Exploratory Data Analysis (EDA) adalah bagian dari proses data science. EDA menjadi sangat penting sebelum melakukan feature engineering dan modeling karena dalam tahap ini kita harus memahami datanya terlebih dahulu.
Exploratory Data Analysis mengacu pada proses kritis dalam melakukan investigasi awal pada data untuk menemukan pola, untuk menemukan anomali, untuk menguji hipotesis dan untuk memeriksa asumsi dengan bantuan statistik ringkasan dan representasi grafis. Dengan melakukan EDA, kita dapat lebih memahami kondisi dataset yang kita miliki.
library(heatmaply)
## Warning: package 'heatmaply' was built under R version 4.1.2
## Loading required package: plotly
## Warning: package 'plotly' was built under R version 4.1.2
## Loading required package: ggplot2
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
## Loading required package: viridis
## Loading required package: viridisLite
##
## ======================
## Welcome to heatmaply version 1.3.0
##
## Type citation('heatmaply') for how to cite the package.
## Type ?heatmaply for the main documentation.
##
## The github page is: https://github.com/talgalili/heatmaply/
## Please submit your suggestions and bug-reports at: https://github.com/talgalili/heatmaply/issues
## You may ask questions at stackoverflow, use the r and heatmaply tags:
## https://stackoverflow.com/questions/tagged/heatmaply
## ======================
library(visdat)
## Warning: package 'visdat' was built under R version 4.1.2
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble 3.1.2 v dplyr 1.0.6
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## v purrr 0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks plotly::filter(), stats::filter()
## x dplyr::lag() masks stats::lag()
library(skimr)
## Warning: package 'skimr' was built under R version 4.1.2
library(DataExplorer)
## Warning: package 'DataExplorer' was built under R version 4.1.2
library(dplyr)
library(ggplot2)
library(tidyr)
library(readr)
library(tibble)
library(reshape2)
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
## smiths
library(psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
df <- read.csv("~/RStudio PSDS/titanic.csv", stringsAsFactors=TRUE)
df[df == ""] <- NA
df[0:10,]
## PassengerId Survived Pclass
## 1 1 0 3
## 2 2 1 1
## 3 3 1 3
## 4 4 1 1
## 5 5 0 3
## 6 6 0 3
## 7 7 0 1
## 8 8 0 3
## 9 9 1 3
## 10 10 1 2
## Name Sex Age SibSp Parch
## 1 Braund, Mr. Owen Harris male 22 1 0
## 2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38 1 0
## 3 Heikkinen, Miss. Laina female 26 0 0
## 4 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0
## 5 Allen, Mr. William Henry male 35 0 0
## 6 Moran, Mr. James male NA 0 0
## 7 McCarthy, Mr. Timothy J male 54 0 0
## 8 Palsson, Master. Gosta Leonard male 2 3 1
## 9 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27 0 2
## 10 Nasser, Mrs. Nicholas (Adele Achem) female 14 1 0
## Ticket Fare Cabin Embarked
## 1 A/5 21171 7.2500 <NA> S
## 2 PC 17599 71.2833 C85 C
## 3 STON/O2. 3101282 7.9250 <NA> S
## 4 113803 53.1000 C123 S
## 5 373450 8.0500 <NA> S
## 6 330877 8.4583 <NA> Q
## 7 17463 51.8625 E46 S
## 8 349909 21.0750 <NA> S
## 9 347742 11.1333 <NA> S
## 10 237736 30.0708 <NA> C
head(df)
## PassengerId Survived Pclass
## 1 1 0 3
## 2 2 1 1
## 3 3 1 3
## 4 4 1 1
## 5 5 0 3
## 6 6 0 3
## Name Sex Age SibSp Parch
## 1 Braund, Mr. Owen Harris male 22 1 0
## 2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38 1 0
## 3 Heikkinen, Miss. Laina female 26 0 0
## 4 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0
## 5 Allen, Mr. William Henry male 35 0 0
## 6 Moran, Mr. James male NA 0 0
## Ticket Fare Cabin Embarked
## 1 A/5 21171 7.2500 <NA> S
## 2 PC 17599 71.2833 C85 C
## 3 STON/O2. 3101282 7.9250 <NA> S
## 4 113803 53.1000 C123 S
## 5 373450 8.0500 <NA> S
## 6 330877 8.4583 <NA> Q
Melakukan klasifikasi penumpang yang selamat dan tidak selamat pada kasus tenggelamnya kapal Titanic.
Dataset Titanic dibuat untuk membuat machine learning untuk melakukan klasifikasi biner (Selamat atau Tidak Selamat). Variabel-variabel yang terdapat pada dataset ini adalah sebagai berikut:
dim(df)
## [1] 891 12
Artinya kita memiliki data dengan 12 kolom dan 891 baris.
names(df)
## [1] "PassengerId" "Survived" "Pclass" "Name" "Sex"
## [6] "Age" "SibSp" "Parch" "Ticket" "Fare"
## [11] "Cabin" "Embarked"
str(df)
## 'data.frame': 891 obs. of 12 variables:
## $ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
## $ Survived : int 0 1 1 1 0 0 0 0 1 1 ...
## $ Pclass : int 3 1 3 1 3 3 1 3 3 2 ...
## $ Name : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 191 358 277 16 559 520 629 417 581 ...
## $ Sex : Factor w/ 2 levels "female","male": 2 1 1 1 2 2 2 2 1 1 ...
## $ Age : num 22 38 26 35 35 NA 54 2 27 14 ...
## $ SibSp : int 1 1 0 1 0 0 0 3 0 1 ...
## $ Parch : int 0 0 0 0 0 0 0 1 2 0 ...
## $ Ticket : Factor w/ 681 levels "110152","110413",..: 524 597 670 50 473 276 86 396 345 133 ...
## $ Fare : num 7.25 71.28 7.92 53.1 8.05 ...
## $ Cabin : Factor w/ 148 levels "","A10","A14",..: NA 83 NA 57 NA NA 131 NA NA NA ...
## $ Embarked : Factor w/ 4 levels "","C","Q","S": 4 2 4 4 4 3 4 4 4 2 ...
Kita dapat mengetahui tipe-tipe data masing-masing variabel dan nama-nama variabel dalam dataset.
sapply(df, function(x) sum(is.na(x)))
## PassengerId Survived Pclass Name Sex Age
## 0 0 0 0 0 177
## SibSp Parch Ticket Fare Cabin Embarked
## 0 0 0 0 687 2
vis_miss(df)
Kolom-kolom dengan data kosong adalah: Age, Cabin, Embarked.
num_cols <- unlist(lapply(df, is.numeric))
df_num <- df[ , num_cols]
boxplot(df_num)
Kolom numeric yang memiliki outlier adalah Age, Sibsp, Parch, dan Fare.
plot_correlation(df_num)
## Warning: Removed 12 rows containing missing values (geom_text).
summary(df)
## PassengerId Survived Pclass
## Min. : 1.0 Min. :0.0000 Min. :1.000
## 1st Qu.:223.5 1st Qu.:0.0000 1st Qu.:2.000
## Median :446.0 Median :0.0000 Median :3.000
## Mean :446.0 Mean :0.3838 Mean :2.309
## 3rd Qu.:668.5 3rd Qu.:1.0000 3rd Qu.:3.000
## Max. :891.0 Max. :1.0000 Max. :3.000
##
## Name Sex Age
## Abbing, Mr. Anthony : 1 female:314 Min. : 0.42
## Abbott, Mr. Rossmore Edward : 1 male :577 1st Qu.:20.12
## Abbott, Mrs. Stanton (Rosa Hunt) : 1 Median :28.00
## Abelson, Mr. Samuel : 1 Mean :29.70
## Abelson, Mrs. Samuel (Hannah Wizosky): 1 3rd Qu.:38.00
## Adahl, Mr. Mauritz Nils Martin : 1 Max. :80.00
## (Other) :885 NA's :177
## SibSp Parch Ticket Fare
## Min. :0.000 Min. :0.0000 1601 : 7 Min. : 0.00
## 1st Qu.:0.000 1st Qu.:0.0000 347082 : 7 1st Qu.: 7.91
## Median :0.000 Median :0.0000 CA. 2343: 7 Median : 14.45
## Mean :0.523 Mean :0.3816 3101295 : 6 Mean : 32.20
## 3rd Qu.:1.000 3rd Qu.:0.0000 347088 : 6 3rd Qu.: 31.00
## Max. :8.000 Max. :6.0000 CA 2144 : 6 Max. :512.33
## (Other) :852
## Cabin Embarked
## B96 B98 : 4 : 0
## C23 C25 C27: 4 C :168
## G6 : 4 Q : 77
## C22 C26 : 3 S :644
## D : 3 NA's: 2
## (Other) :186
## NA's :687
d <- melt(df_num)
## No id variables; using all as measure variables
ggplot(d,aes(x = value)) +
facet_wrap(~variable,scales = "free_x") + geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 177 rows containing non-finite values (stat_bin).
Plot ini untuk melihat apakah variabel-variabel pada dataset berdistribusi normal. Variabel-variabel Age, SibSp, Parch, dan Fare cenderung memiliki skewnes positif. Itu berarti berarti ekor distribusi berada di sebelah kanan nilai terbanyak.
pairs.panels(df_num,
method = "pearson", # correlation method
hist.col = "#00AFBB",
density = TRUE, # show density plots
ellipses = TRUE # show correlation ellipses
)
Plot ini untuk mengetahui plot untuk masing-masing pasangan data numerik.
Data preprocessing ini digunakan guna menyiapkan data untuk diklasifikasi menggunakan metode SVM (Hanya Contoh).
