## [1] 327839
diver_gral <- diver_gral %>%
pivot_longer(cols=chao_gral:dominance.simpson_BACBiocide, names_to = "cosa", values_to = "value") %>%
separate(cosa, into=c("index", "database2"), sep="_")
shapiro <- diver_gral %>%
group_by(database2, index, origin) %>%
do(tidy(shapiro.test(.$value)))
datatable(shapiro, rownames = FALSE, filter="top", options = list(pageLength = 30, scrollX=T, scrollY=T) )
wilcox <- diver_gral %>%
group_by(database2, index) %>%
do(tidy(wilcox.test(.$value~.$origin)))
datatable(wilcox, rownames = FALSE, filter="top", options = list(pageLength = 30, scrollX=T, scrollY=T) )
student <- diver_gral %>%
group_by(database2, index) %>%
do(tidy(t.test(.$value~.$origin)))
datatable(student, rownames = FALSE, filter="top", options = list(pageLength = 30, scrollX=T, scrollY=T) )
diver_gral %>% filter(index== "chao") %>%
ggplot(aes(x=origin, y = value,fill=origin)) +
geom_violin()+
geom_boxplot(width=.2) +
facet_wrap(.~database2)+
ggtitle ("chao index") +xlab("Cohort origin") +ylab("chao Index")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
diver_gral %>% filter(index== "dominance.simpson") %>%
ggplot(aes(x=origin, y = value,fill=origin)) +
geom_violin()+
geom_boxplot(width=.2) +
facet_wrap(.~database2)+
ggtitle ("dominance simpson diversity") +xlab("Cohort origin") +ylab("simpson Index")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
diver_gral %>% filter(index== "evenness.simpson") %>%
ggplot(aes(x=origin, y = value,fill=origin)) +
geom_violin()+
geom_boxplot(width=.2) +
facet_wrap(.~database2)+
ggtitle ("eveness simpson diversity") +xlab("Cohort origin") +ylab("simpson Index")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
as.data.frame(PCA$x[,1:2]) %>% rownames_to_column("label") %>% inner_join(Tabla_inicial) %>%
select(label,PC1,PC2,origin) %>% distinct() %>% ggplot(aes(x = PC1, y = PC2, color = origin)) + geom_point() +
ggtitle ("Principal Component Analysis") +xlab("PC1 47.29%") +ylab("PC2 21.43%")
as.data.frame(PCA_ABR$x[,1:2]) %>% rownames_to_column("label") %>% inner_join(Tabla_inicial) %>%
select(label,PC1,PC2,origin) %>% distinct() %>% ggplot(aes(x = PC1, y = PC2, color = origin)) + geom_point() +
ggtitle ("Principal Component Analysis") +xlab("PC1 70.76%") +ylab("PC2 6.89%")
as.data.frame(PCA_BAC$x[,1:2]) %>% rownames_to_column("label") %>% inner_join(Tabla_inicial) %>%
select(label,PC1,PC2,origin) %>% distinct() %>% ggplot(aes(x = PC1, y = PC2, color = origin)) + geom_point() +
ggtitle ("Principal Component Analysis") +xlab("PC1 51.78%") +ylab("PC2 10.88%")
as.data.frame(PCA_REL$x[,1:2]) %>% rownames_to_column("label") %>% inner_join(Tabla_inicial) %>%
select(label,PC1,PC2,origin) %>% distinct() %>% ggplot(aes(x = PC1, y = PC2, color = origin)) + geom_point() +
ggtitle ("Principal Component Analysis") +xlab("PC1 75.26%") +ylab("PC2 12.94%")
as.data.frame(PCA_BAC_Metal$x[,1:2]) %>% rownames_to_column("label") %>% inner_join(Tabla_inicial) %>%
select(label,PC1,PC2,origin) %>% distinct() %>% ggplot(aes(x = PC1, y = PC2, color = origin)) + geom_point() +
