  YU_MYC_TARGETS_UP   4.060458
## Up_10                ZHAN_V2_LATE_DIFFERENTIATION_GENES   4.040911
## Up_11           JAZAERI_BREAST_CANCER_BRCA1_VS_BRCA2_UP   4.030009
## Up_12                                  PID_IL2_1PATHWAY   3.889647
## Up_13                  LUI_THYROID_CANCER_PAX8_PPARG_DN   3.824361
## Up_14                      LUI_THYROID_CANCER_CLUSTER_3   3.731501
## Up_15                ZHAN_LATE_DIFFERENTIATION_GENES_UP   3.666224
## Up_16                                              <NA>         NA
## Up_17                                              <NA>         NA
## Up_18                                              <NA>         NA
## Up_19                                              <NA>         NA
## Up_20                                              <NA>         NA
## Down_1               ZHAN_LATE_DIFFERENTIATION_GENES_UP   3.666224
## Down_2                     LUI_THYROID_CANCER_CLUSTER_3   3.731501
## Down_3                 LUI_THYROID_CANCER_PAX8_PPARG_DN   3.824361
## Down_4                                 PID_IL2_1PATHWAY   3.889647
## Down_5          JAZAERI_BREAST_CANCER_BRCA1_VS_BRCA2_UP   4.030009
## Down_6               ZHAN_V2_LATE_DIFFERENTIATION_GENES   4.040911
## Down_7                                YU_MYC_TARGETS_UP   4.060458
## Down_8                        MODY_HIPPOCAMPUS_PRENATAL   4.075175
## Down_9  YAO_TEMPORAL_RESPONSE_TO_PROGESTERONE_CLUSTER_8   4.098125
## Down_10               CROONQUIST_STROMAL_STIMULATION_UP   4.100296
## Down_11                TIEN_INTESTINE_PROBIOTICS_6HR_UP   4.149628
## Down_12     SCHLOSSER_MYC_TARGETS_AND_SERUM_RESPONSE_DN   4.270178
## Down_13                    MALONEY_RESPONSE_TO_17AAG_DN   4.426264
## Down_14                        PARK_APL_PATHOGENESIS_DN   4.446250
## Down_15                                 KEGG_PROTEASOME   4.460750
## Down_16                                            <NA>         NA
## Down_17                                            <NA>         NA
## Down_18                                            <NA>         NA
## Down_19                                            <NA>         NA
## Down_20                                            <NA>         NA
subsetEnrichedPathways(RAVmodel_PLIERpriors, ind, n = 20, both = TRUE, include_nes = TRUE) %>% as.data.frame
##                                                                 RAV184.Description
## Up_1                      REACTOME_AUTODEGRADATION_OF_THE_E3_UBIQUITIN_LIGASE_COP1
## Up_2                     REACTOME_CDK_MEDIATED_PHOSPHORYLATION_AND_REMOVAL_OF_CDC6
## Up_3    REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_THE_43S_COMPLEX
## Up_4                                        MIPS_60S_RIBOSOMAL_SUBUNIT_CYTOPLASMIC
## Up_5                                                   MIPS_PA700_20S_PA28_COMPLEX
## Up_6                                                               KEGG_PROTEASOME
## Up_7                                                              PID_TGFBRPATHWAY
## Up_8                                                              PID_IL2_1PATHWAY
## Up_9                                        MIPS_40S_RIBOSOMAL_SUBUNIT_CYTOPLASMIC
## Up_10                                  REACTOME_DEADENYLATION_DEPENDENT_MRNA_DECAY
## Up_11                                                                         <NA>
## Up_12                                                                         <NA>
## Up_13                                                                         <NA>
## Up_14                                                                         <NA>
## Up_15                                                                         <NA>
## Up_16                                                                         <NA>
## Up_17                                                                         <NA>
## Up_18                                                                         <NA>
## Up_19                                                                         <NA>
## Up_20                                                                         <NA>
## Down_1                                 REACTOME_DEADENYLATION_DEPENDENT_MRNA_DECAY
## Down_2                                      MIPS_40S_RIBOSOMAL_SUBUNIT_CYTOPLASMIC
## Down_3                                                            PID_IL2_1PATHWAY
## Down_4                                                            PID_TGFBRPATHWAY
## Down_5                                                             KEGG_PROTEASOME
## Down_6                                                 MIPS_PA700_20S_PA28_COMPLEX
## Down_7                                      MIPS_60S_RIBOSOMAL_SUBUNIT_CYTOPLASMIC
## Down_8  REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_THE_43S_COMPLEX
## Down_9                    REACTOME_AUTODEGRADATION_OF_THE_E3_UBIQUITIN_LIGASE_COP1
## Down_10                  