Setelah mengetahui hasil EDA di atas maka untuk hasil yang baik diperlukan beberapa hal sebagai berikut:
Setelah data diperbaiki dilakukan langkah sebagai berikut:
[Note] * Ini hanya contoh untuk melakukan pengisian data NaN (Kosong), nama kabin mungkin menjadi penting sehingga tidak segampang itu diganti.
df = subset(df, select = -c(Name, Ticket) )
head(df)
## PassengerId Survived Pclass Sex Age SibSp Parch Fare Cabin Embarked
## 1 1 0 3 male 22 1 0 7.2500 <NA> S
## 2 2 1 1 female 38 1 0 71.2833 C85 C
## 3 3 1 3 female 26 0 0 7.9250 <NA> S
## 4 4 1 1 female 35 1 0 53.1000 C123 S
## 5 5 0 3 male 35 0 0 8.0500 <NA> S
## 6 6 0 3 male NA 0 0 8.4583 <NA> Q
df$Age[is.na(df$Age)] = 0
m<-mean(df$Age)
df$Age[df$Age==0]<-m
df=df %>% replace_na(list(Cabin = "E49"))
df=df %>% replace_na(list(Embarked = "C"))
sapply(df, function(x) sum(is.na(x)))
## PassengerId Survived Pclass Sex Age SibSp
## 0 0 0 0 0 0
## Parch Fare Cabin Embarked
## 0 0 0 0
head(df)
## PassengerId Survived Pclass Sex Age SibSp Parch Fare Cabin
## 1 1 0 3 male 22.00000 1 0 7.2500 E49
## 2 2 1 1 female 38.00000 1 0 71.2833 C85
## 3 3 1 3 female 26.00000 0 0 7.9250 E49
## 4 4 1 1 female 35.00000 1 0 53.1000 C123
## 5 5 0 3 male 35.00000 0 0 8.0500 E49
## 6 6 0 3 male 23.79929 0 0 8.4583 E49
## Embarked
## 1 S
## 2 C
## 3 S
## 4 S
## 5 S
## 6 Q
df$Sex<- unclass(df$Sex)
df$Embarked<- unclass(df$Embarked)
df$Cabin<- unclass(df$Cabin)
head(df)
## PassengerId Survived Pclass Sex Age SibSp Parch Fare Cabin Embarked
## 1 1 0 3 2 22.00000 1 0 7.2500 132 4
## 2 2 1 1 1 38.00000 1 0 71.2833 83 2
## 3 3 1 3 1 26.00000 0 0 7.9250 132 4
## 4 4 1 1 1 35.00000 1 0 53.1000 57 4
## 5 5 0 3 2 35.00000 0 0 8.0500 132 4
## 6 6 0 3 2 23.79929 0 0 8.4583 132 3
Rentang interkuartil (IQR) adalah ukuran penyebaran statistik dan dihitung sebagai perbedaan antara persentil ke-75 dan ke-25. Ini diwakili oleh rumus IQR = Q3 - Q1. Baris kode di bawah menghitung dan mencetak kisaran interkuartil untuk setiap variabel dalam dataset.
Teknik ini menggunakan skor IQR yang dihitung sebelumnya untuk menghilangkan pencilan. Aturan praktisnya adalah bahwa segala sesuatu yang tidak berada dalam kisaran (Q1 - 1.5 IQR) dan (Q3 + 1.5 IQR) adalah pencilan, dan dapat dihapus.
Metode ini dipakai karena untuk identifikasi outlier awal digunakan metode boxplot.
is_outlier <- function(x, na.rm = FALSE) {
qs = quantile(x, probs = c(0.25, 0.75), na.rm = na.rm)
lowerq <- qs[1]
upperq <- qs[2]
iqr = upperq - lowerq
extreme.threshold.upper = (iqr * 3) + upperq
extreme.threshold.lower = lowerq - (iqr * 3)
x > extreme.threshold.upper | x < extreme.threshold.lower
}
remove_outliers <- function(df, cols = names(df)) {
for (col in cols) {
cat("Removing outliers in column: ", col, " \n")
df <- df[!is_outlier(df[[col]]),]
}
df
}
vars_of_interest <- c("Age", "SibSp", "Parch", "Fare")
df_filtered <- remove_outliers(df, vars_of_interest)
## Removing outliers in column: Age
## Removing outliers in column: SibSp
## Removing outliers in column: Parch
## Removing outliers in column: Fare
boxplot(df_filtered)
Outlier berhasil dihapus.
Karena tujuannya adalah klasifikasi menggunakan SVM maka normalisasi data wajib dilakukan.
unit_length <- function(x) {
x / sqrt(sum(x^2))
}
unit_length_df <- as.data.frame(lapply(df, unit_length))
head(unit_length_df)
## PassengerId Survived Pclass Sex Age SibSp Parch
## 1 6.506968e-05 0.00000000 0.04093489 0.03905833 0.02344561 0.02746175 0
## 2 1.301394e-04 0.05407381 0.01364496 0.01952916 0.04049697 0.02746175 0
## 3 1.952090e-04 0.05407381 0.04093489 0.01952916 0.02770845 0.00000000 0
## 4 2.602787e-04 0.05407381 0.01364496 0.01952916 0.03729984 0.02746175 0
## 5 3.253484e-04 0.00000000 0.04093489 0.03905833 0.03729984 0.00000000 0
## 6 3.904181e-04 0.00000000 0.04093489 0.03905833 0.02536314 0.00000000 0
## Fare Cabin Embarked
## 1 0.004103278 0.03582844 0.03701641
## 2 0.040344167 0.02252849 0.01850821
## 3 0.004485308 0.03582844 0.03701641
## 4 0.030052976 0.01547137 0.03701641
## 5 0.004556054 0.03582844 0.03701641
## 6 0.004787139 0.03582844 0.02776231
y=df$Survived
x=data.matrix(df[-c(2)])
y
## [1] 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 0 0 1
## [38] 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0
## [75] 1 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0
## [112] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0
## [149] 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1
## [186] 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 0
## [223] 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1
## [260] 1 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0
## [297] 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0
## [334] 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 1
## [371] 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
## [408] 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 1
## [445] 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0
## [482] 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0
## [519] 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1
## [556] 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1
## [593] 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 0
## [630] 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0
## [667] 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0
## [704] 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0
## [741] 1 0 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0
## [778] 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0
## [815] 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0
## [852] 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1
## [889] 0 1 0
x
