data <- read.csv("C:/Users/Haneen/Desktop/haneen/karpur.csv",header=TRUE)
summary(data)
##      depth         caliper         ind.deep          ind.med       
##  Min.   :5667   Min.   :8.487   Min.   :  6.532   Min.   :  9.386  
##  1st Qu.:5769   1st Qu.:8.556   1st Qu.: 28.799   1st Qu.: 27.892  
##  Median :5872   Median :8.588   Median :217.849   Median :254.383  
##  Mean   :5873   Mean   :8.622   Mean   :275.357   Mean   :273.357  
##  3rd Qu.:5977   3rd Qu.:8.686   3rd Qu.:566.793   3rd Qu.:544.232  
##  Max.   :6083   Max.   :8.886   Max.   :769.484   Max.   :746.028  
##      gamma            phi.N            R.deep            R.med        
##  Min.   : 16.74   Min.   :0.0150   Min.   :  1.300   Min.   :  1.340  
##  1st Qu.: 40.89   1st Qu.:0.2030   1st Qu.:  1.764   1st Qu.:  1.837  
##  Median : 51.37   Median :0.2450   Median :  4.590   Median :  3.931  
##  Mean   : 53.42   Mean   :0.2213   Mean   : 24.501   Mean   : 21.196  
##  3rd Qu.: 62.37   3rd Qu.:0.2640   3rd Qu.: 34.724   3rd Qu.: 35.853  
##  Max.   :112.40   Max.   :0.4100   Max.   :153.085   Max.   :106.542  
##        SP          density.corr          density         phi.core    
##  Min.   :-73.95   Min.   :-0.067000   Min.   :1.758   Min.   :15.70  
##  1st Qu.:-42.01   1st Qu.:-0.016000   1st Qu.:2.023   1st Qu.:23.90  
##  Median :-32.25   Median :-0.007000   Median :2.099   Median :27.60  
##  Mean   :-30.98   Mean   :-0.008883   Mean   :2.102   Mean   :26.93  
##  3rd Qu.:-19.48   3rd Qu.: 0.002000   3rd Qu.:2.181   3rd Qu.:30.70  
##  Max.   : 25.13   Max.   : 0.089000   Max.   :2.387   Max.   :36.30  
##      k.core            Facies          phi.core.frac   
##  Min.   :    0.42   Length:819         Min.   :0.1570  
##  1st Qu.:  657.33   Class :character   1st Qu.:0.2390  
##  Median : 1591.22   Mode  :character   Median :0.2760  
##  Mean   : 2251.91                      Mean   :0.2693  
##  3rd Qu.: 3046.82                      3rd Qu.:0.3070  
##  Max.   :15600.00                      Max.   :0.3630
head(data)
##    depth caliper ind.deep ind.med  gamma phi.N R.deep  R.med      SP
## 1 5667.0   8.685  618.005 569.781 98.823 0.410  1.618  1.755 -56.587
## 2 5667.5   8.686  497.547 419.494 90.640 0.307  2.010  2.384 -61.916
## 3 5668.0   8.686  384.935 300.155 78.087 0.203  2.598  3.332 -55.861
## 4 5668.5   8.686  278.324 205.224 66.232 0.119  3.593  4.873 -41.860
## 5 5669.0   8.686  183.743 131.155 59.807 0.069  5.442  7.625 -34.934
## 6 5669.5   8.686  109.512  75.633 57.109 0.048  9.131 13.222 -39.769
##   density.corr density phi.core   k.core Facies phi.core.frac
## 1       -0.033   2.205  33.9000 2442.590     F1      0.339000
## 2       -0.067   2.040  33.4131 3006.989     F1      0.334131
## 3       -0.064   1.888  33.1000 3370.000     F1      0.331000
## 4       -0.053   1.794  34.9000 2270.000     F1      0.349000
## 5       -0.054   1.758  35.0644 2530.758     F1      0.350644
## 6       -0.058   1.759  35.3152 2928.314     F1      0.353152
tail(data)
