Init
library(kirkegaard)
## Loading required package: tidyverse
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
## ✓ tibble 3.1.6 ✓ dplyr 1.0.7
## ✓ tidyr 1.1.4 ✓ stringr 1.4.0
## ✓ readr 2.1.1 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## Loading required package: weights
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
## src, summarize
## The following objects are masked from 'package:base':
##
## format.pval, units
## Loading required package: assertthat
##
## Attaching package: 'assertthat'
## The following object is masked from 'package:tibble':
##
## has_name
## Loading required package: magrittr
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
## set_names
## The following object is masked from 'package:tidyr':
##
## extract
## Loading required package: psych
##
## Attaching package: 'psych'
## The following object is masked from 'package:Hmisc':
##
## describe
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
## Loading required package: metafor
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
##
## Loading the 'metafor' package (version 3.0-2). For an
## introduction to the package please type: help(metafor)
## Loading required package: rlang
##
## Attaching package: 'rlang'
## The following object is masked from 'package:magrittr':
##
## set_names
## The following object is masked from 'package:assertthat':
##
## has_name
## The following objects are masked from 'package:purrr':
##
## %@%, as_function, flatten, flatten_chr, flatten_dbl, flatten_int,
## flatten_lgl, flatten_raw, invoke, list_along, modify, prepend,
## splice
##
## Attaching package: 'kirkegaard'
## The following object is masked from 'package:rlang':
##
## is_logical
## The following object is masked from 'package:psych':
##
## rescale
## The following object is masked from 'package:assertthat':
##
## are_equal
## The following objects are masked from 'package:purrr':
##
## is_logical, is_numeric
## The following object is masked from 'package:base':
##
## +
load_packages(
readxl
)
theme_set(theme_bw())
Data
d = read_excel("202211331747359655220FERT1.xlsx", skip = 2) %>%
map_df(as.numeric)
## New names:
## * `` -> ...1
## Warning in .Primitive("as.double")(x, ...): NAs introduced by coercion
#divide by 1000
for (v in names(d)[-1]) d[[v]] = d[[v]] / 1000
names(d) = c(
"year",
"All_women",
"1st_gen_western",
"1st_gen_nonwestern",
"2nd_gen_western",
"2nd_gen_nonwestern",
"Danish_women"
)
str(d)
## tibble [35 × 7] (S3: tbl_df/tbl/data.frame)
## $ year : num [1:35] 1986 1987 1988 1989 1990 ...
## $ All_women : num [1:35] 1.48 1.5 1.56 1.62 1.67 ...
## $ 1st_gen_western : num [1:35] 1.67 1.6 1.7 1.72 1.88 ...
## $ 1st_gen_nonwestern: num [1:35] 3.05 3.34 3.28 3.37 3.29 ...
## $ 2nd_gen_western : num [1:35] 1.32 1.22 1.41 1.54 1.33 ...
## $ 2nd_gen_nonwestern: num [1:35] NA NA NA NA NA ...
## $ Danish_women : num [1:35] 1.45 1.46 1.52 1.58 1.62 ...
#long
d_long = d %>%
pivot_longer(cols = -year)