## PassengerId Pclass Sex Age SibSp Parch Fare Cabin Embarked
## 1 1 3 2 22.00000 1 0 7.2500 132 4
## 2 2 1 1 38.00000 1 0 71.2833 83 2
## 3 3 3 1 26.00000 0 0 7.9250 132 4
## 4 4 1 1 35.00000 1 0 53.1000 57 4
## 5 5 3 2 35.00000 0 0 8.0500 132 4
## 6 6 3 2 23.79929 0 0 8.4583 132 3
## 7 7 1 2 54.00000 0 0 51.8625 131 4
## 8 8 3 2 2.00000 3 1 21.0750 132 4
## 9 9 3 1 27.00000 0 2 11.1333 132 4
## 10 10 2 1 14.00000 1 0 30.0708 132 2
## 11 11 3 1 4.00000 1 1 16.7000 147 4
## 12 12 1 1 58.00000 0 0 26.5500 51 4
## 13 13 3 2 20.00000 0 0 8.0500 132 4
## 14 14 3 2 39.00000 1 5 31.2750 132 4
## 15 15 3 1 14.00000 0 0 7.8542 132 4
## 16 16 2 1 55.00000 0 0 16.0000 132 4
## 17 17 3 2 2.00000 4 1 29.1250 132 3
## 18 18 2 2 23.79929 0 0 13.0000 132 4
## 19 19 3 1 31.00000 1 0 18.0000 132 4
## 20 20 3 1 23.79929 0 0 7.2250 132 2
## 21 21 2 2 35.00000 0 0 26.0000 132 4
## 22 22 2 2 34.00000 0 0 13.0000 113 4
## 23 23 3 1 15.00000 0 0 8.0292 132 3
## 24 24 1 2 28.00000 0 0 35.5000 15 4
## 25 25 3 1 8.00000 3 1 21.0750 132 4
## 26 26 3 1 38.00000 1 5 31.3875 132 4
## 27 27 3 2 23.79929 0 0 7.2250 132 2
## 28 28 1 2 19.00000 3 2 263.0000 65 4
## 29 29 3 1 23.79929 0 0 7.8792 132 3
## 30 30 3 2 23.79929 0 0 7.8958 132 4
## 31 31 1 2 40.00000 0 0 27.7208 132 2
## 32 32 1 1 23.79929 1 0 146.5208 43 2
## 33 33 3 1 23.79929 0 0 7.7500 132 3
## 34 34 2 2 66.00000 0 0 10.5000 132 4
## 35 35 1 2 28.00000 1 0 82.1708 132 2
## 36 36 1 2 42.00000 1 0 52.0000 132 4
## 37 37 3 2 23.79929 0 0 7.2292 132 2
## 38 38 3 2 21.00000 0 0 8.0500 132 4
## 39 39 3 1 18.00000 2 0 18.0000 132 4
## 40 40 3 1 14.00000 1 0 11.2417 132 2
## 41 41 3 1 40.00000 1 0 9.4750 132 4
## 42 42 2 1 27.00000 1 0 21.0000 132 4
## 43 43 3 2 23.79929 0 0 7.8958 132 2
## 44 44 2 1 3.00000 1 2 41.5792 132 2
## 45 45 3 1 19.00000 0 0 7.8792 132 3
## 46 46 3 2 23.79929 0 0 8.0500 132 4
## 47 47 3 2 23.79929 1 0 15.5000 132 3
## 48 48 3 1 23.79929 0 0 7.7500 132 3
## 49 49 3 2 23.79929 2 0 21.6792 132 2
## 50 50 3 1 18.00000 1 0 17.8000 132 4
## 51 51 3 2 7.00000 4 1 39.6875 132 4
## 52 52 3 2 21.00000 0 0 7.8000 132 4
## 53 53 1 1 49.00000 1 0 76.7292 103 2
## 54 54 2 1 29.00000 1 0 26.0000 132 4
## 55 55 1 2 65.00000 0 1 61.9792 25 2
## 56 56 1 2 23.79929 0 0 35.5000 73 4
## 57 57 2 1 21.00000 0 0 10.5000 132 4
## 58 58 3 2 28.50000 0 0 7.2292 132 2
## 59 59 2 1 5.00000 1 2 27.7500 132 4
## 60 60 3 2 11.00000 5 2 46.9000 132 4
## 61 61 3 2 22.00000 0 0 7.2292 132 2
## 62 62 1 1 38.00000 0 0 80.0000 23 2
## 63 63 1 2 45.00000 1 0 83.4750 82 4
## 64 64 3 2 4.00000 3 2 27.9000 132 4
## 65 65 1 2 23.79929 0 0 27.7208 132 2
## 66 66 3 2 23.79929 1 1 15.2458 132 2
## 67 67 2 1 29.00000 0 0 10.5000 144 4
## 68 68 3 2 19.00000 0 0 8.1583 132 4
## 69 69 3 1 17.00000 4 2 7.9250 132 4
## 70 70 3 2 26.00000 2 0 8.6625 132 4
## 71 71 2 2 32.00000 0 0 10.5000 132 4
## 72 72 3 1 16.00000 5 2 46.9000 132 4
## 73 73 2 2 21.00000 0 0 73.5000 132 4
## 74 74 3 2 26.00000 1 0 14.4542 132 2
## 75 75 3 2 32.00000 0 0 56.4958 132 4
## 76 76 3 2 25.00000 0 0 7.6500 142 4
## 77 77 3 2 23.79929 0 0 7.8958 132 4
## 78 78 3 2 23.79929 0 0 8.0500 132 4
## 79 79 2 2 0.83000 0 2 29.0000 132 4
## 80 80 3 1 30.00000 0 0 12.4750 132 4
## 81 81 3 2 22.00000 0 0 9.0000 132 4
## 82 82 3 2 29.00000 0 0 9.5000 132 4
## 83 83 3 1 23.79929 0 0 7.7875 132 3
## 84 84 1 2 28.00000 0 0 47.1000 132 4
## 85 85 2 1 17.00000 0 0 10.5000 132 4
## 86 86 3 1 33.00000 3 0 15.8500 132 4
## 87 87 3 2 16.00000 1 3 34.3750 132 4
## 88 88 3 2 23.79929 0 0 8.0500 132 4
## 89 89 1 1 23.00000 3 2 263.0000 65 4
## 90 90 3 2 24.00000 0 0 8.0500 132 4
## 91 91 3 2 29.00000 0 0 8.0500 132 4
## 92 92 3 2 20.00000 0 0 7.8542 132 4
## 93 93 1 2 46.00000 1 0 61.1750 124 4
## 94 94 3 2 26.00000 1 2 20.5750 132 4
## 95 95 3 2 59.00000 0 0 7.2500 132 4
## 96 96 3 2 23.79929 0 0 8.0500 132 4
## 97 97 1 2 71.00000 0 0 34.6542 14 2
## 98 98 1 2 23.00000 0 1 63.3583 93 2
## 99 99 2 1 34.00000 0 1 23.0000 132 4
## 100 100 2 2 34.00000 1 0 26.0000 132 4
## 101 101 3 1 28.00000 0 0 7.8958 132 4
## 102 102 3 2 23.79929 0 0 7.8958 132 4
## 103 103 1 2 21.00000 0 1 77.2875 100 4
## 104 104 3 2 33.00000 0 0 8.6542 132 4
## 105 105 3 2 37.00000 2 0 7.9250 132 4
## 106 106 3 2 28.00000 0 0 7.8958 132 4
## 107 107 3 1 21.00000 0 0 7.6500 132 4
## 108 108 3 2 23.79929 0 0 7.7750 132 4
## 109 109 3 2 38.00000 0 0 7.8958 132 4
## 110 110 3 1 23.79929 1 0 24.1500 132 3
## 111 111 1 2 47.00000 0 0 52.0000 54 4
## 112 112 3 1 14.50000 1 0 14.4542 132 2
## 113 113 3 2 22.00000 0 0 8.0500 132 4
## 114 114 3 1 20.00000 1 0 9.8250 132 4
## 115 115 3 1 17.00000 0 0 14.4583 132 2
## 116 116 3 2 21.00000 0 0 7.9250 132 4
## 117 117 3 2 70.50000 0 0 7.7500 132 3
## 118 118 2 2 29.00000 1 0 21.0000 132 4
## 119 119 1 2 24.00000 0 1 247.5208 38 2
## 120 120 3 1 2.00000 4 2 31.2750 132 4
## 121 121 2 2 21.00000 2 0 73.5000 132 4
## 122 122 3 2 23.79929 0 0 8.0500 132 4
## 123 123 2 2 32.50000 1 0 30.0708 132 2
## 124 124 2 1 32.50000 0 0 13.0000 118 4
## 125 125 1 2 54.00000 0 1 77.2875 100 4
## 126 126 3 2 12.00000 1 0 11.2417 132 2
## 127 127 3 2 23.79929 0 0 7.7500 132 3
## 128 128 3 2 24.00000 0 0 7.1417 132 4
## 129 129 3 1 23.79929 1 1 22.3583 140 2
## 130 130 3 2 45.00000 0 0 6.9750 132 4
## 131 131 3 2 33.00000 0 0 7.8958 132 2
## 132 132 3 2 20.00000 0 0 7.0500 132 4
## 133 133 3 1 47.00000 1 0 14.5000 132 4
## 134 134 2 1 29.00000 1 0 26.0000 132 4
## 135 135 2 2 25.00000 0 0 13.0000 132 4
## 136 136 2 2 23.00000 0 0 15.0458 132 2
## 137 137 1 1 19.00000 0 2 26.2833 109 4
## 138 138 1 2 37.00000 1 0 53.1000 57 4
## 139 139 3 2 16.00000 0 0 9.2167 132 4
## 140 140 1 2 24.00000 0 0 79.2000 47 2
## 141 141 3 1 23.79929 0 2 15.2458 132 2
## 142 142 3 1 22.00000 0 0 7.7500 132 4
## 143 143 3 1 24.00000 1 0 15.8500 132 4
## 144 144 3 2 19.00000 0 0 6.7500 132 3
## 145 145 2 2 18.00000 0 0 11.5000 132 4
## 146 146 2 2 19.00000 1 1 36.7500 132 4
## 147 147 3 2 27.00000 0 0 7.7958 132 4
## 148 148 3 1 9.00000 2 2 34.3750 132 4
## 149 149 2 2 36.50000 0 2 26.0000 143 4
## 150 150 2 2 42.00000 0 0 13.0000 132 4
## 151 151 2 2 51.00000 0 0 12.5250 132 4
## 152 152 1 1 22.00000 1 0 66.6000 63 4
## 153 153 3 2 55.50000 0 0 8.0500 132 4
## 154 154 3 2 40.50000 0 2 14.5000 132 4
## 155 155 3 2 23.79929 0 0 7.3125 132 4
## 156 156 1 2 51.00000 0 1 61.3792 132 2
## 157 157 3 1 16.00000 0 0 7.7333 132 3
## 158 158 3 2 30.00000 0 0 8.0500 132 4
## 159 159 3 2 23.79929 0 0 8.6625 132 4
## 160 160 3 2 23.79929 8 2 69.5500 132 4
## 161 161 3 2 44.00000 0 1 16.1000 132 