##      depth caliper ind.deep ind.med  gamma phi.N R.deep R.med      SP
## 814 6080.5   8.578  683.847 672.125 24.003 0.208  1.462 1.488 -33.714
## 815 6081.0   8.590  678.002 669.171 27.855 0.214  1.475 1.494  -4.808
## 816 6081.5   8.588  668.633 661.949 32.591 0.228  1.496 1.511  -4.727
## 817 6082.0   8.588  656.328 647.918 38.547 0.243  1.524 1.543 -21.390
## 818 6082.5   8.588  643.216 628.536 45.555 0.256  1.555 1.591 -31.597
## 819 6083.0   8.588  631.098 608.163 52.244 0.265  1.584 1.644 -36.109
##     density.corr density phi.core   k.core Facies phi.core.frac
## 814        0.003   2.147  26.9000 1300.790     F5      0.269000
## 815       -0.002   2.162  25.7547 1249.706     F5      0.257547
## 816       -0.008   2.158  24.5569 1196.282     F5      0.245569
## 817       -0.006   2.136  23.3592 1142.859     F5      0.233592
## 818       -0.002   2.115  22.1614 1089.435     F5      0.221614
## 819       -0.003   2.109  20.9637 1036.012     F5      0.209637
range(data$depth)
## [1] 5667 6083
par(mfrow=c(1,2))
hist(data$k.core, main='Histogram of Permeability', xlab='Permeability, md', col='red')
hist(data$phi.core, main='Histogram of Porosity', xlab='Porosity', col='blue',xlim=c(0,45))

model1 <- lm(k.core ~ depth+gamma+R.deep+R.med+SP+density+phi.core+Facies-1,data=data)
summary(model1)
## 
## Call:
## lm(formula = k.core ~ depth + gamma + R.deep + R.med + SP + density + 
##     phi.core + Facies - 1, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5461.7  -545.5    37.0   505.0  9072.8 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## depth          8.088      1.059   7.639 6.23e-14 ***
## gamma        -51.915      4.526 -11.471  < 2e-16 ***
## R.deep       -22.467      6.261  -3.588 0.000353 ***
## R.med         48.859      8.730   5.597 2.99e-08 ***
## SP            -6.490      3.118  -2.082 0.037671 *  
## density     2013.607   1047.054   1.923 0.054818 .  
## phi.core     188.002     21.791   8.628  < 2e-16 ***
## FaciesF1  -51703.918   5802.150  -8.911  < 2e-16 ***
## FaciesF10 -50893.923   5917.391  -8.601  < 2e-16 ***
## FaciesF2  -51009.565   5854.625  -8.713  < 2e-16 ***
## FaciesF3  -51322.213   5871.731  -8.741  < 2e-16 ***
## FaciesF5  -51174.044   6008.663  -8.517  < 2e-16 ***
## FaciesF7  -52302.690   5971.976  -8.758  < 2e-16 ***
## FaciesF8  -53362.629   6033.789  -8.844  < 2e-16 ***
## FaciesF9  -54796.231   6100.716  -8.982  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1266 on 804 degrees of freedom
## Multiple R-squared:  0.8436, Adjusted R-squared:  0.8407 
## F-statistic: 289.1 on 15 and 804 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(model1)
model1.red <- lm(k.core ~ depth+gamma+R.deep+R.med+SP+density+phi.core+Facies-1, data =data)
summary(model1.red)
## 
## Call:
## lm(formula = k.core ~ depth + gamma + R.deep + R.med + SP + density + 
##     phi.core + Facies - 1, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5461.7  -545.5    37.0   505.0  9072.8 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## depth          8.088      1.059   7.639 6.23e-14 ***
