\[Solución~de~ejercicios\] \[Parte~1\\~ejercicios~1~al~10\]
#1#
3*4+6
## [1] 18
#2#
cos(5*pi/180)
## [1] 0.9961947
#3#
x<-4
3*sqrt(6+x)
## [1] 9.486833
#4#
y<-5.2
#5#
x <- 3
y <- 4
z <- (2*x) - (7*y)
z
## [1] -22
#6#.
??inv
#7#
A<-matrix(data=c(1,0,1,-2,0,5,2,0,2,2,3,1,-3,2,4,3),nrow=4,ncol=4)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 0 2 -3
## [2,] 0 5 2 2
## [3,] 1 2 3 4
## [4,] -2 0 1 3
#8#
B<-c(1,2,3,4)
#9#
C<-A%*%B
C
## [,1]
## [1,] -5
## [2,] 24
## [3,] 30
## [4,] 13
#10#
X<-matrix(data=c(5,1,2,3),nrow =2,ncol = 2)
X
## [,1] [,2]
## [1,] 5 2
## [2,] 1 3
Y<-c(3,-1)
solve(X,Y)
## [1] 0.8461538 -0.6153846
\[Parte~2\\~ejercicios~del~1~al~27\]
#1.
w<-2*3+7
#2.
a<-4
b<--10
c<-3.2
#3.
y<-10
Y<-100
#Ambas variables son numerica, sin embargo, difieren dado que una es mayuscula y la otra minuscula, cualquier cambio en la escritura crea una variable nueva
#4.
X<-5.5
Y<--2.6
Z<-(2*X)-(3*Y)
Z
## [1] 18.8
#5.
W<-(3*Y)-Z+(X/Y)
W
## [1] -28.71538
#6.
r<-6.3
s<-5.8
final<-r+s-(r*s)
final
## [1] -24.44
#7.
this_is_the_result<-(r^2)-(s^2)
this_is_the_result
## [1] 6.05
#8
width<-1.5
Width<-2
WIDTH<-4.5
#las variables son completamente distintas
#9.
#This line will no be executed.
#10.
s<-3.5 # esta es la variable s
#11.
y1<-7
y2<-9
y3<-y1-(y2/3)
#12.
# 2*m-5 , tengo primero que definir a m
#13.
cost<- 175
profit<-25
sale_price<-cost+profit
#14.
centigrade<-28
fahrenheit<- (centigrade*(9/5)+32)
#15.
format_short<-signif(14/9, digits=5)
format_short
## [1] 1.5556
format_long<-signif(14/9, digits = 17)
#16.
who<-ls()
who
## [1] "a" "A" "b"
## [4] "B" "c" "C"
## [7] "centigrade" "cost" "fahrenheit"
## [10] "final" "format_long" "format_short"
## [13] "profit" "r" "s"
## [16] "sale_price" "this_is_the_result" "w"
## [19] "W" "width" "Width"
## [22] "WIDTH" "x" "X"
## [25] "y" "Y" "y1"
## [28] "y2" "y3" "z"
## [31] "Z"
#17.
whos<-ls.str()
whos
## a : num 4
## A : num [1:4, 1:4] 1 0 1 -2 0 5 2 0 2 2 ...
## b : num -10
## B : num [1:4] 1 2 3 4
## c : num 3.2
## C : num [1:4, 1] -5 24 30 13
## centigrade : num 28
## cost : num 175
## fahrenheit : num 82.4
## final : num -24.4
## format_long : num 1.56
## format_short : num 1.56
## profit : num 25
## r : num 6.3
## s : num 3.5
## sale_price : num 200
## this_is_the_result : num 6.05
## w : num 13
## W : num -28.7
## who : chr [1:31] "a" "A" "b" "B" "c" "C" "centigrade" "cost" "fahrenheit" ...
## width : num 1.5
## Width : num 2
## WIDTH : num 4.5
## x : num 3
## X : num 5.5
## y : num 10
## Y : num -2.6
## y1 : num 7
## y2 : num 9
## y3 : num 4
## z : num -22
## Z : num 18.8
#18.
#clear no found
#19.