4
## 162 162 2 1 40.00000 0 0 15.7500 132 4
## 163 163 3 2 26.00000 0 0 7.7750 132 4
## 164 164 3 2 17.00000 0 0 8.6625 132 4
## 165 165 3 2 1.00000 4 1 39.6875 132 4
## 166 166 3 2 9.00000 0 2 20.5250 132 4
## 167 167 1 1 23.79929 0 1 55.0000 125 4
## 168 168 3 1 45.00000 1 4 27.9000 132 4
## 169 169 1 2 23.79929 0 0 25.9250 132 4
## 170 170 3 2 28.00000 0 0 56.4958 132 4
## 171 171 1 2 61.00000 0 0 33.5000 20 4
## 172 172 3 2 4.00000 4 1 29.1250 132 3
## 173 173 3 1 1.00000 1 1 11.1333 132 4
## 174 174 3 2 21.00000 0 0 7.9250 132 4
## 175 175 1 2 56.00000 0 0 30.6958 16 2
## 176 176 3 2 18.00000 1 1 7.8542 132 4
## 177 177 3 2 23.79929 3 1 25.4667 132 4
## 178 178 1 1 50.00000 0 0 28.7125 71 2
## 179 179 2 2 30.00000 0 0 13.0000 132 4
## 180 180 3 2 36.00000 0 0 0.0000 132 4
## 181 181 3 1 23.79929 8 2 69.5500 132 4
## 182 182 2 2 23.79929 0 0 15.0500 132 2
## 183 183 3 2 9.00000 4 2 31.3875 132 4
## 184 184 2 2 1.00000 2 1 39.0000 146 4
## 185 185 3 1 4.00000 0 2 22.0250 132 4
## 186 186 1 2 23.79929 0 0 50.0000 11 4
## 187 187 3 1 23.79929 1 0 15.5000 132 3
## 188 188 1 2 45.00000 0 0 26.5500 132 4
## 189 189 3 2 40.00000 1 1 15.5000 132 3
## 190 190 3 2 36.00000 0 0 7.8958 132 4
## 191 191 2 1 32.00000 0 0 13.0000 132 4
## 192 192 2 2 19.00000 0 0 13.0000 132 4
## 193 193 3 1 19.00000 1 0 7.8542 132 4
## 194 194 2 2 3.00000 1 1 26.0000 143 4
## 195 195 1 1 44.00000 0 0 27.7208 30 2
## 196 196 1 1 58.00000 0 0 146.5208 45 2
## 197 197 3 2 23.79929 0 0 7.7500 132 3
## 198 198 3 2 42.00000 0 1 8.4042 132 4
## 199 199 3 1 23.79929 0 0 7.7500 132 3
## 200 200 2 1 24.00000 0 0 13.0000 132 4
## 201 201 3 2 28.00000 0 0 9.5000 132 4
## 202 202 3 2 23.79929 8 2 69.5500 132 4
## 203 203 3 2 34.00000 0 0 6.4958 132 4
## 204 204 3 2 45.50000 0 0 7.2250 132 2
## 205 205 3 2 18.00000 0 0 8.0500 132 4
## 206 206 3 1 2.00000 0 1 10.4625 147 4
## 207 207 3 2 32.00000 1 0 15.8500 132 4
## 208 208 3 2 26.00000 0 0 18.7875 132 2
## 209 209 3 1 16.00000 0 0 7.7500 132 3
## 210 210 1 2 40.00000 0 0 31.0000 10 2
## 211 211 3 2 24.00000 0 0 7.0500 132 4
## 212 212 2 1 35.00000 0 0 21.0000 132 4
## 213 213 3 2 22.00000 0 0 7.2500 132 4
## 214 214 2 2 30.00000 0 0 13.0000 132 4
## 215 215 3 2 23.79929 1 0 7.7500 132 3
## 216 216 1 1 31.00000 1 0 113.2750 105 2
## 217 217 3 1 27.00000 0 0 7.9250 132 4
## 218 218 2 2 42.00000 1 0 27.0000 132 4
## 219 219 1 1 32.00000 0 0 76.2917 95 2
## 220 220 2 2 30.00000 0 0 10.5000 132 4
## 221 221 3 2 16.00000 0 0 8.0500 132 4
## 222 222 2 2 27.00000 0 0 13.0000 132 4
## 223 223 3 2 51.00000 0 0 8.0500 132 4
## 224 224 3 2 23.79929 0 0 7.8958 132 4
## 225 225 1 2 38.00000 1 0 90.0000 89 4
## 226 226 3 2 22.00000 0 0 9.3500 132 4
## 227 227 2 2 19.00000 0 0 10.5000 132 4
## 228 228 3 2 20.50000 0 0 7.2500 132 4
## 229 229 2 2 18.00000 0 0 13.0000 132 4
## 230 230 3 1 23.79929 3 1 25.4667 132 4
## 231 231 1 1 35.00000 1 0 83.4750 82 4
## 232 232 3 2 29.00000 0 0 7.7750 132 4
## 233 233 2 2 59.00000 0 0 13.5000 132 4
## 234 234 3 1 5.00000 4 2 31.3875 132 4
## 235 235 2 2 24.00000 0 0 10.5000 132 4
## 236 236 3 1 23.79929 0 0 7.5500 132 4
## 237 237 2 2 44.00000 1 0 26.0000 132 4
## 238 238 2 1 8.00000 0 2 26.2500 132 4
## 239 239 2 2 19.00000 0 0 10.5000 132 4
## 240 240 2 2 33.00000 0 0 12.2750 132 4
## 241 241 3 1 23.79929 1 0 14.4542 132 2
## 242 242 3 1 23.79929 1 0 15.5000 132 3
## 243 243 2 2 29.00000 0 0 10.5000 132 4
## 244 244 3 2 22.00000 0 0 7.1250 132 4
## 245 245 3 2 30.00000 0 0 7.2250 132 2
## 246 246 1 2 44.00000 2 0 90.0000 80 3
## 247 247 3 1 25.00000 0 0 7.7750 132 4
## 248 248 2 1 24.00000 0 2 14.5000 132 4
## 249 249 1 2 37.00000 1 1 52.5542 104 4
## 250 250 2 2 54.00000 1 0 26.0000 132 4
## 251 251 3 2 23.79929 0 0 7.2500 132 4
## 252 252 3 1 29.00000 1 1 10.4625 147 4
## 253 253 1 2 62.00000 0 0 26.5500 85 4
## 254 254 3 2 30.00000 1 0 16.1000 132 4
## 255 255 3 1 41.00000 0 2 20.2125 132 4
## 256 256 3 1 29.00000 0 2 15.2458 132 2
## 257 257 1 1 23.79929 0 0 79.2000 132 2
## 258 258 1 1 30.00000 0 0 86.5000 42 4
## 259 259 1 1 35.00000 0 0 512.3292 132 2
## 260 260 2 1 50.00000 0 1 26.0000 132 4
## 261 261 3 2 23.79929 0 0 7.7500 132 3
## 262 262 3 2 3.00000 4 2 31.3875 132 4
## 263 263 1 2 52.00000 1 1 79.6500 136 4
## 264 264 1 2 40.00000 0 0 0.0000 48 4
## 265 265 3 1 23.79929 0 0 7.7500 132 3
## 266 266 2 2 36.00000 0 0 10.5000 132 4
## 267 267 3 2 16.00000 4 1 39.6875 132 4
## 268 268 3 2 25.00000 1 0 7.7750 132 4
## 269 269 1 1 58.00000 0 1 153.4625 59 4
## 270 270 1 1 35.00000 0 0 135.6333 91 4
## 271 271 1 2 23.79929 0 0 31.0000 132 4
## 272 272 3 2 25.00000 0 0 0.0000 132 4
## 273 273 2 1 41.00000 0 1 19.5000 132 4
## 274 274 1 2 37.00000 0 1 29.7000 56 2
## 275 275 3 1 23.79929 0 0 7.7500 132 3
## 276 276 1 1 63.00000 1 0 77.9583 115 4
## 277 277 3 1 45.00000 0 0 7.7500 132 4
## 278 278 2 2 23.79929 0 0 0.0000 132 4
## 279 279 3 2 7.00000 4 1 29.1250 132 3
## 280 280 3 1 35.00000 1 1 20.2500 132 4
## 281 281 3 2 65.00000 0 0 7.7500 132 3
## 282 282 3 2 28.00000 0 0 7.8542 132 4
## 283 283 3 2 16.00000 0 0 9.5000 132 4
## 284 284 3 2 19.00000 0 0 8.0500 132 4
## 285 285 1 2 23.79929 0 0 26.0000 5 4
## 286 286 3 2 33.00000 0 0 8.6625 132 2
## 287 287 3 2 30.00000 0 0 9.5000 132 4
## 288 288 3 2 22.00000 0 0 7.8958 132 4
## 289 289 2 2 42.00000 0 0 13.0000 132 4
## 290 290 3 1 22.00000 0 0 7.7500 132 3
## 291 291 1 1 26.00000 0 0 78.8500 132 4
## 292 292 1 1 19.00000 1 0 91.0792 33 2
## 293 293 2 2 36.00000 0 0 12.8750 92 2
## 294 294 3 1 24.00000 0 0 8.8500 132 4
## 295 295 3 2 24.00000 0 0 7.8958 132 4
## 296 296 1 2 23.79929 0 0 27.7208 132 2
## 297 297 3 2 23.50000 0 0 7.2292 132 2
## 298 298 1 1 2.00000 1 2 151.5500 64 4
## 299 299 1 2 23.79929 0 0 30.5000 53 4
## 300 300 1 1 50.00000 0 1 247.5208 38 2
## 301 301 3 1 23.79929 0 0 7.7500 132 3
## 302 302 3 2 23.79929 2 0 23.2500 132 3
## 303 303 3 2 19.00000 0 0 0.0000 132 4
## 304 304 2 1 23.79929 0 0 12.3500 118 3
## 305 305 3 2 23.79929 0 0 8.0500 132 4
## 306 306 1 2 0.92000 1 2 151.5500 64 4
## 307 307 1 1 23.79929 0 0 110.8833 132 2
## 308 308 1 1 17.00000 1 0 108.9000 