ggtitle ("Principal Component Analysis") +xlab("PC1 50.87%") +ylab("PC2 10.29%")
as.data.frame(PCA_BAC_Biocide$x[,1:2]) %>% rownames_to_column("label") %>% inner_join(Tabla_inicial) %>%
select(label,PC1,PC2,origin) %>% distinct() %>% ggplot(aes(x = PC1, y = PC2, color = origin)) + geom_point() +
ggtitle ("Principal Component Analysis") +xlab("PC1 53.32%") +ylab("PC2 10.54%")
HE5, HE152
Guayana_tsne_spearman <- as.matrix(Guayana_tsne_spearman)
Guayana_tsne_spearman_REL <- as.matrix(Guayana_tsne_spearman_REL)
Guayana_tsne_spearman_ABR <- as.matrix(Guayana_tsne_spearman_ABR)
Guayana_tsne_spearman_BAC <- as.matrix(Guayana_tsne_spearman_BAC)
Guayana_tsne_spearman_BAC_Metal = get_dist(Guayana_spread_BAC_Metal, method = "spearman")
Guayana_tsne_spearman_BAC_Biocide = get_dist(Guayana_spread_BAC_Biocide, method = "spearman")
umap_plot <- umap(Guayana_tsne_spearman, input="dist")
umap_plot_REL <- umap(Guayana_tsne_spearman_REL)
umap_plot_ABR <- umap(Guayana_tsne_spearman_ABR)
umap_plot_BAC <- umap(Guayana_tsne_spearman_BAC)
umap_plot_BAC_Metal <- umap(Guayana_spread_BAC_Metal)
umap_plot_BAC_Biocide <- umap(Guayana_spread_BAC_Biocide)
umap_plot <- as.data.frame(umap_plot$layout) %>% rownames_to_column("label") %>% inner_join(., Tabla_inicial)
umap_plot_REL <- as.data.frame(umap_plot_REL$layout) %>% rownames_to_column("label") %>% inner_join(., Tabla_inicial)
umap_plot_ABR <- as.data.frame(umap_plot_ABR$layout) %>% rownames_to_column("label") %>% inner_join(., Tabla_inicial)
umap_plot_BAC <- as.data.frame(umap_plot_BAC$layout) %>% rownames_to_column("label") %>% inner_join(., Tabla_inicial)
umap_plot_BAC_Metal <- as.data.frame(umap_plot_BAC_Metal$layout) %>% rownames_to_column("label") %>% inner_join(., Tabla_inicial)
umap_plot_BAC_Biocide <- as.data.frame(umap_plot_BAC_Biocide$layout) %>% rownames_to_column("label") %>% inner_join(., Tabla_inicial)
umap_plot_ABR %>%
select(label,V1,V2,origin) %>% distinct() %>% ggplot(aes(x = V1, y =V2, color = origin)) + geom_point()+
ggtitle ("UMAP ABR")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
umap_plot_BAC %>%
select(label,V1,V2,origin) %>% distinct() %>% ggplot(aes(x = V1, y =V2, color = origin)) + geom_point()+
ggtitle ("UMAP BAC")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
umap_plot_REL %>%
select(label,V1,V2,origin) %>% distinct() %>% ggplot(aes(x = V1, y =V2, color = origin)) + geom_point()+
ggtitle ("UMAP REL")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
umap_plot_BAC_Metal %>%
select(label,V1,V2,origin) %>% distinct() %>% ggplot(aes(x = V1, y =V2, color = origin)) + geom_point()+
ggtitle ("UMAP BAC Metal")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
umap_plot_BAC_Biocide %>%
select(label,V1,V2,origin) %>% distinct() %>% ggplot(aes(x = V1, y =V2, color = origin)) + geom_point()+
ggtitle ("UMAP BAC biocide")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
ggplot(tsne_spearman_30_plot) + geom_point(aes(x=x,y=y,color=origin)) + ggtitle("T-SNE")
ggplot(tsne_spearman_30_plot_ABR) + geom_point(aes(x=x,y=y,color=origin)) + ggtitle("T-SNE ABR")
