Ploting map Close.Price in each City Use data GeorgeDell25Mile.csv
library(maps)
library(mapdata)
library(tidyverse)
library(lubridate)
library(ggplot2)
# Please change with your directory use data GeorgeDell25Mile.csv
sg <- read.csv("d:/YOUR-DIRECTORY/GeorgeDell25Mile.csv")
head(sg)
## Street.Number Street.Name City State.Or.Province Zip Latitude
## 1 1420 Ron Whicker Catawba North Carolina 28609 35.67607
## 2 4991 White Oak Lenoir North Carolina 28645 35.90588
## 3 5691 Nc Highway 18 Morganton North Carolina 28655 35.68110
## 4 2396 Dry Ponds Granite Falls North Carolina 28630 35.80214
## 5 322 Boyd Fox Taylorsville North Carolina 28681 35.87862
## 6 643 Kendell Town Ferguson North Carolina 28624 36.08015
## Longitude Close.Date Close.Price DOM Status Off.Market.Date List.Price
## 1 -80.98673 9/30/2021 830000 18 Closed 9/30/2021 850000
## 2 -81.66048 9/4/2020 517500 85 Closed 9/4/2020 499000
## 3 -81.56414 10/7/2020 498000 3 Closed 10/7/2020 489900
## 4 -81.49068 3/15/2021 480000 39 Closed 3/15/2021 499000
## 5 -81.26226 9/29/2020 450000 11 Closed 9/29/2020 459900
## 6 -81.42162 6/14/2021 445000 186 Closed 6/14/2021 450000
## Original.List.Price Above.Grade.Finished.Area Lot.Size.Area Lot.Size.Units
## 1 850000 2210 5.20 NA
## 2 594900 1365 11.76 NA
## 3 489000 1295 15.74 NA
## 4 499000 2510 10.00 NA
## 5 459900 861 13.70 NA
## 6 480000 1427 37.03 NA
## Zoning Year.Built Sq.Ft.Garage Beds.Total Baths.Total
## 1 2019 505 2 3
## 2 2018 859 2 3
## 3 2004 645 2 3
## 4 1981 1012 2 4
## 5 1984 1792 2 2
## 6 2004 NA 2 2
sg1 <- sg %>% select(Close.Date,Close.Price,Latitude,Longitude,City)
head(sg1)
## Close.Date Close.Price Latitude Longitude City
## 1 9/30/2021 830000 35.67607 -80.98673 Catawba
## 2 9/4/2020 517500 35.90588 -81.66048 Lenoir
## 3 10/7/2020 498000 35.68110 -81.56414 Morganton
## 4 3/15/2021 480000 35.80214 -81.49068 Granite Falls
## 5 9/29/2020 450000 35.87862 -81.26226 Taylorsville
## 6 6/14/2021 445000 36.08015 -81.42162 Ferguson
sg1$Close.Date <- as.Date(sg1$Close.Date, "%m/%d/%Y")
min(sg1$Latitude)
## [1] 35.48246
max(sg1$Latitude)
## [1] 36.16847
min(sg1$Longitude)
## [1] -81.70686
max(sg1$Longitude)
## [1] -80.86962
min(sg1$Close.Price)
## [1] 17500
max(sg1$Close.Price)
## [1] 830000
head(sg1)
## Close.Date Close.Price Latitude Longitude City
## 1 2021-09-30 830000 35.67607 -80.98673 Catawba
## 2 2020-09-04 517500 35.90588 -81.66048 Lenoir
## 3 2020-10-07 498000 35.68110 -81.56414 Morganton
## 4 2021-03-15 480000 35.80214 -81.49068 Granite Falls
## 5 2020-09-29 450000 35.87862 -81.26226 Taylorsville
## 6 2021-06-14 445000 36.08015 -81.42162 Ferguson
pn1 <- ggplot(data=sg1, aes(x=Longitude, y=Latitude))+#, fill= City))+#, group=group)) +
#geom_polygon(color = "white") +
geom_point(color="blue", alpha = 0.3, size = (sg1$Close.Price)*0.00001)+
ggtitle('Close.Price VS City')+
coord_fixed(1.5)+
theme(panel.background = element_rect(fill = "azure1", colour = "azure1")) +
geom_text(aes(x=Longitude, y= Latitude, label=City),
color = "gray20", check_overlap = T, size = 3)+
theme_classic()
pn1
sg2 <- sg1[order(sg1$Close.Price),]
head(sg2)
## Close.Date Close.Price Latitude Longitude City
## 264 2017-11-21 17500 35.91146 -81.61423 Lenoir
## 265 2017-11-21 17500 35.91146 -81.61423 Lenoir
## 261 2017-12-22 18500 35.86708 -81.66091 Morganton
## 262 2017-12-22 18500 35.86708 -81.66091 Morganton
## 263 2017-12-22 18500 35.86708 -81.66091 Morganton
## 260 2019-02-06 23000 35.97265 -81.57208 Lenoir
tail(sg2)
## Close.Date Close.Price Latitude Longitude City
## 6 2021-06-14 445000 36.08015 -81.42162 Ferguson
## 5 2020-09-29 450000 35.87862 -81.26226 Taylorsville
## 4 2021-03-15 480000 35.80214 -81.49068 Granite Falls
## 3 2020-10-07 498000 35.68110 -81.56414 Morganton
## 2 2020-09-04 517500 35.90588 -81.66048 Lenoir
## 1 2021-09-30 830000 35.67607 -80.98673 Catawba
-1. From the map(pn1) by looking at the blue circle, the bigger the circle, the greater the value of the City and Close.Price at a location
-2. From tail(sg2), we can see the certain City with biggest value of Close.Price, Catawba 830000, Lenoir 517500, Morganton 498000