# diver_gral <- diver_gral %>%
# pivot_longer(cols=chao_gral:dominance.simpson_REL, names_to = "cosa", values_to = "value") %>%
# separate(cosa, into=c("index", "database2"), sep="_")
diver_gral <- diver_gral %>%
pivot_longer(cols=chao_gral:dominance.simpson_BACBiocide, names_to = "cosa", values_to = "value") %>%
separate(cosa, into=c("index", "database2"), sep="_")
shapiro <- diver_gral %>%
group_by(database2, index, Treatment) %>%
do(tidy(shapiro.test(.$value)))
datatable(shapiro, rownames = FALSE, filter="top", options = list(pageLength = 30, scrollX=T, scrollY=T) )
wilcox <- diver_gral %>%
group_by(database2, index) %>%
do(tidy(wilcox.test(.$value~.$Treatment)))
datatable(wilcox, rownames = FALSE, filter="top", options = list(pageLength = 30, scrollX=T, scrollY=T) )
student <- diver_gral %>%
group_by(database2, index) %>%
do(tidy(t.test(.$value~.$Treatment)))
datatable(student, rownames = FALSE, filter="top", options = list(pageLength = 30, scrollX=T, scrollY=T) )
diver_gral %>% filter(index== "chao") %>%
ggplot(aes(x=Treatment, y = value,fill=Treatment)) +
geom_violin()+
geom_boxplot(width=.2) +
facet_wrap(.~database2)+
ggtitle ("chao index") +xlab("Cohort origin") +ylab("chao Index")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
diver_gral %>% filter(index== "dominance.simpson") %>%
ggplot(aes(x=Treatment, y = value,fill=Treatment)) +
geom_violin()+
geom_boxplot(width=.2) +
facet_wrap(.~database2)+
ggtitle ("dominance simpson diversity") +xlab("Cohort origin") +ylab("simpson Index")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
diver_gral %>% filter(index== "evenness.simpson") %>%
ggplot(aes(x=Treatment, y = value,fill=Treatment)) +
geom_violin()+
geom_boxplot(width=.2) +
facet_wrap(.~database2)+
ggtitle ("eveness simpson diversity") +xlab("Cohort origin") +ylab("simpson Index")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
as.data.frame(PCA$x[,1:2]) %>% rownames_to_column("label") %>% inner_join(Tabla_inicial) %>%
select(label,PC1,PC2,origin) %>% distinct() %>% ggplot(aes(x = PC1, y = PC2, color = origin)) + geom_point() +
ggtitle ("Principal Component Analysis") +xlab("PC1 69.08%") +ylab("PC2 14.57%")
as.data.frame(PCA_ABR$x[,1:2]) %>% rownames_to_column("label") %>% inner_join(Tabla_inicial) %>%
select(label,PC1,PC2,origin) %>% distinct() %>% ggplot(aes(x = PC1, y = PC2, color = origin)) + geom_point() +
ggtitle ("Principal Component Analysis") +xlab("PC1 53.75%") +ylab("PC2 13.22%")
as.data.frame(PCA_BAC$x[,1:2]) %>% rownames_to_column("label") %>% inner_join(Tabla_inicial) %>%
select(label,PC1,PC2,origin) %>% distinct() %>% ggplot(aes(x = PC1, y = PC2, color = origin)) + geom_point() +
ggtitle ("Principal Component Analysis") +xlab("PC1 93.44%") +ylab("PC2 2.19%")
as.data.frame(PCA_REL$x[,1:2]) %>% rownames_to_column("label") %>% inner_join(Tabla_inicial) %>%
select(label,PC1,PC2,origin) %>% distinct() %>% ggplot(aes(x = PC1, y = PC2, color = origin)) + geom_point() +
ggtitle ("Principal Component Analysis") +xlab("PC1 81.85%") +ylab("PC2 6.86%")
as.data.frame(PCA_BAC_Metal$x[,1:2]) %>% rownames_to_column("label") %>% inner_join(Tabla_inicial) %>%
select(label,PC1,PC2,origin) %>% distinct() %>% ggplot(aes(x = PC1, y = PC2, color = origin)) + geom_point() +