ggplot(tsne_spearman_30_plot_BAC) + geom_point(aes(x=x,y=y,color=origin)) + ggtitle("T-SNE BAC")
ggplot(tsne_spearman_30_plot_REL) + geom_point(aes(x=x,y=y,color=origin)) + ggtitle("T-SNE REL")
ggplot(tsne_spearman_30_plot_BAC_Metal) + geom_point(aes(x=x,y=y,color=origin)) + ggtitle("T-SNE metal")
ggplot(tsne_spearman_30_plot_BAC_Biocide) + geom_point(aes(x=x,y=y,color=origin)) + ggtitle("T-SNE biocide")
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = Guayana_spread_t[, 1:5346] ~ origin, data = Guayana_spread_t, permutations = 999)
## Df SumOfSqs R2 F Pr(>F)
## origin 1 2.0268 0.09333 12.559 0.001 ***
## Residual 122 19.6891 0.90667
## Total 123 21.7158 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = Guayana_spread_ABR_t[, 1:367] ~ origin, data = Guayana_spread_ABR_t, permutations = 999)
## Df SumOfSqs R2 F Pr(>F)
## origin 1 1.7495 0.12136 16.851 0.001 ***
## Residual 122 12.6664 0.87864
## Total 123 14.4159 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = Guayana_spread_BAC_t[, 1:4576] ~ origin, data = Guayana_spread_BAC_t, permutations = 999)
## Df SumOfSqs R2 F Pr(>F)
## origin 1 1.843 0.03401 4.2953 0.001 ***
## Residual 122 52.355 0.96599
## Total 123 54.198 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = Guayana_spread_REL_t[, 1:403] ~ origin, data = Guayana_spread_REL_t, permutations = 999)
## Df SumOfSqs R2 F Pr(>F)
## origin 1 3.8006 0.14208 20.205 0.001 ***
## Residual 122 22.9487 0.85792
## Total 123 26.7493 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = Guayana_spread_BAC_Metal_t[, 1:3027] ~ origin, data = Guayana_spread_BAC_Metal_t, permutations = 999)
## Df SumOfSqs R2 F Pr(>F)
## origin 1 1.209 0.02248 2.805 0.001 ***
## Residual 122 52.578 0.97752
## Total 123 53.787 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = Guayana_spread_BAC_Biocide_t[, 1:2068] ~ origin, data = Guayana_spread_BAC_Biocide_t, permutations = 999)
## Df SumOfSqs R2 F Pr(>F)
## origin 1 1.979 0.03645 4.6157 0.001 ***
## Residual 122 52.302 0.96355
## Total 123 54.281 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tabla_core <- Tabla_inicial%>% group_by(template) %>% summarise(TotalFreq = n())%>% ungroup() %>% filter(TotalFreq == 124)
datatable(tabla_core, rownames = FALSE, filter="top", options = list(pageLength = 30, scrollX=T, scrollY=T) )
tabla_core_eur <- Tabla_inicial %>% filter(origin=="europa") %>% group_by(template) %>% summarise(TotalFreq = n())%>% ungroup() %>% filter(TotalFreq == 29)
datatable(tabla_core_eur, rownames = FALSE, filter="top", options = list(pageLength = 30, scrollX=T, scrollY=T) )
tabla_core_guayana <- Tabla_inicial %>% filter(origin=="guayana") %>% group_by(template) %>% summarise(TotalFreq = n())%>% ungroup() %>% filter(TotalFreq == 95)
datatable(tabla_core_guayana, rownames = FALSE, filter="top", options = list(pageLength = 30, scrollX=T, scrollY=T) )
ABR_common_genes <- tabla_para_teresa_ABR %>% group_by(Label) %>% summarise(number = n())