## gamma        -51.915      4.526 -11.471  < 2e-16 ***
## R.deep       -22.467      6.261  -3.588 0.000353 ***
## R.med         48.859      8.730   5.597 2.99e-08 ***
## SP            -6.490      3.118  -2.082 0.037671 *  
## density     2013.607   1047.054   1.923 0.054818 .  
## phi.core     188.002     21.791   8.628  < 2e-16 ***
## FaciesF1  -51703.918   5802.150  -8.911  < 2e-16 ***
## FaciesF10 -50893.923   5917.391  -8.601  < 2e-16 ***
## FaciesF2  -51009.565   5854.625  -8.713  < 2e-16 ***
## FaciesF3  -51322.213   5871.731  -8.741  < 2e-16 ***
## FaciesF5  -51174.044   6008.663  -8.517  < 2e-16 ***
## FaciesF7  -52302.690   5971.976  -8.758  < 2e-16 ***
## FaciesF8  -53362.629   6033.789  -8.844  < 2e-16 ***
## FaciesF9  -54796.231   6100.716  -8.982  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1266 on 804 degrees of freedom
## Multiple R-squared:  0.8436, Adjusted R-squared:  0.8407 
## F-statistic: 289.1 on 15 and 804 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(model1.red)

k.core.pred <- predict(model1.red,)
range(data$k.core)
## [1]     0.42 15600.00
Adjr.sq1 <- 1-sum((k.core.pred - data$k.core)^2)/sum((data$k.core-mean(data$k.core))^2)
Adjr.sq1
## [1] 0.6847518
mspe.model1 <- sqrt(sum((k.core.pred - data$k.core)^2)/nrow(data))
mspe.model1
## [1] 1254.46
par(mfrow=c(1,1))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="p", col="black", lwd = 5, pch=16, xlab='k',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred),type="l", col="green", lwd = 5, pch=17, xlab='',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2, main='Adjr.sq1=0.6847 & RMSE=1254')
grid()
legend('topright', legend=c("Observed", "Predicted"), pch=c(16,17), col=c("black", "green"))

model2<-lm(log10(k.core) ~ .-1,data=data)
summary(model2)
## 
## Call:
## lm(formula = log10(k.core) ~ . - 1, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5804 -0.1138  0.0322  0.1529  0.7384 
## 
## Coefficients: (1 not defined because of singularities)
##                 Estimate Std. Error t value Pr(>|t|)    
## depth          0.0007425  0.0004718   1.574   0.1160    
## caliper       -0.4605945  0.2693103  -1.710   0.0876 .  
## ind.deep      -0.0007951  0.0006222  -1.278   0.2017    
## ind.med        0.0007137  0.0006833   1.044   0.2966    
## gamma         -0.0091269  0.0015885  -5.746 1.30e-08 ***
## phi.N         -1.7628155  0.3901024  -4.519 7.16e-06 ***
## R.deep        -0.0025878  0.0016620  -1.557   0.1199    
## R.med          0.0044073  0.0023960   1.839   0.0662 .  
## SP            -0.0016935  0.0008312  -2.037   0.0419 *  
## density.corr   1.4462633  1.2712045   1.138   0.2556    
## density        1.6148374  0.3100921   5.208 2.44e-07 ***
## phi.core       0.0948634  0.0060329  15.724  < 2e-16 ***
## FaciesF1      -2.3461877  4.6532000  -0.504   0.6143    
## FaciesF10     -2.2675417  4.6652182  -0.486   0.6271    
## FaciesF2      -2.3646211  4.6544047  -0.508   0.6116    
## FaciesF3      -2.3769425  4.6697172  -0.509   0.6109    
## FaciesF5      -2.2367684  4.6697432  -0.479   0.6321    
## FaciesF7      -2.0650257  