Area<-5*7
Perimetro<-(2*5)+(2*7)
#20.
area_circulo<-pi*(6.45^2)
perimetro_circulo<-2*pi*6.45
#21.
x<-4/5
z<-14/17
#22.
y<-2*x-z
y
## [1] 0.7764706
#23.
radius<-pi*(2/3)^2
#24.
radius_sphere<-4*pi*(2/3)^2
#25.
double(radius)
## [1] 0
#26.
double(radius_sphere)
## [1] 0 0 0 0 0
#27.
y<-y
date<-date
\[parte~3\\ejercicios~del~1~al~25\]
#1.
sqrt(10)
## [1] 3.162278
#2
factorial(7)
## [1] 5040
#3
cos(45*180/pi)
## [1] -0.5918127
#4.
cos(45)
## [1] 0.525322
#5
sin(45)
## [1] 0.8509035
#6
tan(45)
## [1] 1.619775
#7
atan(1.5)
## [1] 0.9827937
#8
tan(3*pi/2)
## [1] 5.443746e+15
#9
exp(3)
## [1] 20.08554
#10
log(3.5)
## [1] 1.252763
#11
log10(3.5)
## [1] 0.544068
#12
round(2.43)
## [1] 2
#13
5%/%4
## [1] 1
#14
abs(-3.6)
## [1] 3.6
#15 al 17.
1.5-2*sqrt(6.7/5)
## [1] -0.8151674
sin(180)^2+ cos(180)^2
## [1] 1
log10(0)#no puede elevarse a cero
## [1] -Inf
#18
l <- 3*180/2
k <- 2*180
2*sin(l)*cos(k)
## [1] 0.09988533
#19
h <- 45
#20
format(sqrt(45), digits = 3)
## [1] "6.71"
#21
s<-sin(45)
#22
c<-cos(45)
#23
t<-tan(45)
#24
e1<-exp(pi/2)
#24
e1
## [1] 4.810477
\[parte~4\]
#1
w<-c(2,4,-6,0)
#2
w[2]
## [1] 4
# 3 al 8
z<-function(x){(pi/2)*x}
z(w)
## [1] 3.141593 6.283185 -9.424778 0.000000
y<-z(w)
y[1:3]
## [1] 3.141593 6.283185 -9.424778
length(y)
## [1] 4
min(y)
## [1] -9.424778
max(y)
## [1] 6.283185
#9
r<-(2.5+c(1, 4, 7, 8))
#10
s<-c(2,4,6,8,10,12,14,16,18,20)
#11
v1<-c(9,3,-2,5,0)
v2<-c(1,2,-4)
vt<-c(v1,v2)
#12
vt2<-c(v1,4)
vt2
## [1] 9 3 -2 5 0 4
#13
va<-c(0.2,1.3,-3.5)
vb<-c(0.5,-2.5,1.0)
vab<-c(va,vb)
vab
## [1] 0.2 1.3 -3.5 0.5 -2.5 1.0
#14
vab[1:3]
## [1] 0.2 1.3 -3.5
vab[4:6]
## [1] 0.5 -2.5 1.0
#15
multiply<-va*vb
multiply
## [1] 0.10 -3.25 -3.50
#16
multiply2<-va[1:2]*vb[1:2]
#17
divide<-va/vb
#18
pot<-va%*%vb
pot
## [,1]
## [1,] -6.65
#19
aa<-c(1,3,5)
ab<-c(3,6)
ac<-c(aa,ab)
ac
## [1] 1 3 5 3 6
#no se presento mensage de error
#20
aa<-ac[1:3]
#21
w<-c(0.1,1.3,-2.4)
w1<-c(w,5+w)
#22
w2<-w1-2-w
#23
w3<-w1*1.5*w
#24
w4<-w1*(w/10)
#25
w5<-w1*(3-2*(w/5))
#26
k<-pi
b<-c(0, pi/3, 2*pi/3, pi)
sin(b)
## [1] 0.000000e+00 8.660254e-01 8.660254e-01 1.224647e-16
cos(b)
## [1] 1.0 0.5 -0.5 -1.0
tan(b)
## [1] 0.000000e+00 1.732051e+00 -1.732051e+00 -1.224647e-16
#27
exp(b)
## [1] 1.000000 2.849654 8.120527 23.140693
#28
sqrt(b)
## [1] 0.000000 1.023327 1.447203 1.772454
#29
3^b
## [1] 1.000000 3.159659 9.983445 31.544281
#no hubo error porque lo toma como valores numérico en el vector b
#30
m3<-3^b[1]
#31 y 32
#1´s<- c(1,2,3,4) no permite esas abreviaciones
#33
v<-c(0.35,-1,0.24,1.3,-0.03)
sort(v)
## [1] -1.00 -0.03 0.24 0.35 1.30
sort(v, decreasing = TRUE)
## [1] 1.30 0.35 0.24 -0.03 -1.00
#35
vv<-c(2,4,-3,0,1,5,7)
mean(vv)
## [1] 2.285714
range(vv)
## [1] -3 7
median(vv)
## [1] 2
#36