# BAC_common_genes<- tabla_para_teresa_BAC %>% group_by(Label, template_gene) %>% summarise(number = n())
BAC_common_genes<-tabla_para_teresa_BAC %>% distinct(template,Label,TotalFreq) %>% group_by(Label) %>% summarise(number = n())
REL_common_genes <- tabla_para_teresa_REL %>% group_by(Label) %>% summarise(number = n())
ABR_notcommon_genes <- anti_tabla_para_teresa_ABR %>% group_by(Label) %>% summarise(number = n())
# BAC_notcommon_genes <- anti_tabla_para_teresa_BAC %>% group_by(Label) %>% summarise(number = n())
BAC_notcommon_genes <- anti_tabla_para_teresa_BAC %>%distinct(template,Label,TotalFreq) %>% group_by(Label) %>% summarise(number = n())
REL_notcommon_genes <- anti_tabla_para_teresa_REL %>% group_by(Label) %>% summarise(number = n())
Tipo <- c('ABR','BAC','REL')
aaEur <- c(ABR_notcommon_genes$number[1],BAC_notcommon_genes$number[1],REL_notcommon_genes$number[1])
All <- c( ABR_common_genes$number[1],BAC_common_genes$number[1],REL_common_genes$number[1])
Gui <- c(ABR_notcommon_genes$number[2],BAC_notcommon_genes$number[2],REL_notcommon_genes$number[2])
mix_num_genes <- data.frame( Tipo, aaEur,All,Gui)
mix_num_genes %>% pivot_longer(cols=aaEur:Gui, names_to = "cosa", values_to = "value")%>%
ggplot(aes(x = cosa, y = value, fill = Tipo))+geom_col(position = "dodge")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
# Tipo <- c('ABR','BAC','REL')
# aaEur <- c(10,5,2)
# All <- c(10,2,0)
# Gui <- c(14,2,8)
# core_num_genes <- data.frame( Tipo, aaEur,All,Gui)
#
# core_num_genes %>% pivot_longer(cols=aaEur:Gui, names_to = "cosa", values_to = "value")%>%
# ggplot(aes(x = cosa, y = value, fill = Tipo))+geom_col(position = "dodge")+
# theme_classic()+
# theme(panel.background = element_blank(), panel.grid = element_blank(),
# aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
# axis.text.x = element_text(angle = 45, hjust=1))
#Amerindians <- Tabla_inicial %>%select(origin) %>% filter(origin == "guayana")
tabla_america <- Tabla_inicial %>% filter(origin == "guayana") %>% group_by(label) %>% distinct(template,label, .keep_all = TRUE) %>% ungroup %>%
group_by(template) %>% summarize(suma = n())
tabla_europa <- Tabla_inicial %>% filter(origin == "europa") %>% group_by(label) %>% distinct(template,label, .keep_all = TRUE) %>% ungroup %>%
group_by(template) %>% summarize(suma = n())
tabla_chi <- full_join(tabla_europa, tabla_america, by= "template")
colnames(tabla_chi) <- c("template","europe_P", "america_P" )
tabla_chi[is.na(tabla_chi)] <- 0
tabla_chi_filt <- tabla_chi %>% mutate(europe_N = 29 - europe_P ) %>% mutate(america_N = 95 - america_P )#%>% filter(europe_P > 2 | america_P > 9 )
chi_pvalue <- tabla_chi_filt %>%
rowwise() %>%
mutate(
p.value = fisher.test(matrix(c(europe_P, europe_N, america_P, america_N), nrow = 2))$p.value,
odds_ratio = fisher.test(matrix(c(europe_P, europe_N, america_P, america_N), nrow = 2))$estimate,
)
colnames(chi_pvalue) <- c("template","europe_P","america_P","europe_N","america_N","p_value", "odds_ratio")
chi_pvalue <- as.data.frame(chi_pvalue)
chi_pvalue.adj <-chi_pvalue %>% mutate(padj= p.adjust(chi_pvalue$p_value, method = "BH")) #%>% filter(padj<0.05)