ggtitle ("Principal Component Analysis") +xlab("PC1 94.65%") +ylab("PC2 2.17%")
as.data.frame(PCA_BAC_Biocide$x[,1:2]) %>% rownames_to_column("label") %>% inner_join(Tabla_inicial) %>%
select(label,PC1,PC2,origin) %>% distinct() %>% ggplot(aes(x = PC1, y = PC2, color = origin)) + geom_point() +
ggtitle ("Principal Component Analysis") +xlab("PC1 95.28%") +ylab("PC2 2.8%")
HE5, HE152
Guayana_tsne_spearman <- as.matrix(Guayana_tsne_spearman)
Guayana_tsne_spearman_REL <- as.matrix(Guayana_tsne_spearman_REL)
Guayana_tsne_spearman_ABR <- as.matrix(Guayana_tsne_spearman_ABR)
Guayana_tsne_spearman_BAC <- as.matrix(Guayana_tsne_spearman_BAC)
Guayana_tsne_spearman_BAC_Metal = get_dist(Guayana_spread_BAC_Metal, method = "spearman")
Guayana_tsne_spearman_BAC_Biocide = get_dist(Guayana_spread_BAC_Biocide, method = "spearman")
umap_plot <- umap(Guayana_tsne_spearman, input="dist")
umap_plot_REL <- umap(Guayana_tsne_spearman_REL)
umap_plot_ABR <- umap(Guayana_tsne_spearman_ABR)
umap_plot_BAC <- umap(Guayana_tsne_spearman_BAC)
umap_plot_BAC_Metal <- umap(Guayana_spread_BAC_Metal)
umap_plot_BAC_Biocide <- umap(Guayana_spread_BAC_Biocide)
umap_plot <- as.data.frame(umap_plot$layout) %>% rownames_to_column("label") %>% inner_join(., Tabla_inicial)
umap_plot_REL <- as.data.frame(umap_plot_REL$layout) %>% rownames_to_column("label") %>% inner_join(., Tabla_inicial)
umap_plot_ABR <- as.data.frame(umap_plot_ABR$layout) %>% rownames_to_column("label") %>% inner_join(., Tabla_inicial)
umap_plot_BAC <- as.data.frame(umap_plot_BAC$layout) %>% rownames_to_column("label") %>% inner_join(., Tabla_inicial)
umap_plot_BAC_Metal <- as.data.frame(umap_plot_BAC_Metal$layout) %>% rownames_to_column("label") %>% inner_join(., Tabla_inicial)
umap_plot_BAC_Biocide <- as.data.frame(umap_plot_BAC_Biocide$layout) %>% rownames_to_column("label") %>% inner_join(., Tabla_inicial)
umap_plot_ABR %>%
select(label,V1,V2,origin) %>% distinct() %>% ggplot(aes(x = V1, y =V2, color = origin)) + geom_point()+
ggtitle ("UMAP ABR")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
umap_plot_BAC %>%
select(label,V1,V2,origin) %>% distinct() %>% ggplot(aes(x = V1, y =V2, color = origin)) + geom_point()+
ggtitle ("UMAP BAC")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
umap_plot_REL %>%
select(label,V1,V2,origin) %>% distinct() %>% ggplot(aes(x = V1, y =V2, color = origin)) + geom_point()+
ggtitle ("UMAP REL")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
umap_plot_BAC_Metal %>%
select(label,V1,V2,origin) %>% distinct() %>% ggplot(aes(x = V1, y =V2, color = origin)) + geom_point()+
ggtitle ("UMAP BAC Metal")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
umap_plot_BAC_Biocide %>%
select(label,V1,V2,origin) %>% distinct() %>% ggplot(aes(x = V1, y =V2, color = origin)) + geom_point()+
ggtitle ("UMAP BAC biocide")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
ggplot(tsne_spearman_30_plot) + geom_point(aes(x=x,y=y,color=origin)) + ggtitle("T-SNE")
ggplot(tsne_spearman_30_plot_ABR) + geom_point(aes(x=x,y=y,color=origin)) + ggtitle("T-SNE ABR")
ggplot(tsne_spearman_30_plot_BAC) + geom_point(aes(x=x,y=y,color=origin)) + ggtitle("T-SNE BAC")
ggplot(tsne_spearman_30_plot_REL) + geom_point(aes(x=x,y=y,color=origin)) + ggtitle("T-SNE REL")
