#installation of respective packages
library(randomNames)
## Warning: package 'randomNames' was built under R version 4.1.2
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.4     v dplyr   1.0.7
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   2.0.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

`

#Generate 100 student names (first and last names) using random names package.
student_names <- randomNames(100) 
# displaying first 10 student names
student_names[1:10]
##  [1] "el-Kaiser, Najaat"  "Sayavong, Murphy"   "el-Morad, Taqi"    
##  [4] "Aebischer, Brandon" "Odom, Ashanti"      "Bowen, David"      
##  [7] "Pham, Casey"        "el-Ayoob, Mumtaaza" "Zamora, Julia"     
## [10] "Jones, Brandon"
#Generate 100 grades for above students. Random number should have a mean of 70 with standard distribution of 15. Below functions, rnorm and floor would be useful.
student_grades <- rnorm(100, mean = 70, sd = 15) %>%
floor()
# displaying first 10 student names
student_grades[1:10]
##  [1] 31 75 66 72 67 77 78 61 68 75
#Put student names and grades to one tibble (data frame) You can use as_tibble function for this purpose. Your tibble should have at least 2 columns (names, grades).
df <- tibble(student_names,student_grades )
# displaying top 10 names with grades
head(df,10)
## # A tibble: 10 x 2
##    student_names      student_grades
##    <chr>                       <dbl>
##  1 el-Kaiser, Najaat              31
##  2 Sayavong, Murphy               75
##  3 el-Morad, Taqi                 66
##  4 Aebischer, Brandon             72
##  5 Odom, Ashanti                  67
##  6 Bowen, David                   77
##  7 Pham, Casey                    78
##  8 el-Ayoob, Mumtaaza             61
##  9 Zamora, Julia                  68
## 10 Jones, Brandon                 75
#export this data frame as csv file, student_grades.csv.
write_csv(df, "student_grades.csv")
#Differences
#write.csv() is twice as fast as compared to write_csv