chi_pvalue.adj <- chi_pvalue.adj %>% mutate(america_odds = europe_P*america_N) %>% mutate(europe_odds = america_P*europe_N)
chi_pvalue.adj <- chi_pvalue.adj %>% mutate(result1= america_odds/europe_odds) %>% mutate(result2 = europe_odds/america_odds)
chi_pvalue.adj <- chi_pvalue.adj %>% mutate(porcentaje_eur=europe_P/(europe_P+europe_N)) %>% mutate(porcentaje_amer=america_P/(america_P+america_N))
chi_pvalue.adj[is.na(chi_pvalue.adj)] <- 0
chi_pvalue.adj$odds_ratio <- ifelse(chi_pvalue.adj$odds_ratio < 1, -1/chi_pvalue.adj$odds_ratio, chi_pvalue.adj$odds_ratio )
chi_pvalue.adj$direction <- ifelse(chi_pvalue.adj$odds_ratio < 0, 'america', 'europe')
chi_pvalue.adj.plot <- chi_pvalue.adj
chi_pvalue.adj.plot$fisher <- ifelse(chi_pvalue.adj.plot$padj<0.05, "yes", "no" )
chi_pvalue.adj.plot$label <- ifelse(chi_pvalue.adj.plot$padj<0.000000000000001, chi_pvalue.adj.plot$template, "" )
chi_pvalue.adj.plot %>% ggplot(aes(porcentaje_eur, porcentaje_amer, color= fisher))+geom_point()+
geom_text_repel(aes(label=label),hjust = 0, nudge_x = 0.05, max.overlaps = 99)+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
chi_pvalue.adj <-chi_pvalue.adj %>% filter(padj<0.05)
tmpp <- Tabla_inicial %>% select(template, database) %>% distinct()
chi_pvalue.adj <- left_join(chi_pvalue.adj, tmpp, by = "template")
# chi_pvalue.adj$database = "ABR"
# chi_pvalue.adj$database[grepl("^BAC",chi_pvalue.adj$template)] = "BAC"
# chi_pvalue.adj$database[grepl("^MOB",chi_pvalue.adj$template)] = "REL"
# chi_pvalue_rel <- chi_pvalue.adj %>% filter(str_detect(template, "^MOB"))
# chi_pvalue_rel_short <- chi_pvalue.adj %>% filter(str_detect(template, "^MOB"))
# chi_pvalue_rel_short$template <- sub( "_.*" ," ", chi_pvalue_rel_short$template)
chi_pvalue_rel <- chi_pvalue.adj %>%filter(database == "REl")
chi_pvalue_rel_short <- chi_pvalue.adj %>%filter(database == "REL")
chi_pvalue_rel_short$template <- sub( "_.*" ," ", chi_pvalue_rel_short$template)
chi_pvalue_abr <- chi_pvalue.adj %>% filter(database == "ABR")
chi_pvalue_abr_short <- chi_pvalue.adj %>%filter(database == "ABR")
#no se puede simplificar sin perder info
# chi_pvalue_abr_short$template <- sub( ":.*" ," ", chi_pvalue_abr_short$template)
# chi_pvalue_abr_short$template <- sub( "(_[^_]+)_.*" ,"\\1", chi_pvalue_abr_short$template)
# chi_pvalue_abr_short$template = sapply(chi_pvalue_abr_short$template , function(x) paste(strsplit(x, "_")[[1]][1:2], collapse = '_'))
chi_pvalue_bac <- chi_pvalue.adj %>% filter(database == "BAC")
# chi_pvalue_bac_short <- chi_pvalue.adj %>% filter(database == "BAC") %>% left_join(Bac_met_db, by = 'template')
# chi_pvalue_bac_short$template <- sub( "\\|+" ,"-", chi_pvalue_bac_short$template)
# chi_pvalue_bac_short$template <- sub( "(\\|[^\\|]+)\\|.*" ,"", chi_pvalue_bac_short$template)
chi_pvalue_abr_short_longzzz <- chi_pvalue_abr_short %>%
select(template,porcentaje_eur,porcentaje_amer) %>%
melt( id.vars = 'template')
chi_pvalue_abr_short_longzzz$value <- ifelse(chi_pvalue_abr_short_longzzz$variable == 'porcentaje_eur', chi_pvalue_abr_short_longzzz$value*-1, chi_pvalue_abr_short_longzzz$value)
