library(readxl)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggpubr)
## Loading required package: ggplot2
library(prettydoc)
## Warning: package 'prettydoc' was built under R version 4.1.2
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
WB<- read_excel("Z:/TSever/Western Blot/YBX1_pSer102.xlsx",
sheet = "YBX1pS")
WB$liver_YBX1_inverted<-c(255-WB$Liver_YBX1)
WB$liver_YBX1_background_inverted<-c(255-WB$liver_YBX1_background)
WB$kidney_YBX1_inverted<-c(255-WB$Kidney_YBX1)
WB$kidney_YBX1_background_inverted<-c(255-WB$kidney_YBX1_background)
WB$spleen_YBX1_inverted<-c(255-WB$spleen_YBX1)
WB$spleen_YBX1_background_inverted<-c(255-WB$spleen_YBX1_background)
WB$liver_YBX1_GAPDH_background_inverted<-c(255-WB$liver_YBX1_GAPDH)
WB$liver_YBX1_GAPDH_inverted<-c(255-WB$liver_YBX1_GAPDH_background)
WB$kidney_YBX1_GAPDH_inverted<-c(255-WB$kidney_YBX1_GAPDH)
WB$kidney_YBX1_GAPDH_background_inverted<-c(255-WB$kidney_YBX1_GAPDH_background)
WB$spleen_YBX1_GAPDH_inverted<-c(255-WB$spleen_YBX1_GAPDH)
WB$spleen_YBX1_GAPDH_background_inverted<-c(255-WB$spleen_YBX1_GAPDH_background)
WB$liver_YBX1pS102_inverted<-c(255-WB$Liver_YBX1pS102)
WB$liver_YBX1pS102_background_inverted<-c(255-WB$liver_YBX1pS102_background)
WB$kidney_YBX1pS102_inverted<-c(255-WB$Kidney_YBX1pS102)
WB$kidney_YBX1pS102_background_inverted<-c(255-WB$kidney_YBX1pS102_background)
WB$spleen_YBX1pS102_inverted<-c(255-WB$spleen_YBX1pS102)
WB$spleen_YBX1pS102_background_inverted<-c(255-WB$spleen_YBX1pS102_background)
WB$liver_YBX1pS102_GAPDH_inverted<-c(255-WB$liver_YBX1pS102_GAPDH)
WB$liver_YBX1pS102_GAPDH_background_inverted<-c(255-WB$liver_YBX1pS102_GAPDH_background)
WB$kidney_YBX1pS102_GAPDH_inverted<-c(255-WB$kidney_YBX1pS102_GAPDH)
WB$kidney_YBX1pS102_GAPDH_background_inverted<-c(255-WB$kidney_YBX1pS102_GAPDH_background)
WB$spleen_YBX1pS102_GAPDH_inverted<-c(255-WB$spleen_YBX1pS102_GAPDH)
WB$spleen_YBX1pS102_GAPDH_background_inverted<-c(255-WB$spleen_YBX1pS102_GAPDH_background)
WB[,50]<-c(WB$liver_YBX1_inverted - WB$liver_YBX1_background_inverted)
WB[,51]<-c(WB$kidney_YBX1_inverted - WB$kidney_YBX1_background_inverted)
WB[,52]<-c(WB$spleen_YBX1_inverted - WB$spleen_YBX1_background_inverted)
WB[,53]<-c(WB$liver_YBX1_GAPDH_inverted - WB$liver_YBX1_GAPDH_background_inverted)
WB[,54]<-c(WB$kidney_YBX1_GAPDH_inverted - WB$kidney_YBX1_GAPDH_background_inverted)
WB[,55]<-c(WB$spleen_YBX1_GAPDH_inverted - WB$spleen_YBX1_GAPDH_background_inverted)
WB[,56]<-c(WB$liver_YBX1pS102_inverted - WB$liver_YBX1pS102_background_inverted)
WB[,57]<-c(WB$kidney_YBX1pS102_inverted - WB$kidney_YBX1pS102_background_inverted)
WB[,58]<-c(WB$spleen_YBX1pS102_inverted - WB$spleen_YBX1pS102_background_inverted)
WB[,59]<-c(WB$liver_YBX1pS102_GAPDH_inverted - WB$liver_YBX1pS102_GAPDH_background_inverted)
WB[,60]<-c(WB$kidney_YBX1pS102_GAPDH_inverted - WB$kidney_YBX1pS102_GAPDH_background_inverted)