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = Guayana_spread_t[, 1:918] ~ origin, data = Guayana_spread_t, permutations = 999)
## Df SumOfSqs R2 F Pr(>F)
## origin 1 1.7207 0.09418 12.685 0.001 ***
## Residual 122 16.5498 0.90582
## Total 123 18.2705 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = Guayana_spread_ABR_t[, 1:342] ~ origin, data = Guayana_spread_ABR_t, permutations = 999)
## Df SumOfSqs R2 F Pr(>F)
## origin 1 2.0269 0.16245 23.662 0.001 ***
## Residual 122 10.4503 0.83755
## Total 123 12.4771 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = Guayana_spread_BAC_t[, 1:232] ~ origin, data = Guayana_spread_BAC_t, permutations = 999)
## Df SumOfSqs R2 F Pr(>F)
## origin 1 0.484 0.01395 1.726 0.115
## Residual 122 34.213 0.98605
## Total 123 34.697 1.00000
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = Guayana_spread_REL_t[, 1:344] ~ origin, data = Guayana_spread_REL_t, permutations = 999)
## Df SumOfSqs R2 F Pr(>F)
## origin 1 3.7312 0.1342 18.91 0.001 ***
## Residual 122 24.0716 0.8658
## Total 123 27.8028 1.0000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = Guayana_spread_BAC_Metal_t[, 1:144] ~ origin, data = Guayana_spread_REL_t, permutations = 999)
## Df SumOfSqs R2 F Pr(>F)
## origin 1 0.581 0.01657 2.055 0.068 .
## Residual 122 34.494 0.98343
## Total 123 35.075 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = Guayana_spread_BAC_Biocide_t[, 1:109] ~ origin, data = Guayana_spread_REL_t, permutations = 999)
## Df SumOfSqs R2 F Pr(>F)
## origin 1 0.291 0.00848 1.0438 0.335
## Residual 122 33.993 0.99152
## Total 123 34.284 1.00000
tabla_core <- Tabla_inicial %>% filter(Treatment!="Treat")%>% group_by(template) %>% summarise(TotalFreq = n())%>% ungroup() %>% filter(TotalFreq == 124)
datatable(tabla_core, rownames = FALSE, filter="top", options = list(pageLength = 30, scrollX=T, scrollY=T) )
tabla_core_eur <- Tabla_inicial %>% filter(Treatment=="NO-Treat") %>% group_by(template) %>% summarise(TotalFreq = n())%>% ungroup() %>% filter(TotalFreq == 29)
datatable(tabla_core_eur, rownames = FALSE, filter="top", options = list(pageLength = 30, scrollX=T, scrollY=T) )
tabla_core_guayana <- Tabla_inicial %>% filter(Treatment=="guayana") %>% group_by(template) %>% summarise(TotalFreq = n())%>% ungroup() %>% filter(TotalFreq == 95)
datatable(tabla_core_guayana, rownames = FALSE, filter="top", options = list(pageLength = 30, scrollX=T, scrollY=T) )
ABR_common_genes <- tabla_para_teresa_ABR %>% group_by(Label) %>% summarise(number = n())
BAC_common_genes <- tabla_para_teresa_BAC %>% group_by(Label) %>% summarise(number = n())
REL_common_genes <- tabla_para_teresa_REL %>% group_by(Label) %>% summarise(number = n())
ABR_notcommon_genes <- anti_tabla_para_teresa_ABR %>% group_by(Label) %>% summarise(number = n())
BAC_notcommon_genes <- anti_tabla_para_teresa_BAC %>% group_by(Label) %>% summarise(number = n())
REL_notcommon_genes <- anti_tabla_para_teresa_REL %>% group_by(Label) %>% summarise(number = n())
Tipo <- c('ABR','BAC','REL')
aaEur <- c(109,39,76)
All <- c(155,167,182)
Gui <- c(79,26,86)
mix_num_genes <- data.frame( Tipo, aaEur,All,Gui)
mix_num_genes %>% pivot_longer(cols=aaEur:Gui, names_to = "cosa", values_to = "value")%>%