joinedabr <- full_join(chi_pvalue_abr_short_longzzz, chi_pvalue_abr_short, by='template')
joinedabrz <- joinedabr %>% arrange(desc(value))
americcc <- joinedabrz %>% filter(variable == 'porcentaje_amer')
europpp <- joinedabrz %>% filter(variable == 'porcentaje_eur')
ggplot() +
geom_col(data=americcc, aes(reorder(template, -padj), value, fill=padj)) +
scale_fill_viridis_c(option = "D") +
new_scale_fill() +
geom_col(data= europpp, aes(reorder(template, -padj), value, fill=padj)) +
scale_fill_viridis_c(option = "C")+
coord_flip()
chi_pvalue_BAC_short_longzzz <- chi_pvalue_bac %>%
select(template,porcentaje_eur,porcentaje_amer) %>%
melt( id.vars = 'template')
chi_pvalue_BAC_short_longzzz$value <- ifelse(chi_pvalue_BAC_short_longzzz$variable == 'porcentaje_eur', chi_pvalue_BAC_short_longzzz$value*-1, chi_pvalue_BAC_short_longzzz$value)
chi_pvalue_rel_short <- chi_pvalue_rel_short %>% arrange(desc(odds_ratio))
joinedBAC <- full_join(chi_pvalue_BAC_short_longzzz, chi_pvalue_bac, by='template')
joinedBACz <- joinedBAC %>% arrange(desc(value))
americcc <- joinedBACz %>% filter(variable == 'porcentaje_amer')
europpp <- joinedBACz %>% filter(variable == 'porcentaje_eur')
ggplot() +
geom_col(data=americcc, aes(reorder(template, -padj), value, fill=padj)) +
scale_fill_viridis_c(option = "D") +
new_scale_fill() +
geom_col(data= europpp, aes(reorder(template, -padj), value, fill=padj)) +
scale_fill_viridis_c(option = "C")+
coord_flip()
chi_pvalue_REL_short_longzzz <- chi_pvalue_rel_short %>%
select(template,porcentaje_eur,porcentaje_amer) %>%
melt( id.vars = 'template')
chi_pvalue_REL_short_longzzz$value <- ifelse(chi_pvalue_REL_short_longzzz$variable == 'porcentaje_eur', chi_pvalue_REL_short_longzzz$value*-1, chi_pvalue_REL_short_longzzz$value)
chi_pvalue_rel_short <- chi_pvalue_rel_short %>% arrange(desc(odds_ratio))
joinedREL <- full_join(chi_pvalue_REL_short_longzzz, chi_pvalue_rel_short, by='template')
joinedRELz <- joinedREL %>% arrange(desc(value))
americcc <- joinedRELz %>% filter(variable == 'porcentaje_amer')
europpp <- joinedRELz %>% filter(variable == 'porcentaje_eur')
ggplot() +
geom_col(data=americcc, aes(reorder(template, -padj), value, fill=padj)) +
scale_fill_viridis_c(option = "D") +
new_scale_fill() +
geom_col(data= europpp, aes(reorder(template, -padj), value, fill=padj)) +
scale_fill_viridis_c(option = "C")+
coord_flip()
plotLDA(res_origin_ABR_LEFSE,group=c("europa","guayana"),lda=2,pvalue=0.05)
plotLDA(res_origin_BAC_LEFSE,group=c("europa","guayana"),lda=5,pvalue=0.05)
plotLDA(res_origin_REL_LEFSE,group=c("europa","guayana"),lda=5,pvalue=0.05)
pheatmap(log(heat_padj+1), clustering_method = "ward.D2")
pheatmap(log(heat_padj_abr+1), clustering_method = "ward.D2")
Heatmap of the Antimicrobial resistance genes. The genes that appear on the y axis and the individuals of the x axis were previously selected From an ANOVA test with p-value lower than 0,05 in. Red indicates the highest value of appearance of the gene in the population and blue the contrary.