WB[,61]<-c(WB$spleen_YBX1pS102_GAPDH_inverted - WB$spleen_YBX1pS102_GAPDH_background_inverted)
colnames(WB)[c(50,51,52,53,54,55,56,57,58,59,60,61)] <-c('net_liver_YBX1','net_kidney_YBX1','net_spleen_YBX1','net_liver_GAPDH_YBX1','net_kidney_GAPDH_YBX1','net_spleen_GAPDH_YBX1','net_liver_YBX1pS102','net_kidney_YBX1pS102','net_spleen_YBX1pS102','net_liver_GAPDH_YBX1pS102','net_kidney_GAPDH_YBX1pS102','net_spleen_GAPDH_YBX1pS102')
WB[,62]<-c(WB$net_liver_YBX1 / WB$net_liver_GAPDH_YBX1)
WB[,63]<-c(WB$net_kidney_YBX1 / WB$net_kidney_GAPDH_YBX1)
WB[,64]<-c(WB$net_spleen_YBX1 / WB$net_spleen_GAPDH_YBX1)
WB[,65]<-c(WB$net_liver_YBX1pS102 / WB$net_liver_GAPDH_YBX1pS102)
WB[,66]<-c(WB$net_kidney_YBX1pS102 / WB$net_kidney_GAPDH_YBX1pS102)
WB[,67]<-c(WB$net_spleen_YBX1pS102 / WB$net_spleen_GAPDH_YBX1pS102)
colnames(WB)[c(62,63,64,65,66,67)]<-c('ratio_liver_YBX1','ratio_kidney_YBX1','ratio_spleen_YBX1','ratio_liver_YBX1pS102','ratio_kidney_YBX1pS102','ratio_spleen_YBX1pS102')
WB[,68]<-c(WB$ratio_liver_YBX1 / WB$ratio_liver_YBX1pS102)
WB[,69]<-c(WB$ratio_kidney_YBX1 / WB$ratio_kidney_YBX1pS102)
WB[,70]<-c(WB$ratio_spleen_YBX1 / WB$ratio_spleen_YBX1pS102)
colnames(WB)[c(68,69,70)]<-c('ratio_liver_YBX1YBX1pS102','ratio_kidney_YBX1YBX1pS102','ratio_spleen_YBX1YBX1pS102')
WBt<-WB
WBt[,1]<-c('WT','WT','WT','KO','KO','KO')
F test is used to check if variances of both sets of data are equal
var.test(ratio_liver_YBX1YBX1pS102 ~ Sample, data=WBt )
##
## F test to compare two variances
##
## data: ratio_liver_YBX1YBX1pS102 by Sample
## F = 8.5167, num df = 2, denom df = 2, p-value = 0.2102
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2183761 332.1500946
## sample estimates:
## ratio of variances
## 8.516669
the p-value of F test is p=0.5687, greather than alpha=0.05, alternative hypothesis accepted -> thereis no significant difference between the variances of the two data sets
Shapiro-Wilk test is used to test if data has normal distribution
with(WBt, shapiro.test(ratio_liver_YBX1YBX1pS102 [Sample == 'WT']))
##
## Shapiro-Wilk normality test
##
## data: ratio_liver_YBX1YBX1pS102[Sample == "WT"]
## W = 0.9546, p-value = 0.5899
with(WBt, shapiro.test(ratio_liver_YBX1YBX1pS102 [Sample == 'KO']))
##
## Shapiro-Wilk normality test
##
## data: ratio_liver_YBX1YBX1pS102[Sample == "KO"]
## W = 0.99373, p-value = 0.8486
both groups have normal distribution (p-value greater than 0.05)
unpaired t-test is used to check wheter samples have different means
liver_test<-t.test(ratio_liver_YBX1YBX1pS102 ~ Sample , data = WBt, var.equal = TRUE, conf.level = 0.99)
liver_test
##
## Two Sample t-test
##
## data: ratio_liver_YBX1YBX1pS102 by Sample
## t = 0.22785, df = 4, p-value = 0.8309
## alternative hypothesis: true difference in means between group KO and group WT is not equal to 0
## 99 percent confidence interval:
## -14.72859 16.26226
## sample estimates:
## mean in group KO mean in group WT
## -7.535454 -8.302291
p-value of the t-test is 0.03744, which is less than alpha 0.05. the means are different
