Exercises 1
#1-4
3*4+6
## [1] 18
cos(5*pi/180)
## [1] 0.9961947
x<-4
3*sqrt(6+x)
## [1] 9.486833
y<-5.2
#5.
x <- 3
y <- 4
z <- (2*x) - (7*y)
z
## [1] -22
#6.
help(inv)
## No documentation for 'inv' in specified packages and libraries:
## you could try '??inv'
#7-9
A<-matrix(data=c(1,0,1,-2,0,5,2,0,2,2,3,1,-3,2,4,3),nrow=4,ncol=4)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 0 2 -3
## [2,] 0 5 2 2
## [3,] 1 2 3 4
## [4,] -2 0 1 3
b<-c(1,2,3,4)
C<-A%*%b
C
## [,1]
## [1,] -5
## [2,] 24
## [3,] 30
## [4,] 13
#10.
X<-matrix(data=c(5,1,2,3),nrow =2,ncol = 2)
X
## [,1] [,2]
## [1,] 5 2
## [2,] 1 3
Y<-c(3,-1)
solve(X,Y)
## [1] 0.8461538 -0.6153846
#Para resolver por el metodo de eliminacion gaussiana primero definimos los dos vectores
a<-c(5,2,3)
b<-c(1,3,-1)
#Multiplicamos el vector 2 por -5 y lo sumamos al vector 1 para eliminar x1
b<-b*-5
b
## [1] -5 -15 5
c<-a+b
c
## [1] 0 -13 8
#Ahora podemos calcular el valor de x2
x2<-8/-13
x2
## [1] -0.6153846
#Finalmente, con el valor de x2 podemos hallar x1
x1<--1-3*x2
x1
## [1] 0.8461538
#11.
#Resolver el sistema de ecuaciones usando matriz inversa
X<-matrix(data=c(5,1,2,3),nrow =2,ncol = 2)
X
## [,1] [,2]
## [1,] 5 2
## [2,] 1 3
Y<-c(3,-1)
#Calculamos la matriz inversa de x
I<-solve(X)
#Finalmente, se debe multiplicar la matriz inversa por el vector Y para calcular los valores de x1 y x2
I%*%Y
## [,1]
## [1,] 0.8461538
## [2,] -0.6153846
#12-16
M <- matrix( data=c(1,1,4,0,2,5,6,3,-2), nrow = 3, ncol= 3)
subM <- M[2:3,1:2]
M[1,]
## [1] 1 0 6
M[1,3]
## [1] 6
#17-18
v <- c(1:9)
yv <- v^3-2
plot(v,yv)

#19
ms <- matrix(data = c(5,69,4,20,6,18,7,67,19,3,70,6,68,8,17,5), nrow=4, ncol=4)
suma_row = c()
suma_col = c()
diag1 = 0
diag2 = 0
for (i in 1:4){
suma_col[i]= sum(ms[,i])
suma_row[i]= sum(ms[i,])
diag1 = diag1 + ms[i,i]
diag2 = diag2 + ms[i,5-i]
}
suma_col
## [1] 98 98 98 98
suma_row
## [1] 98 98 98 98
diag1
## [1] 98
diag2
## [1] 98
Exercises 4
#1.
w<-c(2,4,-6,0)
#2.
w[2]
## [1] 4
#3-8
z<-(pi/2)*w
z
## [1] 3.1416 6.2832 -9.4248 0.0000
z[4]
## [1] 0
z[1:3]
## [1] 3.1416 6.2832 -9.4248
length(z)
## [1] 4
sum(z)
## [1] 4.440892e-16
min(z)
## [1] -9.4248
max(z)
## [1] 6.2832
#9.
r<-seq(1,10,2.5)
#10.
s<-seq(1,100,10)
#11.
v1<-c(9,3,-2,5,0)
v2<-c(1,2,-4)
unir<-c(v1,v2)
#12.
v3<-c(v1,4)
#13.
v1<-c(0.2,1.3,-3.5)
v2<-c(0.5,-2.5,1.0)
#14.
resta<-v1-v2
#15.
multiplicacion<-v1%*%v2
#16.
multiplicacion<-v1*v2
#17.