ggplot(aes(x = cosa, y = value, fill = Tipo))+geom_col(position = "dodge")+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
# Tipo <- c('ABR','BAC','REL')
# aaEur <- c(10,5,2)
# All <- c(10,2,0)
# Gui <- c(14,2,8)
# core_num_genes <- data.frame( Tipo, aaEur,All,Gui)
#
# core_num_genes %>% pivot_longer(cols=aaEur:Gui, names_to = "cosa", values_to = "value")%>%
# ggplot(aes(x = cosa, y = value, fill = Tipo))+geom_col(position = "dodge")+
# theme_classic()+
# theme(panel.background = element_blank(), panel.grid = element_blank(),
# aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
# axis.text.x = element_text(angle = 45, hjust=1))
#Amerindians <- Tabla_inicial %>%select(origin) %>% filter(origin == "guayana")
tabla_america <- Tabla_inicial %>% filter(origin == "guayana") %>% group_by(label) %>% distinct(template,label, .keep_all = TRUE) %>% ungroup %>%
group_by(template) %>% summarize(suma = n())
tabla_europa <- Tabla_inicial %>% filter(Treatment == 'NO-Treat' ) %>% group_by(label) %>% distinct(template,label, .keep_all = TRUE) %>% ungroup %>%
group_by(template) %>% summarize(suma = n())
tabla_chi <- full_join(tabla_europa, tabla_america, by= "template")
colnames(tabla_chi) <- c("template","europe_P", "america_P" )
tabla_chi[is.na(tabla_chi)] <- 0
tabla_chi_filt <- tabla_chi %>% mutate(europe_N = 29 - europe_P ) %>% mutate(america_N = 95 - america_P )#%>% filter(europe_P > 2 | america_P > 9 )
chi_pvalue <- tabla_chi_filt %>%
rowwise() %>%
mutate(
p.value = fisher.test(matrix(c(europe_P, europe_N, america_P, america_N), nrow = 2))$p.value,
odds_ratio = fisher.test(matrix(c(europe_P, europe_N, america_P, america_N), nrow = 2))$estimate,
)
colnames(chi_pvalue) <- c("template","europe_P","america_P","europe_N","america_N","p_value", "odds_ratio")
chi_pvalue <- as.data.frame(chi_pvalue)
chi_pvalue.adj <-chi_pvalue %>% mutate(padj= p.adjust(chi_pvalue$p_value, method = "BH")) #%>% filter(padj<0.05)
chi_pvalue.adj <- chi_pvalue.adj %>% mutate(america_odds = europe_P*america_N) %>% mutate(europe_odds = america_P*europe_N)
chi_pvalue.adj <- chi_pvalue.adj %>% mutate(result1= america_odds/europe_odds) %>% mutate(result2 = europe_odds/america_odds)
chi_pvalue.adj <- chi_pvalue.adj %>% mutate(porcentaje_eur=europe_P/(europe_P+europe_N)) %>% mutate(porcentaje_amer=america_P/(america_P+america_N))
chi_pvalue.adj[is.na(chi_pvalue.adj)] <- 0
chi_pvalue.adj$odds_ratio <- ifelse(chi_pvalue.adj$odds_ratio < 1, -1/chi_pvalue.adj$odds_ratio, chi_pvalue.adj$odds_ratio )
chi_pvalue.adj$direction <- ifelse(chi_pvalue.adj$odds_ratio < 0, 'america', 'europe')
chi_pvalue.adj.plot <- chi_pvalue.adj
chi_pvalue.adj.plot$fisher <- ifelse(chi_pvalue.adj.plot$padj<0.05, "yes", "no" )
chi_pvalue.adj.plot$label <- ifelse(chi_pvalue.adj.plot$padj<0.000000000000001, chi_pvalue.adj.plot$template, "" )
chi_pvalue.adj.plot %>% ggplot(aes(porcentaje_eur, porcentaje_amer, color= fisher))+geom_point()+
geom_text_repel(aes(label=label),hjust = 0, nudge_x = 0.05, max.overlaps = 99)+
theme_classic()+
theme(panel.background = element_blank(), panel.grid = element_blank(),
aspect.ratio = 1, legend.position = "none",strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust=1))
chi_pvalue.adj <-chi_pvalue.adj %>% filter(padj<0.05)