liv<-ggboxplot(WBt, x = "Sample", y = "ratio_liver_YBX1YBX1pS102",
color = "Sample", palette = c("#00AFBB", "#E7B800"),
ylab = "normalised band intensity", xlab = "Sample", main='Liver')+
theme(plot.title = element_text(hjust = 0.5))+
theme(legend.position = 'right')
liv
F test is used to check if variances of both sets of data are equal
var.test(ratio_kidney_YBX1YBX1pS102 ~ Sample, data=WBt )
##
## F test to compare two variances
##
## data: ratio_kidney_YBX1YBX1pS102 by Sample
## F = 4.9204, num df = 2, denom df = 2, p-value = 0.3378
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1261629 191.8937708
## sample estimates:
## ratio of variances
## 4.920353
the p-value of F test is p=0.5687, greather than alpha=0.05, alternative hypothesis accepted -> thereis no significant difference between the variances of the two data sets
Shapiro-Wilk test is used to test if data has normal distribution
with(WBt, shapiro.test(ratio_kidney_YBX1YBX1pS102 [Sample == 'WT']))
##
## Shapiro-Wilk normality test
##
## data: ratio_kidney_YBX1YBX1pS102[Sample == "WT"]
## W = 0.93168, p-value = 0.4949
with(WBt, shapiro.test(ratio_kidney_YBX1YBX1pS102 [Sample == 'KO']))
##
## Shapiro-Wilk normality test
##
## data: ratio_kidney_YBX1YBX1pS102[Sample == "KO"]
## W = 0.92702, p-value = 0.4776
both groups have normal distribution (p-value greater than 0.05)
unpaired t-test is used to check wheter samples have different means
kidney_test<-t.test(ratio_kidney_YBX1YBX1pS102 ~ Sample , data = WBt, var.equal = TRUE, conf.level = 0.99)
kidney_test
##
## Two Sample t-test
##
## data: ratio_kidney_YBX1YBX1pS102 by Sample
## t = 0.37509, df = 4, p-value = 0.7266
## alternative hypothesis: true difference in means between group KO and group WT is not equal to 0
## 99 percent confidence interval:
## -9.723074 11.447867
## sample estimates:
## mean in group KO mean in group WT
## 6.668270 5.805874
p-value of the t-test is 0.03744, which is less than alpha 0.05. the means are different
kid<-ggboxplot(WBt, x = "Sample", y = "ratio_kidney_YBX1YBX1pS102",
color = "Sample", palette = c("#00AFBB", "#E7B800"),
ylab = "normalised band intensity", xlab = "Sample", main='Kidney')+
theme(plot.title = element_text(hjust = 0.5))+
theme(legend.position = 'right')
kid
F test is used to check if variances of both sets of data are equal
var.test(ratio_spleen_YBX1YBX1pS102 ~ Sample, data=WBt )
##
## F test to compare two variances
##
## data: ratio_spleen_YBX1YBX1pS102 by Sample
## F = 0.93888, num df = 2, denom df = 2, p-value = 0.9685
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02407381 36.61626379