x<-c("r","s","t","u","v")
#37 y 38
x1<-c(1,0,-2,3,5)
y<-c(x,x1)
y[3]
## [1] "t"
#39
#yy<-y*(2+3*y) no se logra dado que un vector contiene letras
#40 y 41
#x*y son el mismo calor que y*x
\[parte~5\]
#1
A<- matrix(data = c(3,1,0,3,-2,5),nrow = 2,ncol = 3)
#2
A[2,2]
## [1] 3
#3
B<- matrix(data = A*((3*pi)/2), nrow =2, ncol=3)
B
## [,1] [,2] [,3]
## [1,] 14.137167 0.00000 -9.424778
## [2,] 4.712389 14.13717 23.561945
#4
B[1,3]
## [1] -9.424778
#5
c<-matrix(data = B[c(1:1,2:2)], nrow=1,ncol=1)
#6
dim(B)
## [1] 2 3
#7 y 8
length(B)
## [1] 6
#9
sum(B[,1])
## [1] 18.84956
sum(B[,2])
## [1] 14.13717
sum(B[,3])
## [1] 14.13717
min(B[,1])
## [1] 4.712389
max(B[,1])
## [1] 14.13717
#10
v3<- matrix(data = c(1,3,0,-4,5,3,1,0,2,2,-1,1),nrow=3, ncol=4)
v3
## [,1] [,2] [,3] [,4]
## [1,] 1 -4 1 2
## [2,] 3 5 0 -1
## [3,] 0 3 2 1
#11
m1<- matrix(data=c(1,7,3,2,5,1,0,-3,1),nrow=3,ncol=3)
m1
## [,1] [,2] [,3]
## [1,] 1 2 0
## [2,] 7 5 -3
## [3,] 3 1 1
m2<-matrix(data=c(1,3,2,3,5,3,-2,7,0),nrow=3,ncol=3)
m2
## [,1] [,2] [,3]
## [1,] 1 3 -2
## [2,] 3 5 7
## [3,] 2 3 0
sum1<-m1+m2
subs1<-m1-m1
#12 al 14
mult<-m1*m2
divi<-m1/m2
#no se evidencian errores dado que la matriz es de la misma dimensióny es numerica
#15
x<-matrix(data = c(1,2,-3,5,-2,3,5,-2,0,6,2,4,1,2,1,4),nrow=4,ncol=4)
x1<-matrix(data = x+5,nrow=4,ncol=4)
x1
## [,1] [,2] [,3] [,4]
## [1,] 6 3 5 6
## [2,] 7 8 11 7
## [3,] 2 10 7 6
## [4,] 10 3 9 9
#16
x2<-matrix(data = x-3,nrow=4,ncol=4)
x2
## [,1] [,2] [,3] [,4]
## [1,] -2 -5 -3 -2
## [2,] -1 0 3 -1
## [3,] -6 2 -1 -2
## [4,] 2 -5 1 1
#17
x3<-matrix(data = x*-3,nrow=4,ncol=4)
x3
## [,1] [,2] [,3] [,4]
## [1,] -3 6 0 -3
## [2,] -6 -9 -18 -6
## [3,] 9 -15 -6 -3
## [4,] -15 6 -12 -12
#18
x4<-matrix(data = x/2,nrow=4,ncol=4)
x4
## [,1] [,2] [,3] [,4]
## [1,] 0.5 -1.0 0 0.5
## [2,] 1.0 1.5 3 1.0
## [3,] -1.5 2.5 1 0.5
## [4,] 2.5 -1.0 2 2.0
#19
x5<-matrix(data = -3*x/2.4+55,nrow=4,ncol=4)
x5
## [,1] [,2] [,3] [,4]
## [1,] 53.75 57.50 55.0 53.75
## [2,] 52.50 51.25 47.5 52.50
## [3,] 58.75 48.75 52.5 53.75
## [4,] 48.75 57.50 50.0 50.00
#20
B<-matrix(data= c(pi/2, 2*pi/3, 2*pi/3, pi),nrow=2, ncol=2)
B
## [,1] [,2]
## [1,] 1.570796 2.094395
## [2,] 2.094395 3.141593
sin(B)
## [,1] [,2]
## [1,] 1.0000000 8.660254e-01
## [2,] 0.8660254 1.224647e-16
cos(B)
## [,1] [,2]
## [1,] 6.123234e-17 -0.5
## [2,] -5.000000e-01 -1.0
tan(B)
## [,1] [,2]
## [1,] 1.633124e+16 -1.732051e+00
## [2,] -1.732051e+00 -1.224647e-16
#21
sqrt(B)
## [,1] [,2]
## [1,] 1.253314 1.447203
## [2,] 1.447203 1.772454
#22
#sqrtm(B)
#23
exp(B)
## [,1] [,2]
## [1,] 4.810477 8.120527
## [2,] 8.120527 23.140693
#24 ??expm
#expm(B)
#25
log(B)
## [,1] [,2]
## [1,] 0.4515827 0.7392648
## [2,] 0.7392648 1.1447299
#26
#logm(B)
#27 y 28
4^B