pheatmap(log(heat_padj_rel+1), clustering_method = "ward.D2")
Heatmap of the Relaxases resistance genes. The genes that appear on the y axis and the individuals of the x axis were previously selected From an ANOVA test with p-value lower than 0,05 in. Red indicates the highest value of appearance of the gene in the population and blue the contrary.
Heatmap of the Biocides and metals resistance genes. The genes that appear on the y axis and the individuals of the x axis were previously selected From an ANOVA test with p-value lower than 0,05 in. Red indicates the highest value of appearance of the gene in the population and blue the contrary.
pheatmap(log(heat_padj+1), clustering_method = "ward.D2")
metadata_all_relevant$lib <- "ALL"
metadata_abr_relevant$lib <- "AzBR"
metadata_bac_relevant$lib <- "BAC"
metadata_rel_relevant$lib <- "REL"
metadata_bac_metal_relevant$lib <- "BAC_metal"
metadata_bac_biocide_relevant$lib <- "BAC_biocide"
metameta <- rbind(metadata_abr_relevant, metadata_all_relevant,metadata_bac_relevant,metadata_rel_relevant, metadata_bac_metal_relevant, metadata_bac_biocide_relevant)
metameta %>% ggplot(aes(x=lib, y=term)) + geom_tile(aes(fill=p.value))+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1,strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
metadata_all_bin_relevant$lib <- "ALL"
metadata_abr_bin_relevant$lib <- "ABR"
metadata_bac_bin_relevant$lib <- "BAC"
metadata_rel_bin_relevant$lib <- "REL"
metadata_bac_biocide_bin_relevant$lib <- "BAC_biocide"
metadata_bac_metal_bin_relevant$lib <- "BAC_metal"
metameta_bin <- rbind(metadata_all_bin_relevant, metadata_abr_bin_relevant,metadata_bac_bin_relevant,metadata_rel_bin_relevant, metadata_bac_biocide_bin_relevant, metadata_bac_metal_bin_relevant)
metameta_bin %>% ggplot(aes(x=lib, y=term)) + geom_tile(aes(fill=p.value))+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
meta_all<- meta_all %>% filter(Df > 0)%>% filter(`Pr(>F)` < 0.05) %>% rownames_to_column(var = "term")
meta_abr<- meta_abr %>% filter(Df > 0) %>% filter(`Pr(>F)` < 0.05)%>% rownames_to_column(var = "term")
meta_bac<- meta_bac %>% filter(Df > 0) %>% filter(`Pr(>F)` < 0.05)%>% rownames_to_column(var = "term")
meta_rel<- meta_rel %>% filter(Df > 0) %>% filter(`Pr(>F)` < 0.05)%>% rownames_to_column(var = "term")
meta_bac_metal<- meta_bac_metal %>% filter(Df > 0) %>% filter(`Pr(>F)` < 0.05)%>% rownames_to_column(var = "term")
meta_bac_biocide<- meta_bac_biocide %>% filter(Df > 0) %>% filter(`Pr(>F)` < 0.05)%>% rownames_to_column(var = "term")
meta_all$lib <- "ALL"
meta_abr$lib <- "ABR"
meta_bac$lib <- "BAC"
meta_rel$lib <- "REL"
meta_bac_metal$lib <- "BAC_biocide"
meta_bac_biocide$lib <- "BAC_biocide"
meta <- rbind(meta_all, meta_abr,meta_bac,meta_rel, meta_bac_metal, meta_bac_biocide)
meta %>% ggplot(aes(x=lib, y=term)) + geom_tile(aes(fill=`Pr(>F)`))+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))