4.6623059  -0.443   0.6579    
## FaciesF8      -2.4438111  4.6776859  -0.522   0.6015    
## FaciesF9      -2.7023993  4.7023453  -0.575   0.5657    
## phi.core.frac         NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3335 on 799 degrees of freedom
## Multiple R-squared:  0.9891, Adjusted R-squared:  0.9888 
## F-statistic:  3613 on 20 and 799 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(model2)

model2.red <- lm(log10(k.core) ~ caliper+gamma+phi.N+SP+density+phi.core+Facies-1,data=data)
summary(model2.red)
## 
## Call:
## lm(formula = log10(k.core) ~ caliper + gamma + phi.N + SP + density + 
##     phi.core + Facies - 1, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.60108 -0.11891  0.03253  0.15792  0.70925 
## 
## Coefficients:
##            Estimate Std. Error t value Pr(>|t|)    
## caliper   -0.840136   0.182354  -4.607 4.74e-06 ***
## gamma     -0.010369   0.001337  -7.754 2.68e-14 ***
## phi.N     -1.596764   0.359392  -4.443 1.01e-05 ***
## SP        -0.001585   0.000793  -1.998  0.04600 *  
## density    1.762145   0.287056   6.139 1.31e-09 ***
## phi.core   0.093920   0.005931  15.835  < 2e-16 ***
## FaciesF1   4.981486   1.783281   2.793  0.00534 ** 
## FaciesF10  5.101106   1.793029   2.845  0.00455 ** 
## FaciesF2   4.995149   1.796855   2.780  0.00556 ** 
## FaciesF3   4.967152   1.799799   2.760  0.00591 ** 
## FaciesF5   5.158638   1.760353   2.930  0.00348 ** 
## FaciesF7   5.272425   1.759300   2.997  0.00281 ** 
## FaciesF8   4.952389   1.753512   2.824  0.00486 ** 
## FaciesF9   4.687264   1.762588   2.659  0.00799 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3346 on 805 degrees of freedom
## Multiple R-squared:  0.9889, Adjusted R-squared:  0.9887 
## F-statistic:  5128 on 14 and 805 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(model2.red)

k.core.pred2 <- predict(model2.red,)
k.core.pred2 <- 10^(k.core.pred2)
Adjr.sq2 <- 1-sum((k.core.pred2 - data$k.core)^2)/sum((data$k.core-mean(data$k.core))^2)
Adjr.sq2
## [1] 0.6366977
mspe.model2 <- sqrt(sum((k.core.pred2 - data$k.core)^2)/nrow(data))
mspe.model2
## [1] 1346.681
par(mfrow=c(1,1))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="p", col="red", lwd = 5, pch=16, xlab='k',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred2),type="l", col="darkblue", lwd = 5, pch=15, xlab='',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2, main='Adjr.sq1=0.6367 & RMSE=1346')
grid()
legend('topright', legend=c("Observed", "Predicted"), pch=c(16,15), col=c("red", "darkblue"))

require(MASS)
## Loading required package: MASS
library(MASS)
par(mfrow=c(1,1))
bc = boxcox(model1.red)

best.lam = bc$x[which(bc$y== max(bc$y))]
k.core.pred3 <- lm(((data$k.core^best.lam-1)/best.lam)~., data)
summary(k.core.pred3)
## 
## Call:
## lm(formula = ((data$k.core^best.lam - 1)/best.lam) ~ ., data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -29.1372  -3.4079   0.4885   3.7256  22.5990 
## 
## Coefficients: (1 not defined because of singularities)
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -2.070e+02  9.396e+01  -2.203 0.027858 *  
