Background: Many studies have demonstrated that TC (total cholesterol), High-density lipoprotein (HDL), Low-density lipoprotein (LDL), and Triglyceride can affect violence in patients with schizophrenia, especially when cholesterol is low, violence is more serious.
PURPOSE: It is hoped that the experimental group can restore cholesterol to a balanced state (at least 160 mg/dl) through 3 months of multi-modal lifestyle intervention (nutrition, exercise, lifestyle changes), thereby improving the risk of violence, aggression, impulsivity and cognitive function. This case-control study aims to assess the association between serum cholesterol and multimodal lifestyles.
Methods: A total of 62 subjects were enrolled and admitted in the hospital. They were divided into two groups: 31 patients were the experimental group with violent schizophrenia with serum cholesterol ≤160mg/dl; 31 patients were the control group, with normal serum cholesterol 160-200mg/dl, in line with the following inclusion criteria: 1. All diagnosed as schizophrenia 2. Violent attacks occurred in the past year.
In the experimental group, the intervention measures were multimodal lifestyle intervention and received general clinical treatment; the control group only received general clinical treatment. TC (total cholesterol), HDL, LDL and triglycerides, mental health (depression, anxiety, hostility) and cognitive function at baseline, 3 months (3 months after pretest) and 6 months (3 after pretest) Month).
Four questionnaires are used, 1. Modified overt aggression scales (MOAS) ; 2.Violence risk (V-Risk 10), the higher the risk; 3. Aggression (Buss and Perry, 1992, The Aggression Questionnaire AQ attack scale), the higher the attack; 4. impulsivity scale (Barratt’s Impulsiveness scale, BIS), the higher the more impulsive.
Expected outcome: 1. The cholesterol concentration can be increased by intervening in the experimental group. 2. The overall violent behavior of schizophrenia can be improved.
本研究因收集資料變相眾多,此研究專注探討思覺失調症患者於活動介入後, 1.總膽固醇濃度是否提升 2.其暴力行為是否下降 3.總膽固醇與暴力關係
使用openxlsx進行讀檔,並運用 dplyr進行數據整理操作。 資料型態上,人口學變項有性別、年齡、教育程度、婚姻狀況、職業別、喝酒、抽菸、是否運動、體重、BMI。
結果變項為總膽固醇(cholesterol);問卷測量部分四份,此研究以Modified overt aggression scales(MOAS)攻擊(頻率)量表及Violence Risk(V-Risk 10)危險評估量表為主要分析依據。
::p_load(openxlsx, dplyr,gtsummary ) pacman
::p_load(openxlsx)
pacman<- read.xlsx(xlsxFile = "cholesterol_20210903.xlsx", sheet = 'all') dta
::kable(head(dta)) knitr
id | 組別編號 | Intervention | sex | age | edu | marriage | occupation | income | alcohol | smoking | activity | BW | BMI | Age.of.onset | cholesterol | Triglyceride | HDL | LDL | time | MOAS1_1 | MOAS1_2 | MOAS1_3 | MOAS1_4 | MOAS2 | MOAS3 | MOAS4 | MOAS5 | MOAS_oral | MOAS_item | MOAS_lself | MOAS_body | MOAS_Total | risk1 | risk2 | risk3 | risk4 | risk5 | risk6 | risk7 | risk8 | risk9 | risk10 | Risk_total | AQ1 | AQ2 | AQ3 | AQ4 | AQ5 | AQ6 | AQ7 | AQ8 | AQ9 | AQ10 | AQ11 | AQ12 | AQ13 | AQ14 | AQ15 | AQ16 | AQ17 | AQ18 | AQ19 | AQ20 | AQ21 | AQ22 | AQ23 | AQ24 | AQ25 | AQ26 | AQ27 | AQ28 | AQ29 | AQ_anger | AQ_verbal | AQ_physical | AQ_suspicious | AQ_Total | BIS1 | BIS2 | BIS3 | BIS4 | BIS5 | BIS6 | BIS7 | BIS8 | BIS9 | BIS10 | BIS11 | BIS12 | BIS13 | BIS14 | BIS15 | BIS16 | BIS17 | BIS18 | BIS19 | BIS20 | BIS21 | BIS22 | BIS23 | BIS24 | BIS25 | BIS26 | BIS27 | BIS28 | BIS29 | BIS30 | BIS_attention | BIS_action | BIS_Noplan | BIS_Total | MMSE1 | MMSE2 | MMSE3 | MMSE4 | MMSE5 | MMSE6 | MMSE7 | MMSE8 | MMSE9 | MMSE10 | MMSE11_1 | MMSE11_2 | MMSE11_3 | MMSE12_1 | MMSE12_2 | MMSE12_3 | MMSE12_4 | MMSE12_5 | MMSE13 | MMSE14 | MMSE15 | MMSE16 | MMSE17 | MMSE18 | MMSE19 | MMSE20_1 | MMSE20_2 | MMSE20_3 | MMSE21 | MMSE22 | MMSE_Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32 | 低膽1 | 1 | 1 | 28 | 5 | 1 | 5 | 2 | 1 | 2 | 1 | 71.1 | 25.65 | 23 | 148 | 102 | 38 | 95 | 1 | 2 | 2 | 1 | 2 | 4 | 3 | 0 | 0 | 4 | 6 | 0 | 0 | 10 | 2 | 3 | 1 | 3 | 1 | 2 | 3 | 2 | 1 | 2 | 20 | 5 | 5 | 4 | 1 | 2 | 5 | 3 | 5 | 2 | 2 | 1 | 5 | 1 | 2 | 4 | 2 | 2 | 2 | 4 | 5 | 1 | 4 | 4 | 2 | 1 | 4 | 4 | 4 | 3 | 26 | 13 | 24 | 26 | 89 | 3 | 2 | 4 | 1 | 4 | 3 | 1 | 1 | 3 | 2 | 4 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 3 | 1 | 1 | 4 | 2 | 4 | 4 | 2 | 4 | 1 | 4 | 15 | 22 | 33 | 70 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 27 |
33 | 低膽2 | 1 | 2 | 47 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 62.0 | 20.60 | 30 | 128 | 110 | 30 | 137 | 1 | 2 | 2 | 1 | 2 | 4 | 3 | 0 | 4 | 4 | 6 | 0 | 16 | 26 | 2 | 3 | 1 | 3 | 1 | 2 | 3 | 2 | 2 | 2 | 21 | 4 | 4 | 4 | 2 | 5 | 4 | 4 | 4 | 5 | 4 | 3 | 3 | 3 | 4 | 4 | 2 | 5 | 4 | 5 | 2 | 5 | 5 | 2 | 2 | 5 | 4 | 4 | 2 | 4 | 25 | 19 | 35 | 29 | 108 | 4 | 3 | 4 | 3 | 4 | 4 | 2 | 2 | 4 | 4 | 1 | 4 | 4 | 1 | 4 | 2 | 3 | 1 | 1 | 2 | 1 | 1 | 4 | 1 | 4 | 4 | 2 | 2 | 1 | 4 | 20 | 30 | 31 | 81 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 15 |
34 | 低膽3 | 1 | 2 | 40 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 70.0 | 25.80 | 36 | 156 | 160 | 44 | 99 | 1 | 2 | 2 | 1 | 1 | 3 | 2 | 0 | 0 | 3 | 4 | 0 | 0 | 7 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 12 | 5 | 5 | 2 | 2 | 5 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 3 | 5 | 2 | 5 | 1 | 1 | 5 | 1 | 5 | 1 | 2 | 4 | 2 | 3 | 25 | 20 | 29 | 26 | 100 | 4 | 1 | 4 | 3 | 2 | 3 | 1 | 3 | 3 | 4 | 1 | 4 | 4 | 1 | 4 | 1 | 4 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 2 | 1 | 4 | 1 | 4 | 20 | 22 | 31 | 73 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 21 |
35 | 低膽4 | 1 | 1 | 29 | 3 | 1 | 1 | 1 | 2 | 2 | 1 | 78.6 | 27.60 | 24 | 159 | 105 | 44 | 109 | 1 | 2 | 1 | 2 | 1 | 4 | 0 | 2 | 0 | 4 | 0 | 6 | 0 | 10 | 2 | 2 | 1 | 3 | 1 | 2 | 2 | 2 | 1 | 1 | 17 | 4 | 2 | 4 | 4 | 3 | 4 | 5 | 4 | 4 | 2 | 5 | 4 | 2 | 4 | 1 | 4 | 4 | 4 | 4 | 2 | 3 | 4 | 4 | 2 | 2 | 1 | 4 | 4 | 3 | 28 | 19 | 29 | 21 | 97 | 3 | 1 | 3 | 3 | 1 | 1 | 2 | 3 | 2 | 4 | 1 | 3 | 2 | 1 | 3 | 1 | 4 | 1 | 1 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 2 | 18 | 20 | 25 | 63 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 28 |
