(https://data-make.tistory.com/47)
(https://haven.tidyverse.org/reference/read_dta.html)
\(~\)
getwd()
## [1] "C:/Users/distr/OneDrive/R FILE"
setwd("C:/Users/distr/OneDrive/R FILE/r_Intro")
\(~\)
library(haven) #구동
gss_2018_1 <- read_sav("C:/Users/distr/OneDrive/R FILE/r_Intro/GSS2018.sav") #sav file 불러오기
head(gss_2018_1, n = 7) #데이터 위에만 7줄까지 보여달라
## # A tibble: 7 x 1,065
## ABANY ABDEFECT ABFELEGL ABHELP1 ABHELP2 ABHELP3 ABHELP4 ABHLTH ABINSPAY
## <dbl+lbl> <dbl+lb> <dbl+lb> <dbl+l> <dbl+l> <dbl+l> <dbl+l> <dbl+lb> <dbl+lbl>
## 1 2 [NO] 1 [YES] NA 1 [Yes] 1 [Yes] 1 [Yes] 1 [Yes] 1 [YES] 1 [Peopl~
## 2 1 [YES] 1 [YES] 3 [It ~ 2 [No] 2 [No] 2 [No] 2 [No] 1 [YES] 2 [Peopl~
## 3 NA NA NA 1 [Yes] 2 [No] 1 [Yes] 1 [Yes] NA 2 [Peopl~
## 4 NA NA 1 [Sho~ 1 [Yes] 1 [Yes] 1 [Yes] 1 [Yes] NA 1 [Peopl~
## 5 2 [NO] 1 [YES] NA 2 [No] 2 [No] 2 [No] 1 [Yes] 1 [YES] 2 [Peopl~
## 6 1 [YES] 1 [YES] 1 [Sho~ 1 [Yes] 1 [Yes] 1 [Yes] 1 [Yes] 1 [YES] 1 [Peopl~
## 7 1 [YES] 1 [YES] 3 [It ~ 1 [Yes] 2 [No] 1 [Yes] 1 [Yes] 1 [YES] 1 [Peopl~
## # ... with 1,056 more variables: ABMEDGOV1 <dbl+lbl>, ABMEDGOV2 <dbl+lbl>,
## # ABMELEGL <dbl+lbl>, ABMORAL <dbl+lbl>, ABNOMORE <dbl+lbl>,
## # ABPOOR <dbl+lbl>, ABPOORW <dbl+lbl>, ABRAPE <dbl+lbl>, ABSINGLE <dbl+lbl>,
## # ABSTATE1 <dbl+lbl>, ABSTATE2 <dbl+lbl>, ACQNTSEX <dbl+lbl>,
## # ACTSSOC <dbl+lbl>, ADMINCONSENT <dbl+lbl>, ADULTS <dbl+lbl>,
## # ADVFRONT <dbl+lbl>, AFFRMACT <dbl+lbl>, AFRAIDOF <dbl+lbl>,
## # AFTERLIF <dbl+lbl>, AGE <dbl+lbl>, AGED <dbl+lbl>, AGEKDBRN <dbl+lbl>,
## # ANCESTRS <dbl+lbl>, ARTHRTIS <dbl+lbl>, ASTROLGY <dbl+lbl>,
## # ASTROSCI <dbl+lbl>, ATHEISTS <dbl+lbl>, ATTEND <dbl+lbl>,
## # ATTEND12 <dbl+lbl>, ATTENDMA <dbl+lbl>, ATTENDPA <dbl+lbl>,
## # AWAY1 <dbl+lbl>, AWAY11 <dbl+lbl>, AWAY2 <dbl+lbl>, AWAY3 <dbl+lbl>,
## # AWAY4 <dbl+lbl>, AWAY5 <dbl+lbl>, AWAY6 <dbl+lbl>, AWAY7 <dbl+lbl>,
## # BABIES <dbl+lbl>, BACKPAIN <dbl+lbl>, BALLOT <dbl+lbl>, BALNEG <dbl+lbl>,
## # BALPOS <dbl+lbl>, BEFAIR <dbl+lbl>, BETRLANG <dbl+lbl>, BIBLE <dbl+lbl>,
## # BIGBANG <dbl+lbl>, BIGBANG1 <dbl+lbl>, BIGBANG2 <dbl+lbl>, BIRD <dbl+lbl>,
## # BIRDB4 <dbl+lbl>, BORN <dbl+lbl>, BOYORGRL <dbl+lbl>, BREAKDWN <dbl+lbl>,
## # BUDDHSTS <dbl+lbl>, BUYESOP <dbl+lbl>, BUYVALUE <dbl+lbl>,
## # CANTRUST <dbl+lbl>, CAPPUN <dbl+lbl>, CAT <dbl+lbl>, CATB4 <dbl+lbl>,
## # CHARACTR <dbl+lbl>, CHEMGEN <dbl+lbl>, CHILDS <dbl+lbl>,
## # CHLDIDEL <dbl+lbl>, CHRISTNS <dbl+lbl>, CHURHPOW <dbl+lbl>,
## # CLASS <dbl+lbl>, CLERGVTE <dbl+lbl>, CLOSETO1 <dbl+lbl>,
## # CLOSETO2 <dbl+lbl>, CLOSETO3 <dbl+lbl>, CLOSETO4 <dbl+lbl>,
## # CLOSETO5 <dbl+lbl>, CNTCTFAM <dbl+lbl>, CNTCTFRD <dbl+lbl>,
## # CNTCTKID <dbl+lbl>, CNTCTPAR <dbl+lbl>, CNTCTSIB <dbl+lbl>,
## # CODEG <dbl+lbl>, CODEN <dbl+lbl>, COEDUC <dbl+lbl>, COEVWORK <dbl+lbl>,
## # COFUND <dbl+lbl>, COHORT <dbl+lbl>, COHRS1 <dbl+lbl>, COHRS2 <dbl+lbl>,
## # COIND10 <dbl+lbl>, COISCO08 <dbl+lbl>, COJew <dbl+lbl>, COLATH <dbl+lbl>,
## # COLCOM <dbl+lbl>, COLDEG1 <dbl+lbl>, COLHOMO <dbl+lbl>, COLMIL <dbl+lbl>,
## # COLMSLM <dbl+lbl>, COLRAC <dbl+lbl>, COLSCI <dbl+lbl>, COLSCINM <dbl+lbl>,
## # ...
dim(gss_2018_1) #데이터 구조 보기
## [1] 2348 1065
names(gss_2018_1) #변수명 보기
View(gss_2018_1) #전체를 엑셀처럼 보기
\(~\)
library(foreign) #구동
## Warning: 패키지 'foreign'는 R 버전 4.1.2에서 작성되었습니다
gss_2018_2 <- read.spss("C:/Users/distr/OneDrive/R FILE/r_Intro/GSS2018.sav")
\(~\)
\(~\)
library(readxl)
## Warning: 패키지 'readxl'는 R 버전 4.1.2에서 작성되었습니다
data <- read_excel("file pathway" #파일 경로
, sheet = 1 # 1번 시트만 가져와라
, col_names = T # 첫 행 변수명으로 가져올까?
, na = c("", "NA", ".") #파일에서 결측값
, skip = 15) #몇 번 행을 skip할까?
\(~\)
library(gdata)
data <- read.xls("file pathway"
, sheet = 1
, stringsAsFactors = F #character를 Factor로 읽지 않기
, na.strings = c("", "NA", ".")) #파일에서 결측값
\(~\)
write.csv(gss_2018_1,
file = "C:/Users/distr/OneDrive/R FILE/r_Intro/gss_2018_1.csv", #파일명
row.names = F) #T로 하면 첫 열, 즉 각 행의 이름이 데이터로 저장됨. 따라서 보통은 F.
\(~\)
gss_2018_3 <- read.csv("C:/Users/distr/OneDrive/R FILE/r_Intro/gss_2018_1.csv"
, header = T #첫 행 변수명으로
, sep = "," #csv에서 자료 구분은 ","
, stringsAsFactors = FALSE #character를 Factor로 읽지 않기
, na.strings = c("", "NA", ".")) #csv파일에서 결측값 "", "NA", "."
\(~\)
library("data.table")
gss_2018_4 <- fread("C:/Users/distr/OneDrive/R FILE/r_Intro/gss_2018_1.csv"
, header = T #첫 행 변수명으로
, sep = "," #csv에서 자료 구분은 ","
, stringsAsFactors = FALSE #character를 Factor로 읽지 않기
, na.strings = c("", "NA", ".")) #csv파일에서 결측값 "", "NA", "."
\(~\)
library(readr) #readr은 tidyverse 내 구성 패키지
gss_2018_5 <- read_csv("C:/Users/distr/OneDrive/R FILE/r_Intro/gss_2018_1.csv"
, col_names = T #첫 행 변수명이 없을 때는 F
, na = c("", "NA", ".")) #csv파일에서 결측값 "", "NA", "."
\(~\)
save(gss_2018_2, file = "C:/Users/distr/OneDrive/R FILE/r_Intro/gss_2018_2.RData")
save(gss_2018_1, gss_2018_2, gss_2018_3, file = "C:/Users/distr/OneDrive/R FILE/r_Intro/gss_2018_1_2.RData") #둘 이상의 객체도 저장 가능
save.image(file = "C:/Users/distr/OneDrive/R FILE/r_Intro/gss_2018.RData") #현재 하고 있는 모든 객체 저장
\(~\)
rm(list=ls())
load("C:/Users/distr/OneDrive/R FILE/r_Intro/gss_2018.RData") #불러오기