76 2
## 309 309 2 2 30.00000 1 0 24.0000 132 2
## 310 310 1 1 30.00000 0 0 56.9292 127 2
## 311 311 1 1 24.00000 0 0 83.1583 74 2
## 312 312 1 1 18.00000 2 2 262.3750 37 2
## 313 313 2 1 26.00000 1 1 26.0000 132 4
## 314 314 3 2 28.00000 0 0 7.8958 132 4
## 315 315 2 2 43.00000 1 1 26.2500 132 4
## 316 316 3 1 26.00000 0 0 7.8542 132 4
## 317 317 2 1 24.00000 1 0 26.0000 132 4
## 318 318 2 2 54.00000 0 0 14.0000 132 4
## 319 319 1 1 31.00000 0 2 164.8667 78 4
## 320 320 1 1 40.00000 1 1 134.5000 126 2
## 321 321 3 2 22.00000 0 0 7.2500 132 4
## 322 322 3 2 27.00000 0 0 7.8958 132 4
## 323 323 2 1 30.00000 0 0 12.3500 132 3
## 324 324 2 1 22.00000 1 1 29.0000 132 4
## 325 325 3 2 23.79929 8 2 69.5500 132 4
## 326 326 1 1 36.00000 0 0 135.6333 67 2
## 327 327 3 2 61.00000 0 0 6.2375 132 4
## 328 328 2 1 36.00000 0 0 13.0000 92 4
## 329 329 3 1 31.00000 1 1 20.5250 132 4
## 330 330 1 1 16.00000 0 1 57.9792 19 2
## 331 331 3 1 23.79929 2 0 23.2500 132 3
## 332 332 1 2 45.50000 0 0 28.5000 58 4
## 333 333 1 2 38.00000 0 1 153.4625 87 4
## 334 334 3 2 16.00000 2 0 18.0000 132 4
## 335 335 1 1 23.79929 1 0 133.6500 132 4
## 336 336 3 2 23.79929 0 0 7.8958 132 4
## 337 337 1 2 29.00000 1 0 66.6000 63 4
## 338 338 1 1 41.00000 0 0 134.5000 129 2
## 339 339 3 2 45.00000 0 0 8.0500 132 4
## 340 340 1 2 45.00000 0 0 35.5000 148 4
## 341 341 2 2 2.00000 1 1 26.0000 143 4
## 342 342 1 1 24.00000 3 2 263.0000 65 4
## 343 343 2 2 28.00000 0 0 13.0000 132 4
## 344 344 2 2 25.00000 0 0 13.0000 132 4
## 345 345 2 2 36.00000 0 0 13.0000 132 4
## 346 346 2 1 24.00000 0 0 13.0000 144 4
## 347 347 2 1 40.00000 0 0 13.0000 132 4
## 348 348 3 1 23.79929 1 0 16.1000 132 4
## 349 349 3 2 3.00000 1 1 15.9000 132 4
## 350 350 3 2 42.00000 0 0 8.6625 132 4
## 351 351 3 2 23.00000 0 0 9.2250 132 4
## 352 352 1 2 23.79929 0 0 35.0000 61 4
## 353 353 3 2 15.00000 1 1 7.2292 132 2
## 354 354 3 2 25.00000 1 0 17.8000 132 4
## 355 355 3 2 23.79929 0 0 7.2250 132 2
## 356 356 3 2 28.00000 0 0 9.5000 132 4
## 357 357 1 1 22.00000 0 1 55.0000 125 4
## 358 358 2 1 38.00000 0 0 13.0000 132 4
## 359 359 3 1 23.79929 0 0 7.8792 132 3
## 360 360 3 1 23.79929 0 0 7.8792 132 3
## 361 361 3 2 40.00000 1 4 27.9000 132 4
## 362 362 2 2 29.00000 1 0 27.7208 132 2
## 363 363 3 1 45.00000 0 1 14.4542 132 2
## 364 364 3 2 35.00000 0 0 7.0500 132 4
## 365 365 3 2 23.79929 1 0 15.5000 132 3
## 366 366 3 2 30.00000 0 0 7.2500 132 4
## 367 367 1 1 60.00000 1 0 75.2500 106 2
## 368 368 3 1 23.79929 0 0 7.2292 132 2
## 369 369 3 1 23.79929 0 0 7.7500 132 3
## 370 370 1 1 24.00000 0 0 69.3000 26 2
## 371 371 1 2 25.00000 1 0 55.4417 133 2
## 372 372 3 2 18.00000 1 0 6.4958 132 4
## 373 373 3 2 19.00000 0 0 8.0500 132 4
## 374 374 1 2 22.00000 0 0 135.6333 132 2
## 375 375 3 1 3.00000 3 1 21.0750 132 4
## 376 376 1 1 23.79929 1 0 82.1708 132 2
## 377 377 3 1 22.00000 0 0 7.2500 132 4
## 378 378 1 2 27.00000 0 2 211.5000 81 2
## 379 379 3 2 20.00000 0 0 4.0125 132 2
## 380 380 3 2 19.00000 0 0 7.7750 132 4
## 381 381 1 1 42.00000 0 0 227.5250 132 2
## 382 382 3 1 1.00000 0 2 15.7417 132 2
## 383 383 3 2 32.00000 0 0 7.9250 132 4
## 384 384 1 1 35.00000 1 0 52.0000 132 4
## 385 385 3 2 23.79929 0 0 7.8958 132 4
## 386 386 2 2 18.00000 0 0 73.5000 132 4
## 387 387 3 2 1.00000 5 2 46.9000 132 4
## 388 388 2 1 36.00000 0 0 13.0000 132 4
## 389 389 3 2 23.79929 0 0 7.7292 132 3
## 390 390 2 1 17.00000 0 0 12.0000 132 2
## 391 391 1 2 36.00000 1 2 120.0000 49 4
## 392 392 3 2 21.00000 0 0 7.7958 132 4
## 393 393 3 2 28.00000 2 0 7.9250 132 4
## 394 394 1 1 23.00000 1 0 113.2750 105 2
## 395 395 3 1 24.00000 0 2 16.7000 147 4
## 396 396 3 2 22.00000 0 0 7.7958 132 4
## 397 397 3 1 31.00000 0 0 7.8542 132 4
## 398 398 2 2 46.00000 0 0 26.0000 132 4
## 399 399 2 2 23.00000 0 0 10.5000 132 4
## 400 400 2 1 28.00000 0 0 12.6500 132 4
## 401 401 3 2 39.00000 0 0 7.9250 132 4
## 402 402 3 2 26.00000 0 0 8.0500 132 4
## 403 403 3 1 21.00000 1 0 9.8250 132 4
## 404 404 3 2 28.00000 1 0 15.8500 132 4
## 405 405 3 1 20.00000 0 0 8.6625 132 4
## 406 406 2 2 34.00000 1 0 21.0000 132 4
## 407 407 3 2 51.00000 0 0 7.7500 132 4
## 408 408 2 2 3.00000 1 1 18.7500 132 4
## 409 409 3 2 21.00000 0 0 7.7750 132 4
## 410 410 3 1 23.79929 3 1 25.4667 132 4
## 411 411 3 2 23.79929 0 0 7.8958 132 4
## 412 412 3 2 23.79929 0 0 6.8583 132 3
## 413 413 1 1 33.00000 1 0 90.0000 80 3
## 414 414 2 2 23.79929 0 0 0.0000 132 4
## 415 415 3 2 44.00000 0 0 7.9250 132 4
## 416 416 3 1 23.79929 0 0 8.0500 132 4
## 417 417 2 1 34.00000 1 1 32.5000 132 4
## 418 418 2 1 18.00000 0 2 13.0000 132 4
## 419 419 2 2 30.00000 0 0 13.0000 132 4
## 420 420 3 1 10.00000 0 2 24.1500 132 4
## 421 421 3 2 23.79929 0 0 7.8958 132 2
## 422 422 3 2 21.00000 0 0 7.7333 132 3
## 423 423 3 2 29.00000 0 0 7.8750 132 4
## 424 424 3 1 28.00000 1 1 14.4000 132 4
## 425 425 3 2 18.00000 1 1 20.2125 132 4
## 426 426 3 2 23.79929 0 0 7.2500 132 4
## 427 427 2 1 28.00000 1 0 26.0000 132 4
## 428 428 2 1 19.00000 0 0 26.0000 132 4
## 429 429 3 2 23.79929 0 0 7.7500 132 3
## 430 430 3 2 32.00000 0 0 8.0500 117 4
## 431 431 1 2 28.00000 0 0 26.5500 73 4
## 432 432 3 1 23.79929 1 0 16.1000 132 4
## 433 433 2 1 42.00000 1 0 26.0000 132 4
## 434 434 3 2 17.00000 0 0 7.1250 132 4
## 435 435 1 2 50.00000 1 0 55.9000 130 4
## 436 436 1 1 14.00000 1 2 120.0000 49 4
## 437 437 3 1 21.00000 2 2 34.3750 132 4
## 438 438 2 1 24.00000 2 3 18.7500 132 4
## 439 439 1 2 64.00000 1 4 263.0000 65 4
## 440 440 2 2 31.00000 0 0 10.5000 132 4
## 441 441 2 1 45.00000 1 1 26.2500 132 4
## 442 442 3 2 20.00000 0 0 9.5000 132 4
## 443 443 3 2 25.00000 1 0 7.7750 132 4
## 444 444 2 1 28.00000 0 0 13.0000 132 4
## 445 445 3 2 23.79929 0 0 8.1125 132 4
## 446 446 1 2 4.00000 0 2 81.8583 12 4
## 447 447 2 1 13.00000 0 1 19.5000 132 4
## 448 448 1 2 34.00000 0 0 26.5500 132 4
## 449 449 3 1 5.00000 2 1 19.2583 132 2
## 450 450 1 2 52.00000 0 0 30.5000 52 4
## 451 451 2 2 36.00000 1 2 27.7500 132 4
## 452 452 3 2 23.79929 1 0 19.9667 132 4
## 453 453 1 2 30.00000 0 0 27.7500 55 2
## 454 454 1 2 49.00000 1 0 89.1042 88 2
## 455 455 3 2 