library(readxl)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggpubr)
## Loading required package: ggplot2
library(prettydoc)
## Warning: package 'prettydoc' was built under R version 4.1.2
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
WB<- read_excel("Z:/TSever/Western Blot/YBX1_pSer102.xlsx",
sheet = "HL60")
WB$YBX1_inverted<-c(255-WB$YBX1)
WB$YBX1_background_inverted<-c(255-WB$YBX1_background)
WB$YBX1_GAPDH_background_inverted<-c(255-WB$YBX1_GAPDH)
WB$YBX1_GAPDH_inverted<-c(255-WB$YBX1_GAPDH_background)
WB$YBX1pS102_inverted<-c(255-WB$YBX1pS102)
WB$YBX1pS102_background_inverted<-c(255-WB$YBX1pS102_background)
WB$YBX1pS102_GAPDH_inverted<-c(255-WB$YBX1pS102_GAPDH)
WB$YBX1pS102_GAPDH_background_inverted<-c(255-WB$YBX1pS102_GAPDH_background)
WB[,18]<-c(WB$YBX1_inverted - WB$YBX1_background_inverted)
WB[,19]<-c(WB$YBX1_GAPDH_inverted - WB$YBX1_GAPDH_background_inverted)
WB[,20]<-c(WB$YBX1pS102_inverted - WB$YBX1pS102_background_inverted)
WB[,21]<-c(WB$YBX1pS102_GAPDH_inverted - WB$YBX1pS102_GAPDH_background_inverted)
colnames(WB)[c(18,19,20,21)] <-c('net_YBX1','net_GAPDH_YBX1','net_YBX1pS102','net_GAPDH_YBX1pS102')
WB[,22]<-c(WB$net_YBX1 / WB$net_GAPDH_YBX1)
WB[,23]<-c(WB$net_YBX1pS102 / WB$net_GAPDH_YBX1pS102)
colnames(WB)[c(22,23)]<-c('ratio_YBX1','ratio_YBX1pS102')
WB[,24]<-c(WB$ratio_YBX1 / WB$ratio_YBX1pS102)
colnames(WB)[c(24)]<-c('ratio_YBX1YBX1pS102')
WBt<-WB
WBt[,1]<-c('LEG','LEG','LEG','SC','SC','SC')
F test is used to check if variances of both sets of data are equal
var.test(ratio_YBX1YBX1pS102 ~ Sample, data=WBt )
##
## F test to compare two variances
##
## data: ratio_YBX1YBX1pS102 by Sample
## F = 3.0298, num df = 2, denom df = 2, p-value = 0.4963
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07768777 118.16310471
## sample estimates:
## ratio of variances
## 3.029823
the p-value of F test is p=0.5687, greather than alpha=0.05, alternative hypothesis accepted -> thereis no significant difference between the variances of the two data sets
Shapiro-Wilk test is used to test if data has normal distribution
with(WBt, shapiro.test(ratio_YBX1YBX1pS102 [Sample == 'LEG']))
##
## Shapiro-Wilk normality test
##
## data: ratio_YBX1YBX1pS102[Sample == "LEG"]
## W = 0.99968, p-value = 0.9657
with(WBt, shapiro.test(ratio_YBX1YBX1pS102 [Sample == 'SC']))
##
## Shapiro-Wilk normality test
##
## data: ratio_YBX1YBX1pS102[Sample == "SC"]
## W = 0.99988, p-value = 0.9794
both groups have normal distribution (p-value greater than 0.05)
unpaired t-test is used to check wheter samples have different means
test<-t.test(ratio_YBX1YBX1pS102 ~ Sample , data = WBt, var.equal = TRUE, conf.level = 0.99)
test
##
## Two Sample t-test
##
## data: ratio_YBX1YBX1pS102 by Sample
## t = -4.1127, df = 4, p-value = 0.0147
## alternative hypothesis: true difference in means between group LEG and group SC is not equal to 0
## 99 percent confidence interval:
## -2.0913344 0.1179059
## sample estimates:
## mean in group LEG mean in group SC
## -1.5638367 -0.5771224
p-value of the t-test is 0.03744, which is less than alpha 0.05. the means are different
hl60<-ggboxplot(WBt, x = "Sample", y = "ratio_YBX1YBX1pS102",
color = "Sample", palette = c("#00AFBB", "#E7B800"),
ylab = "normalised band intensity", xlab = "Sample", main='Liver')+
theme(plot.title = element_text(hjust = 0.5))+
theme(legend.position = 'right')
hl60