division<-v1/v2
#18
producto_punto = 0
for (i in 1:3){
producto_punto = producto_punto + v1[i]*v2[i]
}
producto_punto
## [1] -6.65
#19-20
#Error : La longitud del objeto de mayor longitud no es multiplo de la longitud del objeto de menor longitud
#s <- c(1, 3, 5) + c(3, 6)
#s <- c(1, 3, 5) - c(3, 6)
#21-25
w <- c(1.1, 1.3, -2.4)
5+w
## [1] 6.1 6.3 2.6
-2-w
## [1] -3.1 -3.3 0.4
1.5*w
## [1] 1.65 1.95 -3.60
w/10
## [1] 0.11 0.13 -0.24
3-2*w/5
## [1] 2.56 2.48 3.96
#26
b <- c(0, pi/3, 2*pi/3, pi)
sin(b)
## [1] 0.000000e+00 8.660266e-01 8.660230e-01 -7.346410e-06
cos(b)
## [1] 1.0000000 0.4999979 -0.5000042 -1.0000000
tan(b)
## [1] 0.000000e+00 1.732061e+00 -1.732031e+00 7.346410e-06
#27-28
exp(b)
## [1] 1.000000 2.849661 8.120567 23.140863
sqrt(b)
## [1] 0.000000 1.023328 1.447204 1.772456
#29
3^b
## [1] 1.000000 3.159667 9.983498 31.544535
#31-32
c(1:4)
## [1] 1 2 3 4
c(1:6)
## [1] 1 2 3 4 5 6
#33
sort(c(0.35, -1.0, 0.24, 1.30, -0.03))
## [1] -1.00 -0.03 0.24 0.35 1.30
#34
sample(1:5, 5, replace = FALSE)
## [1] 4 3 1 2 5
#35
z <- c(2,4,-3,-0,-1,-5,-7)
range(z)
## [1] -7 4
mean(z)
## [1] -1.428571
median(z)
## [1] -1
#36-39
x <- c("r","s","t","u","v")
z <- as.character(c(1,0,-2,3,5))
y <- c()
for (i in 1:5){
y[i] <- paste(x[i],z[i],sep="+")
}
y
## [1] "r+1" "s+0" "t+-2" "u+3" "v+5"
y[3] <- "t-2"
w <- c()
for (i in 1:5){
w[i] <- paste("2*",x[i],"/7+3*", y[i], sep = "")
}
w
## [1] "2*r/7+3*r+1" "2*s/7+3*s+0" "2*t/7+3*t-2" "2*u/7+3*u+3" "2*v/7+3*v+5"
#40.
producto_2 <- c()
for (i in 1:5){
producto_2[i] = paste(x[i],"*",y[i])
}
producto_2
## [1] "r * r+1" "s * s+0" "t * t-2" "u * u+3" "v * v+5"
producto_2[1] <- "r^2+r"
producto_2[2] <- "s^2"
producto_2[3] <- "t^2-2t"
producto_2[4] <- "u^2+3u"
producto_2[5] <- "v^2+5v"
paste(producto_2[1],producto_2[2], producto_2[3], producto_2[4], producto_2[5], sep = "+")
## [1] "r^2+r+s^2+t^2-2t+u^2+3u+v^2+5v"
#41.
q<-c()
for (i in 1:5){
q[i] <- paste(x[i],y[i],sep="+")
}
q
## [1] "r+r+1" "s+s+0" "t+t-2" "u+u+3" "v+v+5"
Exercises 5
#1.
A<-matrix(data=c(3,1,0,3,-2,5),nrow = 2, ncol = 3)
dim(A) ##El tamaño de la matriz es de 2*3
## [1] 2 3
#2.
A[2,2]
## [1] 3
#3.
B<-A*(3*pi/2)
#4.
B[1,3]
## [1] -9.4248
B
## [,1] [,2] [,3]
## [1,] 14.1372 0.0000 -9.4248
## [2,] 4.7124 14.1372 23.5620
#8.
length(B)
## [1] 6
#9.
sum(B[,1])
## [1] 18.8496
sum(B[,2])
## [1] 14.1372
sum(B[,3])
## [1] 14.1372
min(B[,1])
## [1] 4.7124
min(B[,2])
## [1] 0
min(B[,3])
## [1] -9.4248
max(B[,1])
## [1] 14.1372
max(B[,2])
## [1] 14.1372
max(B[,3])
## [1] 23.562
#10.
a<-c(1,3,0,-4)
b<-c(5,3,1,0)
c<-c(2,2,-1,1)
m<-matrix(data=c(a,b,c), nrow=3,ncol = 4)
m
## [,1] [,2] [,3] [,4]
## [1,] 1 -4 1 2
## [2,] 3 5 0 -1
## [3,] 0 3 2 1
#11.