23.79929 0 0 8.0500 132 4
## 456 456 3 2 29.00000 0 0 7.8958 132 2
## 457 457 1 2 65.00000 0 0 26.5500 128 4
## 458 458 1 1 23.79929 1 0 51.8625 99 4
## 459 459 2 1 50.00000 0 0 10.5000 132 4
## 460 460 3 2 23.79929 0 0 7.7500 132 3
## 461 461 1 2 48.00000 0 0 26.5500 119 4
## 462 462 3 2 34.00000 0 0 8.0500 132 4
## 463 463 1 2 47.00000 0 0 38.5000 135 4
## 464 464 2 2 48.00000 0 0 13.0000 132 4
## 465 465 3 2 23.79929 0 0 8.0500 132 4
## 466 466 3 2 38.00000 0 0 7.0500 132 4
## 467 467 2 2 23.79929 0 0 0.0000 132 4
## 468 468 1 2 56.00000 0 0 26.5500 132 4
## 469 469 3 2 23.79929 0 0 7.7250 132 3
## 470 470 3 1 0.75000 2 1 19.2583 132 2
## 471 471 3 2 23.79929 0 0 7.2500 132 4
## 472 472 3 2 38.00000 0 0 8.6625 132 4
## 473 473 2 1 33.00000 1 2 27.7500 132 4
## 474 474 2 1 23.00000 0 0 13.7917 92 2
## 475 475 3 1 22.00000 0 0 9.8375 132 4
## 476 476 1 2 23.79929 0 0 52.0000 3 4
## 477 477 2 2 34.00000 1 0 21.0000 132 4
## 478 478 3 2 29.00000 1 0 7.0458 132 4
## 479 479 3 2 22.00000 0 0 7.5208 132 4
## 480 480 3 1 2.00000 0 1 12.2875 132 4
## 481 481 3 2 9.00000 5 2 46.9000 132 4
## 482 482 2 2 23.79929 0 0 0.0000 132 4
## 483 483 3 2 50.00000 0 0 8.0500 132 4
## 484 484 3 1 63.00000 0 0 9.5875 132 4
## 485 485 1 2 25.00000 1 0 91.0792 33 2
## 486 486 3 1 23.79929 3 1 25.4667 132 4
## 487 487 1 1 35.00000 1 0 90.0000 89 4
## 488 488 1 2 58.00000 0 0 29.7000 27 2
## 489 489 3 2 30.00000 0 0 8.0500 132 4
## 490 490 3 2 9.00000 1 1 15.9000 132 4
## 491 491 3 2 23.79929 1 0 19.9667 132 4
## 492 492 3 2 21.00000 0 0 7.2500 132 4
## 493 493 1 2 55.00000 0 0 30.5000 66 4
## 494 494 1 2 71.00000 0 0 49.5042 132 2
## 495 495 3 2 21.00000 0 0 8.0500 132 4
## 496 496 3 2 23.79929 0 0 14.4583 132 2
## 497 497 1 1 54.00000 1 0 78.2667 98 2
## 498 498 3 2 23.79929 0 0 15.1000 132 4
## 499 499 1 1 25.00000 1 2 151.5500 64 4
## 500 500 3 2 24.00000 0 0 7.7958 132 4
## 501 501 3 2 17.00000 0 0 8.6625 132 4
## 502 502 3 1 21.00000 0 0 7.7500 132 3
## 503 503 3 1 23.79929 0 0 7.6292 132 3
## 504 504 3 1 37.00000 0 0 9.5875 132 4
## 505 505 1 1 16.00000 0 0 86.5000 44 4
## 506 506 1 2 18.00000 1 0 108.9000 76 2
## 507 507 2 1 33.00000 0 2 26.0000 132 4
## 508 508 1 2 23.79929 0 0 26.5500 132 4
## 509 509 3 2 28.00000 0 0 22.5250 132 4
## 510 510 3 2 26.00000 0 0 56.4958 132 4
## 511 511 3 2 29.00000 0 0 7.7500 132 3
## 512 512 3 2 23.79929 0 0 8.0500 132 4
## 513 513 1 2 36.00000 0 0 26.2875 123 4
## 514 514 1 1 54.00000 1 0 59.4000 132 2
## 515 515 3 2 24.00000 0 0 7.4958 132 4
## 516 516 1 2 47.00000 0 0 34.0208 108 4
## 517 517 2 1 34.00000 0 0 10.5000 144 4
## 518 518 3 2 23.79929 0 0 24.1500 132 3
## 519 519 2 1 36.00000 1 0 26.0000 132 4
## 520 520 3 2 32.00000 0 0 7.8958 132 4
## 521 521 1 1 30.00000 0 0 93.5000 41 4
## 522 522 3 2 22.00000 0 0 7.8958 132 4
## 523 523 3 2 23.79929 0 0 7.2250 132 2
## 524 524 1 1 44.00000 0 1 57.9792 19 2
## 525 525 3 2 23.79929 0 0 7.2292 132 2
## 526 526 3 2 40.50000 0 0 7.7500 132 3
## 527 527 2 1 50.00000 0 0 10.5000 132 4
## 528 528 1 2 23.79929 0 0 221.7792 90 4
## 529 529 3 2 39.00000 0 0 7.9250 132 4
## 530 530 2 2 23.00000 2 1 11.5000 132 4
## 531 531 2 1 2.00000 1 1 26.0000 132 4
## 532 532 3 2 23.79929 0 0 7.2292 132 2
## 533 533 3 2 17.00000 1 1 7.2292 132 2
## 534 534 3 1 23.79929 0 2 22.3583 132 2
## 535 535 3 1 30.00000 0 0 8.6625 132 4
## 536 536 2 1 7.00000 0 2 26.2500 132 4
## 537 537 1 2 45.00000 0 0 26.5500 28 4
## 538 538 1 1 30.00000 0 0 106.4250 132 2
## 539 539 3 2 23.79929 0 0 14.5000 132 4
## 540 540 1 1 22.00000 0 2 49.5000 29 2
## 541 541 1 1 36.00000 0 2 71.0000 22 4
## 542 542 3 1 9.00000 4 2 31.2750 132 4
## 543 543 3 1 11.00000 4 2 31.2750 132 4
## 544 544 2 2 32.00000 1 0 26.0000 132 4
## 545 545 1 2 50.00000 1 0 106.4250 84 2
## 546 546 1 2 64.00000 0 0 26.0000 132 4
## 547 547 2 1 19.00000 1 0 26.0000 132 4
## 548 548 2 2 23.79929 0 0 13.8625 132 2
## 549 549 3 2 33.00000 1 1 20.5250 132 4
## 550 550 2 2 8.00000 1 1 36.7500 132 4
## 551 551 1 2 17.00000 0 2 110.8833 79 2
## 552 552 2 2 27.00000 0 0 26.0000 132 4
## 553 553 3 2 23.79929 0 0 7.8292 132 3
## 554 554 3 2 22.00000 0 0 7.2250 132 2
## 555 555 3 1 22.00000 0 0 7.7750 132 4
## 556 556 1 2 62.00000 0 0 26.5500 132 4
## 557 557 1 1 48.00000 1 0 39.6000 4 2
## 558 558 1 2 23.79929 0 0 227.5250 132 2
## 559 559 1 1 39.00000 1 1 79.6500 136 4
## 560 560 3 1 36.00000 1 0 17.4000 132 4
## 561 561 3 2 23.79929 0 0 7.7500 132 3
## 562 562 3 2 40.00000 0 0 7.8958 132 4
## 563 563 2 2 28.00000 0 0 13.5000 132 4
## 564 564 3 2 23.79929 0 0 8.0500 132 4
## 565 565 3 1 23.79929 0 0 8.0500 132 4
## 566 566 3 2 24.00000 2 0 24.1500 132 4
## 567 567 3 2 19.00000 0 0 7.8958 132 4
## 568 568 3 1 29.00000 0 4 21.0750 132 4
## 569 569 3 2 23.79929 0 0 7.2292 132 2
## 570 570 3 2 32.00000 0 0 7.8542 132 4
## 571 571 2 2 62.00000 0 0 10.5000 132 4
## 572 572 1 1 53.00000 2 0 51.4792 50 4
## 573 573 1 2 36.00000 0 0 26.3875 123 4
## 574 574 3 1 23.79929 0 0 7.7500 132 3
## 575 575 3 2 16.00000 0 0 8.0500 132 4
## 576 576 3 2 19.00000 0 0 14.5000 132 4
## 577 577 2 1 34.00000 0 0 13.0000 132 4
## 578 578 1 1 39.00000 1 0 55.9000 130 4
## 579 579 3 1 23.79929 1 0 14.4583 132 2
## 580 580 3 2 32.00000 0 0 7.9250 132 4
## 581 581 2 1 25.00000 1 1 30.0000 132 4
## 582 582 1 1 39.00000 1 1 110.8833 77 2
## 583 583 2 2 54.00000 0 0 26.0000 132 4
## 584 584 1 2 36.00000 0 0 40.1250 2 2
## 585 585 3 2 23.79929 0 0 8.7125 132 2
## 586 586 1 1 18.00000 0 2 79.6500 137 4
## 587 587 2 2 47.00000 0 0 15.0000 132 4
## 588 588 1 2 60.00000 1 1 79.2000 31 2
## 589 589 3 2 22.00000 0 0 8.0500 132 4
## 590 590 3 2 23.79929 0 0 8.0500 132 4
## 591 591 3 2 35.00000 0 0 7.1250 132 4
## 592 592 1 1 52.00000 1 0 78.2667 98 2
## 593 593 3 2 47.00000 0 0 7.2500 132 4
## 594 594 3 1 23.79929 0 2 7.7500 132 3
## 595 595 2 2 37.00000 1 0 26.0000 132 4
## 596 596 3 2 36.00000 1 1 24.1500 132 4
## 597 597 2 1 23.79929 0 0 33.0000 132 4
## 598 598 3 2 49.00000 0 0 0.0000 132 4
## 599 599 3 2 23.79929 0 0 7.2250 132 2
## 600 600 1 2 49.00000 1 0 56.9292 6 2
## 601 601 2 1 24.00000 2 1 27.0000 132 4
## 602 602 3 2 