performance <- performance %>%
gather(key = "time", value = "score", t1, t2) %>%
convert_as_factor(id,gender,time)
head(performance, 3)
## # A tibble: 3 x 5
## id gender stress time score
## <fct> <fct> <fct> <fct> <dbl>
## 1 1 male low t1 5.96
## 2 2 male low t1 5.51
## 3 3 male low t1 5.63
performance %>%
group_by(gender,stress,time) %>%
shapiro_test(score)
## # A tibble: 12 x 6
## gender stress time variable statistic p
## <fct> <fct> <fct> <chr> <dbl> <dbl>
## 1 male low t1 score 0.942 0.574
## 2 male low t2 score 0.966 0.849
## 3 male moderate t1 score 0.848 0.0547
## 4 male moderate t2 score 0.958 0.761
## 5 male high t1 score 0.915 0.319
## 6 male high t2 score 0.925 0.403
## 7 female low t1 score 0.898 0.207
## 8 female low t2 score 0.886 0.154
## 9 female moderate t1 score 0.946 0.626
## 10 female moderate t2 score 0.865 0.0880
## 11 female high t1 score 0.989 0.996
## 12 female high t2 score 0.930 0.452
Dla wszystkich wariantów zachododzi normalność
performance %>%
group_by(gender,stress,time) %>%
identify_outliers(score)
## # A tibble: 1 x 7
## gender stress time id score is.outlier is.extreme
## <fct> <fct> <fct> <fct> <dbl> <lgl> <lgl>
## 1 female low t2 36 6.15 TRUE FALSE
Brak istotnych odchyleń.
wyniki<-anova_test(data=performance, formula = score~gender*time*stress,wid = id, within = time)
## Coefficient covariances computed by hccm()
get_anova_table(wyniki)
## ANOVA Table (type II tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 gender 1 108 2.487 1.18e-01 0.023000
## 2 time 1 108 0.061 8.06e-01 0.000564
## 3 stress 2 108 21.878 1.05e-08 * 0.288000
## 4 gender:time 1 108 4.571 3.50e-02 * 0.041000
## 5 gender:stress 2 108 1.607 2.05e-01 0.029000
## 6 time:stress 2 108 1.759 1.77e-01 0.032000
## 7 gender:time:stress 2 108 5.896 4.00e-03 * 0.098000
Wyniki istotnie różnią się dla różnych wariantów płci oraz stresu.
performance %>%
group_by(gender,stress) %>%
emmeans_test(score~time)
## # A tibble: 6 x 11
## gender stress term .y. group1 group2 df statistic p p.adj
## * <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 female high time score t1 t2 108 2.13 0.0351 0.0351
## 2 female low time score t1 t2 108 -1.93 0.0561 0.0561
## 3 female moderate time score t1 t2 108 2.72 0.00767 0.00767
## 4 male high time score t1 t2 108 -1.95 0.0537 0.0537
## 5 male low time score t1 t2 108 0.266 0.791 0.791
## 6 male moderate time score t1 t2 108 -0.631 0.529 0.529
## # ... with 1 more variable: p.adj.signif <chr>
performance %>%
group_by(gender,stress) %>%
emmeans_test(score~time)
## # A tibble: 6 x 11
## gender stress term .y. group1 group2 df statistic p p.adj
## * <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 female high time score t1 t2 108 2.13 0.0351 0.0351
## 2 female low time score t1 t2 108 -1.93 0.0561 0.0561
## 3 female moderate time score t1 t2 108 2.72 0.00767 0.00767
## 4 male high time score t1 t2 108 -1.95 0.0537 0.0537
## 5 male low time score t1 t2 108 0.266 0.791 0.791
## 6 male moderate time score t1 t2 108 -0.631 0.529 0.529
## # ... with 1 more variable: p.adj.signif <chr>
Pomiędzy tylko dwoma parami występują istotne różnice.