## sample estimates:
## ratio of variances
## 0.9388786
the p-value of F test is p=0.5687, greather than alpha=0.05, alternative hypothesis accepted -> thereis no significant difference between the variances of the two data sets
Shapiro-Wilk test is used to test if data has normal distribution
with(WBt, shapiro.test(ratio_spleen_YBX1YBX1pS102 [Sample == 'WT']))
##
## Shapiro-Wilk normality test
##
## data: ratio_spleen_YBX1YBX1pS102[Sample == "WT"]
## W = 0.99807, p-value = 0.9162
with(WBt, shapiro.test(ratio_spleen_YBX1YBX1pS102 [Sample == 'KO']))
##
## Shapiro-Wilk normality test
##
## data: ratio_spleen_YBX1YBX1pS102[Sample == "KO"]
## W = 0.9498, p-value = 0.5684
both groups have normal distribution (p-value greater than 0.05)
unpaired t-test is used to check wheter samples have different means
spleen_test<-t.test(ratio_spleen_YBX1YBX1pS102 ~ Sample , data = WBt, var.equal = TRUE, conf.level = 0.99)
spleen_test
##
## Two Sample t-test
##
## data: ratio_spleen_YBX1YBX1pS102 by Sample
## t = -0.74776, df = 4, p-value = 0.4962
## alternative hypothesis: true difference in means between group KO and group WT is not equal to 0
## 99 percent confidence interval:
## -183.6976 132.3651
## sample estimates:
## mean in group KO mean in group WT
## -36.84795 -11.18174
p-value of the t-test is 0.03744, which is less than alpha 0.05. the means are different
spl<-ggboxplot(WBt, x = "Sample", y = "ratio_spleen_YBX1YBX1pS102",
color = "Sample", palette = c("#00AFBB", "#E7B800"),
ylab = "normalised band intensity", xlab = "Sample", main='Spleen')+
theme(plot.title = element_text(hjust = 0.5))+
theme(legend.position = 'right')
spl
WB<- read_excel("Z:/TSever/Western Blot/YBX1_pSer102.xlsx",
sheet = "YBX1pScopy")
WB$liver_YBX1_inverted<-c(255-WB$Liver_YBX1)
WB$liver_YBX1_background_inverted<-c(255-WB$liver_YBX1_background)
WB$kidney_YBX1_inverted<-c(255-WB$Kidney_YBX1)
WB$kidney_YBX1_background_inverted<-c(255-WB$kidney_YBX1_background)
WB$spleen_YBX1_inverted<-c(255-WB$spleen_YBX1)
WB$spleen_YBX1_background_inverted<-c(255-WB$spleen_YBX1_background)
WB$liver_YBX1_GAPDH_background_inverted<-c(255-WB$liver_YBX1_GAPDH)
WB$liver_YBX1_GAPDH_inverted<-c(255-WB$liver_YBX1_GAPDH_background)
WB$kidney_YBX1_GAPDH_inverted<-c(255-WB$kidney_YBX1_GAPDH)
WB$kidney_YBX1_GAPDH_background_inverted<-c(255-WB$kidney_YBX1_GAPDH_background)
WB$spleen_YBX1_GAPDH_inverted<-c(255-WB$spleen_YBX1_GAPDH)
WB$spleen_YBX1_GAPDH_background_inverted<-c(255-WB$spleen_YBX1_GAPDH_background)
WB$liver_YBX1pS102_inverted<-c(255-WB$Liver_YBX1pS102)
WB$liver_YBX1pS102_background_inverted<-c(255-WB$liver_YBX1pS102_background)
WB$kidney_YBX1pS102_inverted<-c(255-WB$Kidney_YBX1pS102)
WB$kidney_YBX1pS102_background_inverted<-c(255-WB$kidney_YBX1pS102_background)
WB$spleen_YBX1pS102_inverted<-c(255-WB$spleen_YBX1pS102)
WB$spleen_YBX1pS102_background_inverted<-c(255-WB$spleen_YBX1pS102_background)
WB$liver_YBX1pS102_GAPDH_inverted<-c(255-WB$liver_YBX1pS102_GAPDH)