REACTOME_CDK_MEDIATED_PHOSPHORYLATION_AND_REMOVAL_OF_CDC6
## Down_11                                                                       <NA>
## Down_12                                                                       <NA>
## Down_13                                                                       <NA>
## Down_14                                                                       <NA>
## Down_15                                                                       <NA>
## Down_16                                                                       <NA>
## Down_17                                                                       <NA>
## Down_18                                                                       <NA>
## Down_19                                                                       <NA>
## Down_20                                                                       <NA>
##         RAV184.NES
## Up_1      4.604385
## Up_2      4.604385
## Up_3      4.432545
## Up_4      4.369468
## Up_5      4.368422
## Up_6      4.182978
## Up_7      3.796751
## Up_8      3.768644
## Up_9      3.720400
## Up_10     3.578090
## Up_11           NA
## Up_12           NA
## Up_13           NA
## Up_14           NA
## Up_15           NA
## Up_16           NA
## Up_17           NA
## Up_18           NA
## Up_19           NA
## Up_20           NA
## Down_1    3.578090
## Down_2    3.720400
## Down_3    3.768644
## Down_4    3.796751
## Down_5    4.182978
## Down_6    4.368422
## Down_7    4.369468
## Down_8    4.432545
## Down_9    4.604385
## Down_10   4.604385
## Down_11         NA
## Down_12         NA
## Down_13         NA
## Down_14         NA
## Down_15         NA
## Down_16         NA
## Down_17         NA
## Down_18         NA
## Down_19         NA
## Down_20         NA
drawWordcloud(RAVmodel_C2, ind)

2 RAV312

ind <- 312
getRAVInfo(RAVmodel_C2, ind)
## $clusterSize
## [1] 24
## 
## $silhouetteWidth
## [1] -0.07
## 
## $enrichedPathways
## [1] 121
## 
## $members
##    studyName PC Variance explained (%)
## 1  ERP021686  5                   1.17
## 2  ERP105501  7                   1.68
## 3  ERP109255  6                   1.34
## 4  SRP010181  4                   2.45
## 5  SRP014320 14                   1.18
## 6  SRP026042  4                   3.78
## 7  SRP041036 12                   0.95
## 8  SRP051472  5                   1.90
## 9  SRP051848  3                   2.12
## 10 SRP086078  7                   1.43
## 11 SRP094424  9                   0.67
## 12 SRP095272  3                   1.64
## 13 SRP096016  1                  26.30
## 14 SRP100928  5                   1.46
## 15 SRP108121  8                   1.82
## 16 SRP110609  2                   3.87
## 17 SRP125001  4                   4.08
## 18 SRP126485 18                   0.72
## 19 SRP151763  2                   4.93
## 20 SRP162023  4                   2.26
## 21 SRP163027  5                   2.58
## 22 SRP173388  7                   0.71
## 23 SRP174638  5                   1.80
## 24 SRP182694  4                   1.46
findStudiesInCluster(RAVmodel_C2, ind, studyTitle = TRUE)
##    studyName PC Variance explained (%)
## 1  ERP021686  5                   1.17
## 2  ERP105501  7                   1.68
## 3  ERP109255  6                   1.34
## 4  SRP010181  4                   2.45
## 5  SRP014320 14                   1.18
## 6  SRP026042  4                   3.78
## 7  SRP041036 12                   0.95
## 8  SRP051472  5                   1.90
## 9  SRP051848  3                   2.12
## 10 SRP086078  7                   1.43
## 11 SRP094424  9                   0.67
## 12 SRP095272  3                   1.64
## 13 SRP096016  1                  26.30
## 14 SRP100928  5                   1.46
## 15 SRP108121  8                   1.82
## 16 SRP110609  2                   3.87
## 17 SRP125001  4                   4.08
## 18 SRP126485 18                   0.72
## 19 SRP151763  2                   4.93
## 20 SRP162023  4                   2.26
## 21 SRP163027  5                   2.58
## 22 SRP173388  7                   0.71
## 23 SRP174638  5                   1.80
## 24 SRP182694  4                   1.46
##                                                                                                                                                                             title
## 1            Mammary fat pad and intraductal xenografts with both DCIS.COM-lacZ and DCIS.COM-SOX11 cell lines to characterize the changes in mRNA expression in invasive cancers.
## 2                                                                                      RNA-Seq analysis of human osteoarthritic intact cartilage following total knee replacement
## 3                                RNA-seq of hepatic biopsies taken from patients with chronic liver disease presenting with different aetiologies (HCV, FLD) and fibrosis stages.