chi_pvalue.adj$database = "ABR"
chi_pvalue.adj$database[grepl("^BAC",chi_pvalue.adj$template)] = "BAC"
chi_pvalue.adj$database[grepl("^MOB",chi_pvalue.adj$template)] = "REL"
# chi_pvalue_rel <- chi_pvalue.adj %>% filter(str_detect(template, "^MOB"))
# chi_pvalue_rel_short <- chi_pvalue.adj %>% filter(str_detect(template, "^MOB"))
# chi_pvalue_rel_short$template <- sub( "_.*" ," ", chi_pvalue_rel_short$template)
chi_pvalue_rel <- chi_pvalue.adj %>%filter(database == "REl")
chi_pvalue_rel_short <- chi_pvalue.adj %>%filter(database == "REL")
chi_pvalue_rel_short$template <- sub( "_.*" ," ", chi_pvalue_rel_short$template)
chi_pvalue_abr <- chi_pvalue.adj %>% filter(database == "ABR")
chi_pvalue_abr_short <- chi_pvalue.adj %>%filter(database == "ABR")
#no se puede simplificar sin perder info
# chi_pvalue_abr_short$template <- sub( ":.*" ," ", chi_pvalue_abr_short$template)
# chi_pvalue_abr_short$template <- sub( "(_[^_]+)_.*" ,"\\1", chi_pvalue_abr_short$template)
# chi_pvalue_abr_short$template = sapply(chi_pvalue_abr_short$template , function(x) paste(strsplit(x, "_")[[1]][1:2], collapse = '_'))
chi_pvalue_bac <- chi_pvalue.adj %>% filter(database == "BAC")
# chi_pvalue_bac_short <- chi_pvalue.adj %>% filter(database == "BAC") %>% left_join(Bac_met_db, by = 'template')
# chi_pvalue_bac_short$template <- sub( "\\|+" ,"-", chi_pvalue_bac_short$template)
# chi_pvalue_bac_short$template <- sub( "(\\|[^\\|]+)\\|.*" ,"", chi_pvalue_bac_short$template)
chi_pvalue_abr_short_longzzz <- chi_pvalue_abr_short %>%
select(template,porcentaje_eur,porcentaje_amer) %>%
melt( id.vars = 'template')
chi_pvalue_abr_short_longzzz$value <- ifelse(chi_pvalue_abr_short_longzzz$variable == 'porcentaje_eur', chi_pvalue_abr_short_longzzz$value*-1, chi_pvalue_abr_short_longzzz$value)
joinedabr <- full_join(chi_pvalue_abr_short_longzzz, chi_pvalue_abr_short, by='template')
joinedabrz <- joinedabr %>% arrange(desc(value))
americcc <- joinedabrz %>% filter(variable == 'porcentaje_amer')
europpp <- joinedabrz %>% filter(variable == 'porcentaje_eur')
ggplot() +
geom_col(data=americcc, aes(reorder(template, -padj), value, fill=padj)) +
scale_fill_viridis_c(option = "D") +
new_scale_fill() +
geom_col(data= europpp, aes(reorder(template, -padj), value, fill=padj)) +
scale_fill_viridis_c(option = "C")+
coord_flip()
chi_pvalue_BAC_short_longzzz <- chi_pvalue_bac %>%
select(template,porcentaje_eur,porcentaje_amer) %>%
melt( id.vars = 'template')
chi_pvalue_BAC_short_longzzz$value <- ifelse(chi_pvalue_BAC_short_longzzz$variable == 'porcentaje_eur', chi_pvalue_BAC_short_longzzz$value*-1, chi_pvalue_BAC_short_longzzz$value)
chi_pvalue_rel_short <- chi_pvalue_rel_short %>% arrange(desc(odds_ratio))
joinedBAC <- full_join(chi_pvalue_BAC_short_longzzz, chi_pvalue_bac, by='template')
joinedBACz <- joinedBAC %>% arrange(desc(value))
americcc <- joinedBACz %>% filter(variable == 'porcentaje_amer')
europpp <- joinedBACz %>% filter(variable == 'porcentaje_eur')
ggplot() +
geom_col(data=americcc, aes(reorder(template, -padj), value, fill=padj)) +
scale_fill_viridis_c(option = "D") +
new_scale_fill() +
geom_col(data= europpp, aes(reorder(template, -padj), value, fill=padj)) +
scale_fill_viridis_c(option = "C")+
coord_flip()