## [,1] [,2]
## [1,] 8.824978 18.23692
## [2,] 18.236920 77.88023
#29
B^4
## [,1] [,2]
## [1,] 6.088068 19.24130
## [2,] 19.241302 97.40909
#30
ls<-matrix(data= c(1,2,3,4,5,6),nrow=2,ncol=3)
ls
## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6
#31 y 32
os<-matrix(data= c(3,4,5,4,5,6),nrow=2,ncol=3)
os
## [,1] [,2] [,3]
## [1,] 3 5 5
## [2,] 4 4 6
#33
ls<-matrix(data= c(1,2,3,4),nrow=2,ncol=2)
#34
os<-matrix(data= c(3,4,5,4),nrow=2,ncol=2)
#35
diag(nrow=2,ncol=2)
## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
#36
C<- matrix(data= c( 1,2,1,2,2,5,3,3,-3,2,7,-1,0,-3,-2,3),nrow=4,ncol=4)
t(C)
## [,1] [,2] [,3] [,4]
## [1,] 1 2 1 2
## [2,] 2 5 3 3
## [3,] -3 2 7 -1
## [4,] 0 -3 -2 3
#37
C+C # si es simetrica la matriz
## [,1] [,2] [,3] [,4]
## [1,] 2 4 -6 0
## [2,] 4 10 4 -6
## [3,] 2 6 14 -4
## [4,] 4 6 -2 6
#38
diag(C)
## [1] 1 5 7 3
#39
qr(C)
## $qr
## [,1] [,2] [,3] [,4]
## [1,] -3.1622777 -6.6407831 -1.8973666 0.6324555
## [2,] 0.6324555 -1.7029386 -5.5198701 4.5803177
## [3,] 0.3162278 0.5426063 -5.3787577 -0.6475024
## [4,] 0.6324555 -0.6764480 0.5883922 -0.4488098
##
## $rank
## [1] 4
##
## $qraux
## [1] 1.3162278 1.4979925 1.8085757 0.4488098
##
## $pivot
## [1] 1 2 3 4
##
## attr(,"class")
## [1] "qr"
#40 da un valor escalar
det(C)
## [1] -13
#41
C2<-solve(C)
#42
C*C2#si se calcula la identidad de la matriz
## [,1] [,2] [,3] [,4]
## [1,] -10.5384615 12.7692308 18 0.0000000
## [2,] 10.6153846 -15.3846154 6 3.2307692
## [3,] -0.3076923 0.2307692 0 -0.1538462
## [4,] 3.2307692 -3.4615385 -1 -0.4615385
#43
norm(C)
## [1] 13
#44
eigen(C)
## eigen() decomposition
## $values
## [1] 8.19439889+0.000000i 3.93791318+2.661524i 3.93791318-2.661524i
## [4] -0.07022524+0.000000i
##
## $vectors
## [,1] [,2] [,3] [,4]
## [1,] 0.24942346+0i 0.1235076+0.3224730i 0.1235076-0.3224730i 0.88639724+0i
## [2,] -0.41481971+0i 0.2577553+0.3723022i 0.2577553-0.3723022i -0.44089112+0i
## [3,] -0.87469708+0i 0.3369753-0.1771706i 0.3369753+0.1771706i 0.02228749+0i
## [4,] 0.02485078+0i 0.7285386+0.0000000i 0.7285386+0.0000000i -0.13934927+0i
#45 y 46
qr(C)
## $qr
## [,1] [,2] [,3] [,4]
## [1,] -3.1622777 -6.6407831 -1.8973666 0.6324555
## [2,] 0.6324555 -1.7029386 -5.5198701 4.5803177
## [3,] 0.3162278 0.5426063 -5.3787577 -0.6475024
## [4,] 0.6324555 -0.6764480 0.5883922 -0.4488098
##
## $rank
## [1] 4
##
## $qraux
## [1] 1.3162278 1.4979925 1.8085757 0.4488098
##
## $pivot
## [1] 1 2 3 4
##
## attr(,"class")
## [1] "qr"
#47
diag(5)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 0 0
## [2,] 0 1 0 0 0
## [3,] 0 0 1 0 0
## [4,] 0 0 0 1 0
## [5,] 0 0 0 0 1
#48
F1<-diag(7)
sum(F1[1:7,])
## [1] 7
sum(F1[,1:7])
## [1] 7
sum(diag(F1))
## [1] 7
diag(F1)
## [1] 1 1 1 1 1 1 1
\[parte~6\]
#1.