WB$liver_YBX1pS102_GAPDH_background_inverted<-c(255-WB$liver_YBX1pS102_GAPDH_background)
WB$kidney_YBX1pS102_GAPDH_inverted<-c(255-WB$kidney_YBX1pS102_GAPDH)
WB$kidney_YBX1pS102_GAPDH_background_inverted<-c(255-WB$kidney_YBX1pS102_GAPDH_background)
WB$spleen_YBX1pS102_GAPDH_inverted<-c(255-WB$spleen_YBX1pS102_GAPDH)
WB$spleen_YBX1pS102_GAPDH_background_inverted<-c(255-WB$spleen_YBX1pS102_GAPDH_background)
WB[,50]<-c(WB$liver_YBX1_inverted - WB$liver_YBX1_background_inverted)
WB[,51]<-c(WB$kidney_YBX1_inverted - WB$kidney_YBX1_background_inverted)
WB[,52]<-c(WB$spleen_YBX1_inverted - WB$spleen_YBX1_background_inverted)
WB[,53]<-c(WB$liver_YBX1_GAPDH_inverted - WB$liver_YBX1_GAPDH_background_inverted)
WB[,54]<-c(WB$kidney_YBX1_GAPDH_inverted - WB$kidney_YBX1_GAPDH_background_inverted)
WB[,55]<-c(WB$spleen_YBX1_GAPDH_inverted - WB$spleen_YBX1_GAPDH_background_inverted)
WB[,56]<-c(WB$liver_YBX1pS102_inverted - WB$liver_YBX1pS102_background_inverted)
WB[,57]<-c(WB$kidney_YBX1pS102_inverted - WB$kidney_YBX1pS102_background_inverted)
WB[,58]<-c(WB$spleen_YBX1pS102_inverted - WB$spleen_YBX1pS102_background_inverted)
WB[,59]<-c(WB$liver_YBX1pS102_GAPDH_inverted - WB$liver_YBX1pS102_GAPDH_background_inverted)
WB[,60]<-c(WB$kidney_YBX1pS102_GAPDH_inverted - WB$kidney_YBX1pS102_GAPDH_background_inverted)
WB[,61]<-c(WB$spleen_YBX1pS102_GAPDH_inverted - WB$spleen_YBX1pS102_GAPDH_background_inverted)
colnames(WB)[c(50,51,52,53,54,55,56,57,58,59,60,61)] <-c('net_liver_YBX1','net_kidney_YBX1','net_spleen_YBX1','net_liver_GAPDH_YBX1','net_kidney_GAPDH_YBX1','net_spleen_GAPDH_YBX1','net_liver_YBX1pS102','net_kidney_YBX1pS102','net_spleen_YBX1pS102','net_liver_GAPDH_YBX1pS102','net_kidney_GAPDH_YBX1pS102','net_spleen_GAPDH_YBX1pS102')
WB[,62]<-c(WB$net_liver_YBX1 / WB$net_liver_GAPDH_YBX1)
WB[,63]<-c(WB$net_kidney_YBX1 / WB$net_kidney_GAPDH_YBX1)
WB[,64]<-c(WB$net_spleen_YBX1 / WB$net_spleen_GAPDH_YBX1)
WB[,65]<-c(WB$net_liver_YBX1pS102 / WB$net_liver_GAPDH_YBX1pS102)
WB[,66]<-c(WB$net_kidney_YBX1pS102 / WB$net_kidney_GAPDH_YBX1pS102)
WB[,67]<-c(WB$net_spleen_YBX1pS102 / WB$net_spleen_GAPDH_YBX1pS102)
colnames(WB)[c(62,63,64,65,66,67)]<-c('ratio_liver_YBX1','ratio_kidney_YBX1','ratio_spleen_YBX1','ratio_liver_YBX1pS102','ratio_kidney_YBX1pS102','ratio_spleen_YBX1pS102')
WB[,68]<-c(WB$ratio_liver_YBX1 / WB$ratio_liver_YBX1pS102)
WB[,69]<-c(WB$ratio_kidney_YBX1 / WB$ratio_kidney_YBX1pS102)
WB[,70]<-c(WB$ratio_spleen_YBX1 / WB$ratio_spleen_YBX1pS102)
colnames(WB)[c(68,69,70)]<-c('ratio_liver_YBX1YBX1pS102','ratio_kidney_YBX1YBX1pS102','ratio_spleen_YBX1YBX1pS102')
WBt<-WB
WBt[,1]<-c('WT','WT','WT','KO','KO','KO')
F test is used to check if variances of both sets of data are equal
var.test(ratio_liver_YBX1YBX1pS102 ~ Sample, data=WBt )