chi_pvalue_REL_short_longzzz <- chi_pvalue_rel_short %>%
select(template,porcentaje_eur,porcentaje_amer) %>%
melt( id.vars = 'template')
chi_pvalue_REL_short_longzzz$value <- ifelse(chi_pvalue_REL_short_longzzz$variable == 'porcentaje_eur', chi_pvalue_REL_short_longzzz$value*-1, chi_pvalue_REL_short_longzzz$value)
chi_pvalue_rel_short <- chi_pvalue_rel_short %>% arrange(desc(odds_ratio))
joinedREL <- full_join(chi_pvalue_REL_short_longzzz, chi_pvalue_rel_short, by='template')
joinedRELz <- joinedREL %>% arrange(desc(value))
americcc <- joinedRELz %>% filter(variable == 'porcentaje_amer')
europpp <- joinedRELz %>% filter(variable == 'porcentaje_eur')
ggplot() +
geom_col(data=americcc, aes(reorder(template, -padj), value, fill=padj)) +
scale_fill_viridis_c(option = "D") +
new_scale_fill() +
geom_col(data= europpp, aes(reorder(template, -padj), value, fill=padj)) +
scale_fill_viridis_c(option = "C")+
coord_flip()
plotLDA(res_origin_ABR_LEFSE,group=c("europa","guayana"),lda=3,pvalue=0.05)
plotLDA(res_origin_BAC_LEFSE,group=c("europa","guayana"),lda=4,pvalue=0.05)
plotLDA(res_origin_REL_LEFSE,group=c("europa","guayana"),lda=5,pvalue=0.05)
pheatmap(log(heat_padj+1), clustering_method = "ward.D2")
pheatmap(log(heat_padj_abr+1), clustering_method = "ward.D2")
Heatmap of the Antimicrobial resistance genes. The genes that appear on the y axis and the individuals of the x axis were previously selected From an ANOVA test with p-value lower than 0,05 in. Red indicates the highest value of appearance of the gene in the population and blue the contrary.
pheatmap(log(heat_padj_rel+1), clustering_method = "ward.D2")
Heatmap of the Relaxases resistance genes. The genes that appear on the y axis and the individuals of the x axis were previously selected From an ANOVA test with p-value lower than 0,05 in. Red indicates the highest value of appearance of the gene in the population and blue the contrary.
# pheatmap(log(theat_padj_bac+1), clustering_method = "ward.D2")
pheatmap(log(heat_padj_bac+1), clustering_method = "ward.D2")
Heatmap of the Biocides and metals resistance genes. The genes that appear on the y axis and the individuals of the x axis were previously selected From an ANOVA test with p-value lower than 0,05 in. Red indicates the highest value of appearance of the gene in the population and blue the contrary.
pheatmap(log(heat_padj+1), clustering_method = "ward.D2")
pheatmap(log(heat_padj_abr+1), clustering_method = "ward.D2")
pheatmap(log(heat_padj+1), clustering_method = "ward.D2")
pheatmap(log(heat_padj+1), clustering_method = "ward.D2")
pheatmap(log(heat_padj+1), clustering_method = "ward.D2")
## REL Heatmap LEFSE
pheatmap(log(heat_padj+1), clustering_method = "ward.D2")
res_origin_LEFSE_changed <- res_origin_LEFSE %>% filter(LDAscore >= 2)
colnames(res_origin_LEFSE_changed)[2] <- "genes"
chi_pvalue.adj_changed <- chi_pvalue.adj
colnames(chi_pvalue.adj_changed)[1] <- "genes"
important_genes <- inner_join(chi_pvalue.adj_changed, res_origin_LEFSE_changed, by = "genes")
important_genes <- inner_join(res_filt, chi_pvalue.adj_changed, by = "genes")
important_genes <- inner_join(res_filt, res_origin_LEFSE_changed, by = "genes")
important_genes <- inner_join(important_genes, chi_pvalue.adj_changed, by = "genes")