R <- matrix(data=c(1,7,3,2,5,1,0,-3,1), ncol=3)
S <- matrix(data=c(1,3,2,3,5,3,-2,7,0), ncol=3)
#12.
R*S
## [,1] [,2] [,3]
## [1,] 1 6 0
## [2,] 21 25 -21
## [3,] 6 3 0
R/S
## [,1] [,2] [,3]
## [1,] 1.000000 0.6666667 0.0000000
## [2,] 2.333333 1.0000000 -0.4285714
## [3,] 1.500000 0.3333333 Inf
#15-19
x <- matrix(data=c(1,2,-3,5,-2,3,5,-2,0,6,2,4,1,2,1,4), ncol=4, nrow=4)
5+x
## [,1] [,2] [,3] [,4]
## [1,] 6 3 5 6
## [2,] 7 8 11 7
## [3,] 2 10 7 6
## [4,] 10 3 9 9
x-3
## [,1] [,2] [,3] [,4]
## [1,] -2 -5 -3 -2
## [2,] -1 0 3 -1
## [3,] -6 2 -1 -2
## [4,] 2 -5 1 1
-3*x
## [,1] [,2] [,3] [,4]
## [1,] -3 6 0 -3
## [2,] -6 -9 -18 -6
## [3,] 9 -15 -6 -3
## [4,] -15 6 -12 -12
x/2
## [,1] [,2] [,3] [,4]
## [1,] 0.5 -1.0 0 0.5
## [2,] 1.0 1.5 3 1.0
## [3,] -1.5 2.5 1 0.5
## [4,] 2.5 -1.0 2 2.0
(-3*x)/(2.4+5)
## [,1] [,2] [,3] [,4]
## [1,] -0.4054054 0.8108108 0.0000000 -0.4054054
## [2,] -0.8108108 -1.2162162 -2.4324324 -0.8108108
## [3,] 1.2162162 -2.0270270 -0.8108108 -0.4054054
## [4,] -2.0270270 0.8108108 -1.6216216 -1.6216216
#20-26
B <- matrix(data=c(180/3,2*180/3,2*180/3,180), ncol=2)
sin(B)
## [,1] [,2]
## [1,] -0.3048106 0.5806112
## [2,] 0.5806112 -0.8011526
cos(B)
## [,1] [,2]
## [1,] -0.952413 0.8141810
## [2,] 0.814181 -0.5984601
tan(B)
## [,1] [,2]
## [1,] 0.3200404 0.713123
## [2,] 0.7131230 1.338690
sqrt(B)
## [,1] [,2]
## [1,] 7.745967 10.95445
## [2,] 10.954451 13.41641
library("expm")
## Warning: package 'expm' was built under R version 4.1.2
## Loading required package: Matrix
##
## Attaching package: 'expm'
## The following object is masked from 'package:Matrix':
##
## expm
sqrtm(B)
## [,1] [,2]
## [1,] 4.406405+2.723308i 7.129714-1.683097i
## [2,] 7.129714-1.683097i 11.536119+1.040211i
exp(B)
## [,1] [,2]
## [1,] 1.142007e+26 1.304181e+52
## [2,] 1.304181e+52 1.489384e+78
expm(B)
## [,1] [,2]
## [1,] 6.661687e+109 1.077884e+110
## [2,] 1.077884e+110 1.744052e+110
log(B)
## [,1] [,2]
## [1,] 4.094345 4.787492
## [2,] 4.787492 5.192957
logm(B)