##
## F test to compare two variances
##
## data: ratio_liver_YBX1YBX1pS102 by Sample
## F = 0.34326, num df = 2, denom df = 2, p-value = 0.5111
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.008801532 13.387130402
## sample estimates:
## ratio of variances
## 0.3432598
the p-value of F test is p=0.5687, greather than alpha=0.05, alternative hypothesis accepted -> thereis no significant difference between the variances of the two data sets
Shapiro-Wilk test is used to test if data has normal distribution
with(WBt, shapiro.test(ratio_liver_YBX1YBX1pS102 [Sample == 'WT']))
##
## Shapiro-Wilk normality test
##
## data: ratio_liver_YBX1YBX1pS102[Sample == "WT"]
## W = 0.88542, p-value = 0.3405
with(WBt, shapiro.test(ratio_liver_YBX1YBX1pS102 [Sample == 'KO']))
##
## Shapiro-Wilk normality test
##
## data: ratio_liver_YBX1YBX1pS102[Sample == "KO"]
## W = 0.99974, p-value = 0.9693
both groups have normal distribution (p-value greater than 0.05)
unpaired t-test is used to check wheter samples have different means
liver_test<-t.test(ratio_liver_YBX1YBX1pS102 ~ Sample , data = WBt, var.equal = TRUE, conf.level = 0.99)
liver_test
##
## Two Sample t-test
##
## data: ratio_liver_YBX1YBX1pS102 by Sample
## t = 0.5537, df = 4, p-value = 0.6093
## alternative hypothesis: true difference in means between group KO and group WT is not equal to 0
## 99 percent confidence interval:
## -1.619236 2.061943
## sample estimates:
## mean in group KO mean in group WT
## -1.308287 -1.529641
p-value of the t-test is 0.03744, which is less than alpha 0.05. the means are different
liv<-ggboxplot(WBt, x = "Sample", y = "ratio_liver_YBX1YBX1pS102",
color = "Sample", palette = c("#00AFBB", "#E7B800"),
ylab = "normalised band intensity", xlab = "Sample", main='Liver')+
theme(plot.title = element_text(hjust = 0.5))+
theme(legend.position = 'right')
liv
F test is used to check if variances of both sets of data are equal
var.test(ratio_kidney_YBX1YBX1pS102 ~ Sample, data=WBt )
##
## F test to compare two variances
##
## data: ratio_kidney_YBX1YBX1pS102 by Sample
## F = 93.286, num df = 2, denom df = 2, p-value = 0.02121
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 2.391942 3638.144461
## sample estimates:
## ratio of variances
## 93.28576
the p-value of F test is p=0.5687, greather than alpha=0.05, alternative hypothesis accepted -> thereis no significant difference between the variances of the two data sets
Shapiro-Wilk test is used to test if data has normal distribution
with(WBt, shapiro.test(ratio_kidney_YBX1YBX1pS102 [Sample == 'WT']))
##
## Shapiro-Wilk normality test
##
## data: ratio_kidney_YBX1YBX1pS102[Sample == "WT"]
## W = 0.76968, p-value = 0.04399
with(WBt, shapiro.test(ratio_kidney_YBX1YBX1pS102 [Sample == 'KO']))
##
## Shapiro-Wilk normality test
##
## data: ratio_kidney_YBX1YBX1pS102[Sample == "KO"]
## W = 0.82582, p-value = 0.1777
both groups have normal distribution (p-value greater than 0.05)