#Este es un comentario
cost <- 200
sale_price <- 250
profit <- sale_price-cost
#2.
sphere_vol<- function(r){#funcion del volumen de la esfera
3/4*pi*r}
sphere_vol(2)
## [1] 4.712389
#3.
Rectangle_Area <- function(a,b){ #calculate the area of a regtangle
a*b}
Rectangle_Area(3,6)
## [1] 18
Rectangle_Area(2.5,5.5)
## [1] 13.75
#4.
#Example9
x<- c()
for (i in 1:7){
x[i]=i^3
}
x
## [1] 1 8 27 64 125 216 343
#5.
#example 10
y<- matrix(nrow=4,ncol=4)
for (i in 1:4) {
for (j in 1:4) {
y[j,i] = i^2 - j^2
}
}
y
## [,1] [,2] [,3] [,4]
## [1,] 0 3 8 15
## [2,] -3 0 5 12
## [3,] -8 -5 0 7
## [4,] -15 -12 -7 0
#6.
#Example 11
tol <- 0.0
n <- 3
while(tol <= 1.5){
n=n + 1
tol= tol+0.1
}
n
## [1] 18
tol
## [1] 1.5
#7.
precio <- function(items){
if (items>5){
price=items*160
} else {
price=items*130
}
print(paste("PRECIO DADO:", price))
}
precio(3)
## [1] "PRECIO DADO: 390"
precio(9)
## [1] "PRECIO DADO: 1440"
#8.
precio2 <- function (items){
if (items<5){
if (items<3){
price=items*130
} else {
price=items*160}
}
else {
price=items*200
}
print(paste("PRECIO DADO", price))
}
precio2(2)
## [1] "PRECIO DADO 260"
precio2(4)
## [1] "PRECIO DADO 640"
precio2(6)
## [1] "PRECIO DADO 1200"
\[Parte~7\]
#1 y 2
x=c(1,2,3,4,5,6,7)
y= c(10,15,23,43,30,10,12)
length(y)
## [1] 7
length(x)
## [1] 7
plot(x,y, main = "Grafico de vectores",xlab="independiente", ylab = "dependiente")
#3 y 4
x<- -6:6
y<- 2*x^3 + 5
plot(x,y, col="blue",pch=1)
#5
x1<- x <- seq(0,3*pi/2,length.out=10)
y1<- 2*sin(x/3)
z1<- 2*cos(x/3)
plot(x1,y1)
plot(x1, y1, type = "l",
main = "Ambos",
ylab = " dependientes",
col = "red")
lines(x1, z1, col = "blue")
legend("topright", c("2*cos(x/3)", "2*sin(x/3)"), fill = c("blue", "red"))
#6
y<-2*x^3 - 4
z<- x+1
w<- 2-sqrt(x)
v<- x^2 + 3
x<-c(1,2,3,4,5,6,7,8,9,10)
plot(x,y)
plot(x,z)
plot(x,w)
plot(x,v)
#7
library(plot3D)
## Warning in fun(libname, pkgname): couldn't connect to display ":0"
z_valores<-function(x,y){
2*sin(x*y)}
x<-c(1,2,3,4,5,6,7,8,9,10)
y<-c(1,2,3,4,5,6,7,8,9,10)
z<-outer(x,y,z_valores)
persp(x,y,z)
#8
m<-matrix(data= c(0.1,0.2,0.5,0.4,0.1,0.2,0.8,0.9,0.4,0.3,0.5,0.5,0.9,0.5,0.4,0.7,0.6,0.4,0.7,0.6,0.3,0.3,0.4,0.9,0.8),nrow=5,ncol=5)
m
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.1 0.2 0.5 0.7 0.3
## [2,] 0.2 0.8 0.5 0.6 0.3
## [3,] 0.5 0.9 0.9 0.4 0.4
## [4,] 0.4 0.4 0.5 0.7 0.9
## [5,] 0.1 0.3 0.4 0.6 0.8
library(plotly)
## Loading required package: ggplot2
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
fig <- plot_ly(z = ~m)
fig <- fig %>% add_surface()
fig
```