## depth          3.097e-02  9.528e-03   3.250 0.001201 ** 
## caliper       -2.829e+00  5.438e+00  -0.520 0.603091    
## ind.deep      -7.161e-03  1.256e-02  -0.570 0.568883    
## ind.med        7.916e-03  1.380e-02   0.574 0.566320    
## gamma         -2.748e-01  3.208e-02  -8.566  < 2e-16 ***
## phi.N         -2.832e+01  7.877e+00  -3.595 0.000344 ***
## R.deep        -9.516e-02  3.356e-02  -2.835 0.004694 ** 
## R.med          2.095e-01  4.838e-02   4.331 1.67e-05 ***
## SP            -3.949e-02  1.679e-02  -2.353 0.018873 *  
## density.corr   9.060e+00  2.567e+01   0.353 0.724213    
## density        2.513e+01  6.262e+00   4.014 6.53e-05 ***
## phi.core       1.865e+00  1.218e-01  15.306  < 2e-16 ***
## FaciesF10      4.596e+00  1.916e+00   2.399 0.016679 *  
## FaciesF2       3.514e+00  3.105e+00   1.132 0.258152    
## FaciesF3       7.987e-01  1.785e+00   0.447 0.654666    
## FaciesF5       3.426e+00  1.830e+00   1.872 0.061509 .  
## FaciesF7       3.862e+00  3.065e+00   1.260 0.208038    
## FaciesF8      -3.835e+00  2.096e+00  -1.829 0.067726 .  
## FaciesF9      -1.342e+01  2.294e+00  -5.852 7.09e-09 ***
## phi.core.frac         NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.734 on 799 degrees of freedom
## Multiple R-squared:  0.7679, Adjusted R-squared:  0.7624 
## F-statistic: 139.1 on 19 and 799 DF,  p-value: < 2.2e-16
k.core.pred3 <- lm(((data$k.core^best.lam-1)/best.lam)~caliper+gamma+phi.N+density+phi.core+Facies-1, data = data)
summary(k.core.pred3)
## 
## Call:
## lm(formula = ((data$k.core^best.lam - 1)/best.lam) ~ caliper + 
##     gamma + phi.N + density + phi.core + Facies - 1, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -28.1055  -3.7338   0.3807   3.8464  22.9901 
## 
## Coefficients:
##           Estimate Std. Error t value Pr(>|t|)    
## caliper   -17.9711     3.7550  -4.786 2.03e-06 ***
## gamma      -0.3473     0.0275 -12.627  < 2e-16 ***
## phi.N     -18.4233     7.4035  -2.488  0.01303 *  
## density    26.2309     5.9095   4.439 1.03e-05 ***
## phi.core    1.9057     0.1222  15.596  < 2e-16 ***
## FaciesF1  105.7366    36.6680   2.884  0.00404 ** 
## FaciesF10 110.9764    36.8817   3.009  0.00270 ** 
## FaciesF2  108.7969    36.9502   2.944  0.00333 ** 
## FaciesF3  106.3250    37.0225   2.872  0.00419 ** 
## FaciesF5  111.9329    36.2060   3.092  0.00206 ** 
## FaciesF7  107.6154    36.2082   2.972  0.00305 ** 
## FaciesF8  103.3649    36.0747   2.865  0.00427 ** 
## FaciesF9   95.1143    36.2597   2.623  0.00888 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.893 on 806 degrees of freedom
## Multiple R-squared:  0.965,  Adjusted R-squared:  0.9645 
## F-statistic:  1712 on 13 and 806 DF,  p-value: < 2.2e-16
k.core.pred3<- predict(k.core.pred3, data)
k.core.pred3 <- exp(log(best.lam*k.core.pred3+1)/best.lam)
####cbind(data$k.core,k.core.pred3)
AdjR.sq3 <- 1-sum((k.core.pred3 - data$k.core)^2)/sum((data$k.core-mean(data$k.core))^2)
AdjR.sq3
## [1] 0.6823408
rmse.model3 <- sqrt(sum((k.core.pred3 - data$k.core)^2)/nrow(data))
rmse.model3
## [1] 1259.248
par(mfrow=c(1,1))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="p", col="lightgreen", lwd = 5, pch=16, xlab='k',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred2),type="l", col="red", lwd = 5, pch=15, xlab='k',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2, main='Adjr.sq1=0.9999 & RMSE=0')
grid()
legend('topright', legend=c("Observed", "Predicted"), pch=c(16,15), col=c("lightgreen", "red"))

par(mfrow=c(1,1))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="p", col="red", lwd = 5, pch=16, xlab='k',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred),type="l", col="blue", lwd = 5, pch=17, xlab='k',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred2),type="l", col="lightgreen", lwd = 5, pch=15, xlab='k',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred3),type="l", col="black", lwd = 5, pch=15, xlab='k',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)