## Warning in sqrt(S[ij, ij]): Se han producido NaNs
## Warning in logm.Higham08(x): NA/NaN from || Tr - I || after 1 step.
## The matrix logarithm may not exist for this matrix.
## [,1] [,2]
## [1,] NaN NaN
## [2,] NaN NaN
B<-matrix(data = c(pi/3, 2*pi/3, 2*pi/3, pi), nrow = 2,ncol = 2)
B
## [,1] [,2]
## [1,] 1.0472 2.0944
## [2,] 2.0944 3.1416
#27-29
4^B
## [,1] [,2]
## [1,] 4.270485 18.23704
## [2,] 18.237044 77.88103
4^B[1,1]
## [1] 4.270485
4^B[1,2]
## [1] 18.23704
4^B[2,1]
## [1] 18.23704
4^B[2,2]
## [1] 77.88103
B^4
## [,1] [,2]
## [1,] 1.202593 19.24148
## [2,] 19.241482 97.41000
#30-35
M<-matrix(1:1,nrow = 2,ncol = 3)
N<-matrix(0:0,nrow = 2,ncol = 3)
M<-matrix(data=c(1,0,0,1), nrow=2,ncol=2)
M<-matrix(1:1,nrow = 4,ncol = 4)
N<-matrix(0:0,nrow = 4,ncol = 4)
M<-matrix(data=c(1,0,0,1), nrow=4,ncol=4)
#36-41
C<-matrix(data=c(1,2,1,2,2,5,3,3,-3,2,7,-1,0,-3,-2,3), nrow=4,ncol=4)
C1<-t(C)
C+C1
## [,1] [,2] [,3] [,4]
## [1,] 2 4 -2 2
## [2,] 4 10 5 0
## [3,] -2 5 14 -3
## [4,] 2 0 -3 6
diag(C)
## [1] 1 5 7 3
upper.tri(C)
## [,1] [,2] [,3] [,4]
## [1,] FALSE TRUE TRUE TRUE
## [2,] FALSE FALSE TRUE TRUE
## [3,] FALSE FALSE FALSE TRUE
## [4,] FALSE FALSE FALSE FALSE
lower.tri(C)
## [,1] [,2] [,3] [,4]
## [1,] FALSE FALSE FALSE FALSE
## [2,] TRUE FALSE FALSE FALSE
## [3,] TRUE TRUE FALSE FALSE
## [4,] TRUE TRUE TRUE FALSE
det(C)
## [1] -13
D<-solve(C)
#42.
D%*%C #Al multiplicar una matriz por su inversa se obtiene la matriz identidad
## [,1] [,2] [,3] [,4]
## [1,] 1.000000e+00 -7.105427e-15 2.220446e-15 0.000000e+00
## [2,] 1.332268e-15 1.000000e+00 -3.330669e-15 -8.881784e-16
## [3,] -5.551115e-17 -1.665335e-16 1.000000e+00 8.326673e-17
## [4,] 2.775558e-16 1.110223e-15 -3.608225e-16 1.000000e+00
#43-44
norm(C)
## [1] 13
eigen(C)
## eigen() decomposition
## $values
## [1] 8.19439889+0.000000i 3.93791318+2.661524i 3.93791318-2.661524i
## [4] -0.07022524+0.000000i
##
## $vectors
## [,1] [,2] [,3] [,4]
## [1,] 0.24942346+0i 0.1235076+0.3224730i 0.1235076-0.3224730i 0.88639724+0i
## [2,] -0.41481971+0i 0.2577553+0.3723022i 0.2577553-0.3723022i -0.44089112+0i
## [3,] -0.87469708+0i 0.3369753-0.1771706i 0.3369753+0.1771706i 0.02228749+0i
## [4,] 0.02485078+0i 0.7285386+0.0000000i 0.7285386+0.0000000i -0.13934927+0i
#45-47
b<-matrix(data=c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),nrow = 4,ncol = 4)
b
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1
S<-solve(C,b)
diag(S)
## [1] -10.5384615 -3.0769231 0.0000000 -0.1538462
qr(C)$rank
## [1] 4
matrix(data=c(sample(1:100,25)),nrow = 5,ncol = 5)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 60 34 37 86 66
## [2,] 12 38 21 92 1
## [3,] 32 67 76 33 8
## [4,] 14 79 54 80 48
## [5,] 42 25 47 43 40
#48.
M<-matrix(data=c(22,5,30,13,38,21,46,47,23,6,31,14,39,15,16,48,24,7,32,8,40,41,17,49,25,1,33,9,10,42,18,43,26,2,34,35,11,36,19,44,27,3,4,29,12,37,20,45,28),nrow = 7,ncol = 7)
M
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 22 47 16 41 10 35 4
## [2,] 5 23 48 17 42 11 29
## [3,] 30 6 24 49 18 36 12
## [4,] 13 31 7 25 43 19 37
## [5,] 38 14 32 1 26 44 20
## [6,] 21 39 8 33 2 27 45
## [7,] 46 15 40 9 34 3 28
rowSums(M)
## [1] 175 175 175 175 175 175 175
colSums(M)
## [1] 175 175 175 175 175 175 175
#LA SUMA DE CADA FILA Y DE CADA COLUMNA ES IGUAL