## 4                                                                                                                          Derivation of HLA types from shotgun sequence datasets
## 5                                                                                                                                           GSE33480: RNA-seq from ENCODE/Caltech
## 6                                                      Environmental factors transmitted by aryl hydrocarbon receptor influence severity of psoriatic skin inflammation [RNA-Seq]
## 7  RNAseq to investigate transcriptional changes in human MM cell lines due to panobinostat, 5-Azacytidine, panobinostat+5-Azacytidine or n-methyl-2-pyrroldine (NMP) treatments.
## 8                                                                                  Induction of circular RNA in fetal heart development recapitulated in in vitro differentiation
## 9                                                                                      Gene Networks Specific for Innate Immunity Define Post-traumatic Stress Disorder [RNA-Seq]
## 10                                                                                                      Airway epithelial cells from smokers treated with myo-inositol or placebo
## 11                                             Induced Pluripotent Stem Cell Differentiation Provides an Approach for Functional Validation of GWAS Variants in Metabolic Disease
## 12                                                                                                                    Analysis of parent-of-origin bias in gene expression levels
## 13                                                                                                      Germline competency of human embryonic stem cells depends on eomesodermin
## 14                                                                                        Lineage specific differentiation is influenced by state of human pluripotency [RNA-seq]
## 15                                                                                    A Signaling and Transcription Architecture for the Specification of Human Germ Cell Lineage
## 16                                                                  RNA-sequencing analysis of response to P.falciparum infection in Fulani and Mossi ethnic groups, Burkina Faso
## 17                                                                                    Multi-Omic Molecular Profiling of Lung Cancer Risk in Chronic Obstructive Pulmonary Disease
## 18                                                   Metformin Regulates Metabolic and Non-Metabolic Pathways in Skeletal Muscle and Subcutaneous Adipose Tissues of Older Adults
## 19                                   Integrated analysis of genetic variants regulating retinal transcriptome (GREx) identifies genes underlying age-related macular degeneration
## 20                                                HantavaxTM vaccinated peripheral blood mononuclear cells (PBMCs) and sera analyses by transcriptomic and metabolomic profilings
## 21                                                                  Differential analysis of gene expression profiles in peripheral blood cells of patients with cervical lesions
## 22                                                         Single-cell RNA-sequencing of Herpes simplex virus 1-infected cells identifies NRF2 activation as an antiviral program
## 23                                                                            Cell type-specific immune phenotypes predict loss of insulin secretion in new-onset type 1 diabetes
## 24                                                                      Point mutations in the PDX1 transactivation domain impair human ß-cell development and function (RNA-Seq)
subsetEnrichedPathways(RAVmodel_C2, ind, n = 20, both = TRUE, include_nes = TRUE) %>% as.data.frame
##                                           RAV312.Description RAV312.NES
## Up_1                            HAMAI_APOPTOSIS_VIA_TRAIL_UP   4.116840
## Up_2                          MILI_PSEUDOPODIA_HAPTOTAXIS_UP   3.928017
## Up_3               RODRIGUES_THYROID_CARCINOMA_ANAPLASTIC_UP   3.685763
## Up_4    RODRIGUES_THYROID_CARCINOMA_POORLY_DIFFERENTIATED_UP   3.648490
## Up_5                                 SHEN_SMARCA2_TARGETS_UP   3.646211
## Up_6                      ZHANG_BREAST_CANCER_PROGENITORS_UP   3.588981
## Up_7               PYEON_CANCER_HEAD_AND_NECK_VS_CERVICAL_UP   3.581567
## Up_8                   FLORIO_NEOCORTEX_BASAL_RADIAL_GLIA_DN   3.580746
## Up_9          SENGUPTA_NASOPHARYNGEAL_CARCINOMA_WITH_LMP1_UP   3.536564