grid()
legend('topright', legend=c("Observed", "Predicted1", "Predicted2", "Predicted3"), pch=c(16,15,17,11), col=c("red", "blue", "lightgreen", "black"))

set.seed(42)
rows <- sample(nrow(data))
data<-data[rows, ]
head(data)
##      depth caliper ind.deep ind.med  gamma phi.N  R.deep  R.med      SP
## 561 5950.0   8.489   26.833  29.266 41.036 0.284  37.268 34.169 -21.363
## 321 5827.0   8.588    8.425  10.695 24.896 0.191 118.698 93.501 -50.852
## 153 5743.0   8.816  341.817 353.069 72.168 0.248   2.925  2.832 -35.805
## 74  5703.5   8.686   32.016  36.599 56.703 0.080  31.234 27.323 -35.935
## 228 5780.5   8.686  222.486 199.552 60.909 0.177   4.495  5.011 -44.079
## 146 5739.5   8.816  316.687 306.366 68.606 0.268   3.158  3.264 -39.945
##     density.corr density phi.core    k.core Facies phi.core.frac
## 561       -0.004   2.054  31.2625 3293.4705     F8      0.312625
## 321       -0.021   2.073  27.6898 5338.7207     F5      0.276898
## 153        0.016   2.171  23.5965  467.5622     F3      0.235965
## 74        -0.029   1.943  31.0000 1866.9200     F1      0.310000
## 228       -0.015   2.181  23.1149 1109.5569     F3      0.231149
## 146       -0.038   2.113  29.0670  597.4316     F3      0.290670
split <- round(nrow(data)*0.70)
train <- data[1:split, ]
test <- data[(split+1):nrow(data), ]
mod <- lm(k.core.pred3 ~.-1,data=data)
summary(mod)
## 
## Call:
## lm(formula = k.core.pred3 ~ . - 1, data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -2750  -1405   -345   1103   6349 
## 
## Coefficients: (1 not defined because of singularities)
##                 Estimate Std. Error t value Pr(>|t|)  
## depth          3.079e+00  2.399e+00   1.283   0.1998  
## caliper        1.492e+02  1.352e+03   0.110   0.9121  
## ind.deep      -2.511e+00  3.120e+00  -0.805   0.4211  
## ind.med        2.886e+00  3.426e+00   0.842   0.3999  
## gamma          2.009e+00  8.249e+00   0.243   0.8077  
## phi.N         -3.734e+03  1.958e+03  -1.907   0.0569 .
## R.deep        -7.080e+00  8.405e+00  -0.842   0.3999  
## R.med          1.532e+01  1.230e+01   1.246   0.2132  
## SP            -3.043e+00  4.181e+00  -0.728   0.4670  
## density.corr  -8.280e+03  6.375e+03  -1.299   0.1943  
## density        3.650e+03  1.559e+03   2.342   0.0194 *
## phi.core       4.703e+01  3.156e+01   1.490   0.1366  
## k.core        -9.566e-02  4.688e-02  -2.040   0.0416 *
## FaciesF1      -2.532e+04  2.355e+04  -1.075   0.2826  
## FaciesF10     -2.563e+04  2.360e+04  -1.086   0.2778  
## FaciesF2      -2.457e+04  2.355e+04  -1.044   0.2970  
## FaciesF3      -2.537e+04  2.363e+04  -1.074   0.2832  
## FaciesF5      -2.564e+04  2.362e+04  -1.085   0.2782  
## FaciesF7      -2.679e+04  2.359e+04  -1.136   0.2564  
## FaciesF8      -2.562e+04  2.368e+04  -1.082   0.2796  
## FaciesF9      -2.627e+04  2.381e+04  -1.103   0.2703  
## phi.core.frac         NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1672 on 798 degrees of freedom
## Multiple R-squared:  0.6197, Adjusted R-squared:  0.6097 
## F-statistic: 61.93 on 21 and 798 DF,  p-value: < 2.2e-16
par(mfrow=c(1,1))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="p", col="darkgreen", lwd = 3, pch=20, xlab='Permeability, md',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2, main='RMSE=4362.062')
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred3),type="p", col="red", lwd = 3, pch=20, xlab='',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2,)
grid()
legend('topright', legend=c("Observed", "Predicted"), pch=c(16,15), col=c("darkgreen", "red"))