unpaired t-test is used to check wheter samples have different means
kidney_test<-t.test(ratio_kidney_YBX1YBX1pS102 ~ Sample , data = WBt, var.equal = TRUE, conf.level = 0.99)
kidney_test
##
## Two Sample t-test
##
## data: ratio_kidney_YBX1YBX1pS102 by Sample
## t = 1.606, df = 4, p-value = 0.1836
## alternative hypothesis: true difference in means between group KO and group WT is not equal to 0
## 99 percent confidence interval:
## -3.031427 6.279073
## sample estimates:
## mean in group KO mean in group WT
## 2.4570183 0.8331954
p-value of the t-test is 0.03744, which is less than alpha 0.05. the means are different
kid<-ggboxplot(WBt, x = "Sample", y = "ratio_kidney_YBX1YBX1pS102",
color = "Sample", palette = c("#00AFBB", "#E7B800"),
ylab = "normalised band intensity", xlab = "Sample", main='Kidney')+
theme(plot.title = element_text(hjust = 0.5))+
theme(legend.position = 'right')
kid
F test is used to check if variances of both sets of data are equal
var.test(ratio_spleen_YBX1YBX1pS102 ~ Sample, data=WBt )
##
## F test to compare two variances
##
## data: ratio_spleen_YBX1YBX1pS102 by Sample
## F = 1.0455, num df = 2, denom df = 2, p-value = 0.9778
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02680681 40.77316450
## sample estimates:
## ratio of variances
## 1.045466
the p-value of F test is p=0.5687, greather than alpha=0.05, alternative hypothesis accepted -> thereis no significant difference between the variances of the two data sets
Shapiro-Wilk test is used to test if data has normal distribution
with(WBt, shapiro.test(ratio_spleen_YBX1YBX1pS102 [Sample == 'WT']))
##
## Shapiro-Wilk normality test
##
## data: ratio_spleen_YBX1YBX1pS102[Sample == "WT"]
## W = 0.91008, p-value = 0.4183
with(WBt, shapiro.test(ratio_spleen_YBX1YBX1pS102 [Sample == 'KO']))
##
## Shapiro-Wilk normality test
##
## data: ratio_spleen_YBX1YBX1pS102[Sample == "KO"]
## W = 0.96237, p-value = 0.6272
both groups have normal distribution (p-value greater than 0.05)
unpaired t-test is used to check wheter samples have different means
spleen_test<-t.test(ratio_spleen_YBX1YBX1pS102 ~ Sample , data = WBt, var.equal = TRUE, conf.level = 0.99)
spleen_test
##
## Two Sample t-test
##
## data: ratio_spleen_YBX1YBX1pS102 by Sample
## t = 2.2636, df = 4, p-value = 0.08633
## alternative hypothesis: true difference in means between group KO and group WT is not equal to 0
## 99 percent confidence interval:
## -1.285190 3.771161
## sample estimates:
## mean in group KO mean in group WT
## 2.0261082 0.7831226
p-value of the t-test is 0.03744, which is less than alpha 0.05. the means are different
spl<-ggboxplot(WBt, x = "Sample", y = "ratio_spleen_YBX1YBX1pS102",
color = "Sample", palette = c("#00AFBB", "#E7B800"),
ylab = "normalised band intensity", xlab = "Sample", main='Spleen')+
theme(plot.title = element_text(hjust = 0.5))+
theme(legend.position = 'right')
spl