## Up_10                                 GABRIELY_MIR21_TARGETS   3.499799
## Up_11                   SENGUPTA_NASOPHARYNGEAL_CARCINOMA_UP   3.451462
## Up_12                                    BIDUS_METASTASIS_UP   3.365283
## Up_13                DACOSTA_UV_RESPONSE_VIA_ERCC3_COMMON_DN   3.339897
## Up_14                              LEE_EARLY_T_LYMPHOCYTE_UP   3.315436
## Up_15                                FISCHER_G2_M_CELL_CYCLE   3.292662
## Up_16                       DACOSTA_UV_RESPONSE_VIA_ERCC3_DN   3.281532
## Up_17                 SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP   3.229319
## Up_18            ROSTY_CERVICAL_CANCER_PROLIFERATION_CLUSTER   3.221414
## Up_19          FERREIRA_EWINGS_SARCOMA_UNSTABLE_VS_STABLE_UP   3.208904
## Up_20                       KOBAYASHI_EGFR_SIGNALING_24HR_DN   3.184196
## Down_1                 NIKOLSKY_BREAST_CANCER_16P13_AMPLICON  -2.964416
## Down_2                         MARTENS_TRETINOIN_RESPONSE_UP  -2.716566
## Down_3                                    LU_EZH2_TARGETS_UP  -2.641859
## Down_4           GINESTIER_BREAST_CANCER_ZNF217_AMPLIFIED_DN  -2.488707
## Down_5                    KIM_ALL_DISORDERS_DURATION_CORR_DN  -2.480843
## Down_6                          HAMAI_APOPTOSIS_VIA_TRAIL_DN  -2.468456
## Down_7                        MIKKELSEN_IPS_LCP_WITH_H3K4ME3  -2.384463
## Down_8                       ENK_UV_RESPONSE_KERATINOCYTE_UP  -2.354719
## Down_9            BANDRES_RESPONSE_TO_CARMUSTIN_MGMT_48HR_DN  -2.352448
## Down_10                     MIKKELSEN_MCV6_HCP_WITH_H3K27ME3  -2.250054
## Down_11                     DACOSTA_UV_RESPONSE_VIA_ERCC3_UP  -2.182229
## Down_12     KIM_ALL_DISORDERS_OLIGODENDROCYTE_NUMBER_CORR_UP  -2.175614
## Down_13         GRAESSMANN_RESPONSE_TO_MC_AND_DOXORUBICIN_UP  -2.102170
## Down_14                     MARTENS_BOUND_BY_PML_RARA_FUSION  -2.053189
## Down_15                      MIKKELSEN_MEF_HCP_WITH_H3K27ME3  -1.973955
## Down_16                       MILI_PSEUDOPODIA_HAPTOTAXIS_DN  -1.920583
## Down_17                        MARTENS_TRETINOIN_RESPONSE_DN  -1.860731
## Down_18                      CAIRO_HEPATOBLASTOMA_CLASSES_UP   1.895524
## Down_19            CHARAFE_BREAST_CANCER_LUMINAL_VS_BASAL_DN   1.978676
## Down_20                         CHICAS_RB1_TARGETS_SENESCENT   2.046994
subsetEnrichedPathways(RAVmodel_PLIERpriors, ind, n = 20, both = TRUE, include_nes = TRUE) %>% as.data.frame
##                     RAV312.Description RAV312.NES
## Up_1       REACTOME_CELL_CYCLE_MITOTIC   2.578839
## Up_2    REACTOME_MITOTIC_M_M_G1_PHASES   2.473870
## Up_3          REACTOME_DNA_REPLICATION   2.443871
## Up_4               REACTOME_CELL_CYCLE   2.296212
## Up_5                              <NA>         NA
## Up_6                              <NA>         NA
## Up_7                              <NA>         NA
## Up_8                              <NA>         NA
## Up_9                              <NA>         NA
## Up_10                             <NA>         NA
## Up_11                             <NA>         NA
## Up_12                             <NA>         NA
## Up_13                             <NA>         NA
## Up_14                             <NA>         NA
## Up_15                             <NA>         NA
## Up_16                             <NA>         NA
## Up_17                             <NA>         NA
## Up_18                             <NA>         NA
## Up_19                             <NA>         NA
## Up_20                             <NA>         NA
## Down_1             REACTOME_CELL_CYCLE   2.296212
## Down_2        REACTOME_DNA_REPLICATION   2.443871
## Down_3  REACTOME_MITOTIC_M_M_G1_PHASES   2.473870
## Down_4     REACTOME_CELL_CYCLE_MITOTIC   2.578839
## Down_5                            <NA>         NA
## Down_6                            <NA>         NA
## Down_7                            <NA>         NA
## Down_8                            <NA>         NA
## Down_9                            <NA>         NA
## Down_10                           <NA>         NA
## Down_11                           <NA>         NA
## Down_12                           <NA>         NA
## Down_13                           <NA>         NA
## Down_14                           <NA>         NA
## Down_15                           <NA>         NA
## Down_16                           <NA>         NA
## Down_17                           <NA>         NA
## Down_18                           <NA>         NA
## Down_19                           <NA>         NA
## Down_20                           <NA>         NA
drawWordcloud(RAVmodel_C2, ind)