23.79929 0 0 7.8958 132 4
## 603 603 1 2 23.79929 0 0 42.4000 132 4
## 604 604 3 2 44.00000 0 0 8.0500 132 4
## 605 605 1 2 35.00000 0 0 26.5500 132 2
## 606 606 3 2 36.00000 1 0 15.5500 132 4
## 607 607 3 2 30.00000 0 0 7.8958 132 4
## 608 608 1 2 27.00000 0 0 30.5000 132 4
## 609 609 2 1 22.00000 1 2 41.5792 132 2
## 610 610 1 1 40.00000 0 0 153.4625 59 4
## 611 611 3 1 39.00000 1 5 31.2750 132 4
## 612 612 3 2 23.79929 0 0 7.0500 132 4
## 613 613 3 1 23.79929 1 0 15.5000 132 3
## 614 614 3 2 23.79929 0 0 7.7500 132 3
## 615 615 3 2 35.00000 0 0 8.0500 132 4
## 616 616 2 1 24.00000 1 2 65.0000 132 4
## 617 617 3 2 34.00000 1 1 14.4000 132 4
## 618 618 3 1 26.00000 1 0 16.1000 132 4
## 619 619 2 1 4.00000 2 1 39.0000 146 4
## 620 620 2 2 26.00000 0 0 10.5000 132 4
## 621 621 3 2 27.00000 1 0 14.4542 132 2
## 622 622 1 2 42.00000 1 0 52.5542 97 4
## 623 623 3 2 20.00000 1 1 15.7417 132 2
## 624 624 3 2 21.00000 0 0 7.8542 132 4
## 625 625 3 2 21.00000 0 0 16.1000 132 4
## 626 626 1 2 61.00000 0 0 32.3208 112 4
## 627 627 2 2 57.00000 0 0 12.3500 132 3
## 628 628 1 1 21.00000 0 0 77.9583 116 4
## 629 629 3 2 26.00000 0 0 7.8958 132 4
## 630 630 3 2 23.79929 0 0 7.7333 132 3
## 631 631 1 2 80.00000 0 0 30.0000 7 4
## 632 632 3 2 51.00000 0 0 7.0542 132 4
## 633 633 1 2 32.00000 0 0 30.5000 35 2
## 634 634 1 2 23.79929 0 0 0.0000 132 4
## 635 635 3 1 9.00000 3 2 27.9000 132 4
## 636 636 2 1 28.00000 0 0 13.0000 132 4
## 637 637 3 2 32.00000 0 0 7.9250 132 4
## 638 638 2 2 31.00000 1 1 26.2500 132 4
## 639 639 3 1 41.00000 0 5 39.6875 132 4
## 640 640 3 2 23.79929 1 0 16.1000 132 4
## 641 641 3 2 20.00000 0 0 7.8542 132 4
## 642 642 1 1 24.00000 0 0 69.3000 26 2
## 643 643 3 1 2.00000 3 2 27.9000 132 4
## 644 644 3 2 23.79929 0 0 56.4958 132 4
## 645 645 3 1 0.75000 2 1 19.2583 132 2
## 646 646 1 2 48.00000 1 0 76.7292 103 2
## 647 647 3 2 19.00000 0 0 7.8958 132 4
## 648 648 1 2 56.00000 0 0 35.5000 9 2
## 649 649 3 2 23.79929 0 0 7.5500 132 4
## 650 650 3 1 23.00000 0 0 7.5500 132 4
## 651 651 3 2 23.79929 0 0 7.8958 132 4
## 652 652 2 1 18.00000 0 1 23.0000 132 4
## 653 653 3 2 21.00000 0 0 8.4333 132 4
## 654 654 3 1 23.79929 0 0 7.8292 132 3
## 655 655 3 1 18.00000 0 0 6.7500 132 3
## 656 656 2 2 24.00000 2 0 73.5000 132 4
## 657 657 3 2 23.79929 0 0 7.8958 132 4
## 658 658 3 1 32.00000 1 1 15.5000 132 3
## 659 659 2 2 23.00000 0 0 13.0000 132 4
## 660 660 1 2 58.00000 0 2 113.2750 110 2
## 661 661 1 2 50.00000 2 0 133.6500 132 4
## 662 662 3 2 40.00000 0 0 7.2250 132 2
## 663 663 1 2 47.00000 0 0 25.5875 134 4
## 664 664 3 2 36.00000 0 0 7.4958 132 4
## 665 665 3 2 20.00000 1 0 7.9250 132 4
## 666 666 2 2 32.00000 2 0 73.5000 132 4
## 667 667 2 2 25.00000 0 0 13.0000 132 4
## 668 668 3 2 23.79929 0 0 7.7750 132 4
## 669 669 3 2 43.00000 0 0 8.0500 132 4
## 670 670 1 1 23.79929 1 0 52.0000 60 4
## 671 671 2 1 40.00000 1 1 39.0000 132 4
## 672 672 1 2 31.00000 1 0 52.0000 40 4
## 673 673 2 2 70.00000 0 0 10.5000 132 4
## 674 674 2 2 31.00000 0 0 13.0000 132 4
## 675 675 2 2 23.79929 0 0 0.0000 132 4
## 676 676 3 2 18.00000 0 0 7.7750 132 4
## 677 677 3 2 24.50000 0 0 8.0500 132 4
## 678 678 3 1 18.00000 0 0 9.8417 132 4
## 679 679 3 1 43.00000 1 6 46.9000 132 4
## 680 680 1 2 36.00000 0 1 512.3292 36 2
## 681 681 3 1 23.79929 0 0 8.1375 132 3
## 682 682 1 2 27.00000 0 0 76.7292 111 2
## 683 683 3 2 20.00000 0 0 9.2250 132 4
## 684 684 3 2 14.00000 5 2 46.9000 132 4
## 685 685 2 2 60.00000 1 1 39.0000 132 4
## 686 686 2 2 25.00000 1 2 41.5792 132 2
## 687 687 3 2 14.00000 4 1 39.6875 132 4
## 688 688 3 2 19.00000 0 0 10.1708 132 4
## 689 689 3 2 18.00000 0 0 7.7958 132 4
## 690 690 1 1 15.00000 0 1 211.3375 34 4
## 691 691 1 2 31.00000 1 0 57.0000 21 4
## 692 692 3 1 4.00000 0 1 13.4167 132 2
## 693 693 3 2 23.79929 0 0 56.4958 132 4
## 694 694 3 2 25.00000 0 0 7.2250 132 2
## 695 695 1 2 60.00000 0 0 26.5500 132 4
## 696 696 2 2 52.00000 0 0 13.5000 132 4
## 697 697 3 2 44.00000 0 0 8.0500 132 4
## 698 698 3 1 23.79929 0 0 7.7333 132 3
## 699 699 1 2 49.00000 1 1 110.8833 77 2
## 700 700 3 2 42.00000 0 0 7.6500 141 4
## 701 701 1 1 18.00000 1 0 227.5250 75 2
## 702 702 1 2 35.00000 0 0 26.2875 122 4
## 703 703 3 1 18.00000 0 1 14.4542 132 2
## 704 704 3 2 25.00000 0 0 7.7417 132 3
## 705 705 3 2 26.00000 1 0 7.8542 132 4
## 706 706 2 2 39.00000 0 0 26.0000 132 4
## 707 707 2 1 45.00000 0 0 13.5000 132 4
## 708 708 1 2 42.00000 0 0 26.2875 122 4
## 709 709 1 1 22.00000 0 0 151.5500 132 4
## 710 710 3 2 23.79929 1 1 15.2458 132 2
## 711 711 1 1 24.00000 0 0 49.5042 86 2
## 712 712 1 2 23.79929 0 0 26.5500 58 4
## 713 713 1 2 48.00000 1 0 52.0000 60 4
## 714 714 3 2 29.00000 0 0 9.4833 132 4
## 715 715 2 2 52.00000 0 0 13.0000 132 4
## 716 716 3 2 19.00000 0 0 7.6500 142 4
## 717 717 1 1 38.00000 0 0 227.5250 68 2
## 718 718 2 1 27.00000 0 0 10.5000 118 4
## 719 719 3 2 23.79929 0 0 15.5000 132 3
## 720 720 3 2 33.00000 0 0 7.7750 132 4
## 721 721 2 1 6.00000 0 1 33.0000 132 4
## 722 722 3 2 17.00000 1 0 7.0542 132 4
## 723 723 2 2 34.00000 0 0 13.0000 132 4
## 724 724 2 2 50.00000 0 0 13.0000 132 4
## 725 725 1 2 27.00000 1 0 53.1000 139 4
## 726 726 3 2 20.00000 0 0 8.6625 132 4
## 727 727 2 1 30.00000 3 0 21.0000 132 4
## 728 728 3 1 23.79929 0 0 7.7375 132 3
## 729 729 2 2 25.00000 1 0 26.0000 132 4
## 730 730 3 1 25.00000 1 0 7.9250 132 4
## 731 731 1 1 29.00000 0 0 211.3375 34 4
## 732 732 3 2 11.00000 0 0 18.7875 132 2
## 733 733 2 2 23.79929 0 0 0.0000 132 4
## 734 734 2 2 23.00000 0 0 13.0000 132 4
## 735 735 2 2 23.00000 0 0 13.0000 132 4
## 736 736 3 2 28.50000 0 0 16.1000 132 4
## 737 737 3 1 48.00000 1 3 34.3750 132 4
## 738 738 1 2 35.00000 0 0 512.3292 17 2
## 739 739 3 2 23.79929 0 0 7.8958 132 4
## 740 740 3 2 23.79929 0 0 7.8958 132 4
## 741 741 1 2 23.79929 0 0 30.0000 107 4
## 742 742 1 2 36.00000 1 0 78.8500 69 4
## 743 743 1 1 21.00000 2 2 262.3750 37 2
## 744 744 3 2 24.00000 1 0 16.1000 132 4
## 745 745 3 2 31.00000 0 0 7.9250 132 4
## 746 746 1 2 70.00000 1 1 71.0000 22 4
## 747 747 3 2 16.00000 1 1 20.2500 132 4
## 748 748 2 1 30.00000 0 0 13.0000 132 4
## 749 749 1 2 19.00000 1 0 53.1000 102 4
## 750 750 3 2 31.00000 0 0 7.7500 132 3
## 751 751 2 1 4.00000 1 1 23.0000 132 4
## 752 752 3 2 6.00000 0 1 12.4750 120 4
## 753 753 3 2 33.00000 0 0 9.5000 132 4
## 754 754 3 2 23.00000 0 0 7.8958 132 4
## 755 755 2 1 48.00000 1 2 65.0000 132 4
## 756 756 2 2 0.67000 1 1 14.5000 132 4
## 757 757 3 2 28.00000 0 0 7.7958 132 4
## 758 758 2 2 18.00000 0 0 11.5000 132 4
## 759 759 3 2 34.00000 0 0 8.0500 132 4
## 760 760 1 1 33.00000 0 0 86.5000 42 4
## 761 761 3 2 23.79929 0 0 14.5000 132 4
## 762 762 3 2 41.00000 0 0 7.1250 132 4
## 763 763 3 2 20.00000 0 0 7.2292 132 2
## 764 764 1 1 36.00000 1 2 120.0000 49 4
## 765 765 3 2 16.00000 0 0 7.7750 132 4
## 766 766 1 1 51.00000 1 0 77.9583 94 4
## 767 767 1 2 23.79929 0 0 39.6000 132 2
## 768 768 3 1 30.50000 0 0 7.7500 132 3
## 769 769 3 2 23.79929 1 0 24.1500 132 3
## 770 770 3 2 32.00000 0 0 8.3625 132 4
## 771 771 3 2 24.00000 0 0 9.5000 132 4
## 772 772 3 2 48.00000 0 0 7.8542 132 4
## 773 773 2 1 57.00000 0 0 10.5000 138 4
## 774 774 3 2 23.79929 0 0 7.2250 132 2
## 775 775 2 1 54.00000 1 3 23.0000 132 4
## 776 776 3 2 18.00000 0 0 7.7500 132 4
## 777 777 3 2 23.79929 0 0 7.7500 145 3
## 778 778 3 1 5.00000 0 0 12.4750 132 4
## 779 779 3 2 23.79929 0 0 7.7375 132 3
## 780 780 1 1 43.00000 0 1 211.3375 24 4
## 781 781 3 1 13.00000 0 0 7.2292 132 2
## 782 782 1 1 17.00000 1 0 57.0000 21 4
## 783 783 1 2 29.00000 0 0 30.0000 114 4
## 784 784 3 2 23.79929 1 2 23.4500 132 4
## 785 785 3 2 25.00000 0 0 7.0500 132 4
## 786 786 3 2 25.00000 0 0 7.2500 132 4
## 787 787 3 1 18.00000 0 0 7.4958 132 4
## 788 788 3 2 8.00000 4 1 29.1250 132 3
## 789 789 3 2 1.00000 1 2 20.5750 132 4
## 790 790 1 2 46.00000 0 0 79.2000 46 2
## 791 791 3 2 23.79929 0 0 7.7500 132 3
## 792 792 2 2 16.00000 0 0 26.0000 132 4
## 793 793 3 1 23.79929 8 2 69.5500 132 4
## 794 794 1 2 23.79929 0 0 30.6958 132 2
## 795 795 3 2 25.00000 0 0 7.8958 132 4
## 796 796 2 2 39.00000 0 0 13.0000 132 4
## 797 797 1 1 49.00000 0 0 25.9292 96 4
## 798 798 3 1 31.00000 0 0 8.6833 132 4
## 799 799 3 2 30.00000 0 0 7.2292 132 2
## 800 800 3 1 30.00000 1 1 24.1500 132 4
## 801 801 2 2 34.00000 0 0 13.0000 132 4
## 802 802 2 1 31.00000 1 1 26.2500 132 4
## 803 803 1 2 11.00000 1 2 120.0000 49 4
## 804 804 3 2 0.42000 0 1 8.5167 132 2
## 805 805 3 2 27.00000 0 0 6.9750 132 4
## 806 806 3 2 31.00000 0 0 7.7750 132 4
## 807 807 1 2 39.00000 0 0 0.0000 13 4
## 808 808 3 1 18.00000 0 0 7.7750 132 4
## 809 809 2 2 39.00000 0 0 13.0000 132 4
## 810 810 1 1 33.00000 1 0 53.1000 139 4
## 811 811 3 2 26.00000 0 0 7.8875 132 4
## 812 812 3 2 39.00000 0 0 24.1500 132 4
## 813 813 2 2 35.00000 0 0 10.5000 132 4
## 814 814 3 1 6.00000 4 2 31.2750 132 4
## 815 815 3 2 30.50000 0 0 8.0500 132 4
## 816 816 1 2 23.79929 0 0 0.0000 18 4
## 817 817 3 1 23.00000 0 0 7.9250 132 4
## 818 818 2 2 31.00000 1 1 37.0042 132 2
## 819 819 3 2 43.00000 0 0 6.4500 132 4
## 820 820 3 2 10.00000 3 2 27.9000 132 4
## 821 821 1 1 52.00000 1 1 93.5000 39 4
## 822 822 3 2 27.00000 0 0 8.6625 132 4
## 823 823 1 2 38.00000 0 0 0.0000 132 4
## 824 824 3 1 27.00000 0 1 12.4750 120 4
## 825 825 3 2 2.00000 4 1 39.6875 132 4
## 826 826 3 2 23.79929 0 0 6.9500 132 3
## 827 827 3 2 23.79929 0 0 56.4958 132 4
## 828 828 2 2 1.00000 0 2 37.0042 132 2
## 829 829 3 2 23.79929 0 0 7.7500 132 3
## 830 830 1 1 62.00000 0 0 80.0000 23 2
## 831 831 3 1 15.00000 1 0 14.4542 132 2
## 832 832 2 2 0.83000 1 1 18.7500 132 4
## 833 833 3 2 23.79929 0 0 7.2292 132 2
## 834 834 3 2 23.00000 0 0 7.8542 132 4
## 835 835 3 2 18.00000 0 0 8.3000 132 4
## 836 836 1 1 39.00000 1 1 83.1583 132 2
## 837 837 3 2 21.00000 0 0 8.6625 132 4
## 838 838 3 2 23.79929 0 0 8.0500 132 4
## 839 839 3 2 32.00000 0 0 56.4958 132 4
## 840 840 1 2 23.79929 0 0 29.7000 70 2
## 841 841 3 2 20.00000 0 0 7.9250 132 4
## 842 842 2 2 16.00000 0 0 10.5000 132 4
## 843 843 1 1 30.00000 0 0 31.0000 132 2
## 844 844 3 2 34.50000 0 0 6.4375 132 2
## 845 845 3 2 17.00000 0 0 8.6625 132 4
## 846 846 3 2 42.00000 0 0 7.5500 132 4
## 847 847 3 2 23.79929 8 2 69.5500 132 4
## 848 848 3 2 35.00000 0 0 7.8958 132 2
## 849 849 2 2 28.00000 0 1 33.0000 132 4
## 850 850 1 1 23.79929 1 0 89.1042 88 2
## 851 851 3 2 4.00000 4 2 31.2750 132 4
## 852 852 3 2 74.00000 0 0 7.7750 132 4
## 853 853 3 1 9.00000 1 1 15.2458 132 2
## 854 854 1 1 16.00000 0 1 39.4000 101 4
## 855 855 2 1 44.00000 1 0 26.0000 132 4
## 856 856 3 1 18.00000 0 1 9.3500 132 4
## 857 857 1 1 45.00000 1 1 164.8667 132 4
## 858 858 1 2 51.00000 0 0 26.5500 121 4
## 859 859 3 1 24.00000 0 3 19.2583 132 2
## 860 860 3 2 23.79929 0 0 7.2292 132 2
## 861 861 3 2 41.00000 2 0 14.1083 132 4
## 862 862 2 2 21.00000 1 0 11.5000 132 4
## 863 863 1 1 48.00000 0 0 25.9292 96 4
## 864 864 3 1 23.79929 8 2 69.5500 132 4
## 865 865 2 2 24.00000 0 0 13.0000 132 4
## 866 866 2 1 42.00000 0 0 13.0000 132 4
## 867 867 2 1 27.00000 1 0 13.8583 132 2
## 868 868 1 2 31.00000 0 0 50.4958 8 4
## 869 869 3 2 23.79929 0 0 9.5000 132 4
## 870 870 3 2 4.00000 1 1 11.1333 132 4
## 871 871 3 2 26.00000 0 0 7.8958 132 4
## 872 872 1 1 47.00000 1 1 52.5542 104 4
## 873 873 1 2 33.00000 0 0 5.0000 36 4
## 874 874 3 2 47.00000 0 0 9.0000 132 4
## 875 875 2 1 28.00000 1 0 24.0000 132 2
## 876 876 3 1 15.00000 0 0 7.2250 132 2
## 877 877 3 2 20.00000 0 0 9.8458 132 4
## 878 878 3 2 19.00000 0 0 7.8958 132 4
## 879 879 3 2 23.79929 0 0 7.8958 132 4
## 880 880 1 1 56.00000 0 1 83.1583 72 2
## 881 881 2 1 25.00000 0 1 26.0000 132 4
## 882 882 3 2 33.00000 0 0 7.8958 132 4
## 883 883 3 1 22.00000 0 0 10.5167 132 4
## 884 884 2 2 28.00000 0 0 10.5000 132 4
## 885 885 3 2 25.00000 0 0 7.0500 132 4
## 886 886 3 1 39.00000 0 5 29.1250 132 3
## 887 887 2 2 27.00000 0 0 13.0000 132 4
## 888 888 1 1 19.00000 0 0 30.0000 32 4
## 889 889 3 1 23.79929 1 2 23.4500 132 4
## 890 890 1 2 26.00000 0 0 30.0000 62 2
## 891 891 3 2 32.00000 0 0 7.7500 132 3
require(caTools)
## Loading required package: caTools
set.seed(123)
sample = sample.split(df,SplitRatio = 0.75)
train1 =subset(df,sample ==TRUE)
test1=subset(df, sample==FALSE)