36 | 低膽5 | 1 | 2 | 43 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 53.0 | 20.90 | 15 | 138 | 120 | 32 | 104 | 1 | 2 | 2 | 1 | 1 | 4 | 3 | 0 | 0 | 4 | 6 | 0 | 0 | 10 | 2 | 3 | 1 | 3 | 1 | 2 | 2 | 2 | 1 | 1 | 18 | 4 | 5 | 4 | 2 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 5 | 4 | 4 | 3 | 4 | 5 | 2 | 2 | 1 | 5 | 5 | 2 | 2 | 2 | 1 | 4 | 1 | 4 | 21 | 20 | 38 | 26 | 105 | 3 | 3 | 4 | 1 | 4 | 4 | 3 | 4 | 3 | 4 | 1 | 3 | 3 | 1 | 4 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 4 | 1 | 4 | 4 | 2 | 1 | 1 | 2 | 19 | 28 | 28 | 75 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 21 |
37 | 低膽6 | 1 | 2 | 38 | 2 | 1 | 5 | 2 | 1 | 1 | 1 | 51.1 | 20.65 | 23 | 138 | 102 | 38 | 95 | 1 | 2 | 2 | 1 | 2 | 3 | 2 | 0 | 3 | 3 | 4 | 0 | 12 | 19 | 2 | 2 | 1 | 3 | 1 | 2 | 2 | 3 | 1 | 1 | 18 | 2 | 4 | 4 | 2 | 4 | 4 | 4 | 5 | 4 | 4 | 2 | 5 | 2 | 2 | 4 | 2 | 4 | 2 | 5 | 2 | 4 | 5 | 2 | 2 | 3 | 2 | 4 | 2 | 4 | 22 | 16 | 31 | 26 | 95 | 4 | 3 | 4 | 1 | 4 | 4 | 2 | 3 | 3 | 4 | 2 | 3 | 3 | 1 | 3 | 2 | 1 | 1 | 2 | 3 | 1 | 1 | 4 | 1 | 4 | 4 | 2 | 2 | 1 | 4 | 18 | 27 | 32 | 77 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 22 |
#崁入式呈現資料
::datatable(dta, rownames=FALSE, options=list(scrollY = 300, pageLength=10), fillContainer =TRUE) DT
使用str()列出資料內每個欄位的狀態,可用來確認屬性結構。以下可得知只有”組別編號”為 character為文字字串,其他皆為numeric實數。
str(dta)
## 'data.frame': 186 obs. of 143 variables:
## $ id : num 32 33 34 35 36 37 38 39 40 41 ...
## $ 組別編號 : chr "低膽1" "低膽2" "低膽3" "低膽4" ...
## $ Intervention : num 1 1 1 1 1 1 1 1 1 1 ...
## $ sex : num 1 2 2 1 2 2 1 2 1 2 ...
## $ age : num 28 47 40 29 43 38 29 43 23 40 ...
## $ edu : num 5 2 3 3 3 2 5 3 3 3 ...
## $ marriage : num 1 1 1 1 1 1 3 3 1 1 ...
## $ occupation : num 5 1 1 1 1 5 1 1 1 1 ...
## $ income : num 2 1 1 1 1 2 1 1 1 1 ...
## $ alcohol : num 1 1 1 2 1 1 2 1 2 1 ...
## $ smoking : num 2 1 1 2 1 1 2 1 2 1 ...
## $ activity : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BW : num 71.1 62 70 78.6 53 51.1 88 49.5 84 54.6 ...
## $ BMI : num 25.6 20.6 25.8 27.6 20.9 ...
## $ Age.of.onset : num 23 30 36 24 15 23 18 22 24 15 ...
## $ cholesterol : num 148 128 156 159 138 138 153 134 158 137 ...
## $ Triglyceride : num 102 110 160 105 120 102 171 125 105 130 ...
## $ HDL : num 38 30 44 44 32 38 41 35 44 32 ...
## $ LDL : num 95 137 99 109 104 95 147 87 109 104 ...
## $ time : num 1 1 1 1 1 1 1 1 1 1 ...
## $ MOAS1_1 : num 2 2 2 2 2 2 2 1 2 2 ...
## $ MOAS1_2 : num 2 2 2 1 2 2 1 2 2 2 ...
## $ MOAS1_3 : num 1 1 1 2 1 1 1 1 1 1 ...
## $ MOAS1_4 : num 2 2 1 1 1 2 1 2 2 1 ...
## $ MOAS2 : num 4 4 3 4 4 3 4 0 3 4 ...
## $ MOAS3 : num 3 3 2 0 3 2 0 2 2 4 ...
## $ MOAS4 : num 0 0 0 2 0 0 0 0 0 0 ...
## $ MOAS5 : num 0 4 0 0 0 3 0 3 3 0 ...
## $ MOAS_oral : num 4 4 3 4 4 3 4 0 3 4 ...
## $ MOAS_item : num 6 6 4 0 6 4 0 4 4 8 ...
## $ MOAS_lself : num 0 0 0 6 0 0 0 0 0 0 ...
## $ MOAS_body : num 0 16 0 0 0 12 0 12 12 0 ...
## $ MOAS_Total : num 10 26 7 10 10 19 4 16 19 12 ...
## $ risk1 : num 2 2 1 2 2 2 3 2 2 3 ...
## $ risk2 : num 3 3 1 2 3 2 2 2 2 2 ...
## $ risk3 : num 1 1 1 1 1 1 1 1 1 1 ...
## $ risk4 : num 3 3 3 3 3 3 3 1 3 3 ...
## $ risk5 : num 1 1 1 1 1 1 1 1 1 1 ...
## $ risk6 : num 2 2 1 2 2 2 2 1 2 2 ...
## $ risk7 : num 3 3 1 2 2 2 2 1 2 2 ...
## $ risk8 : num 2 2 1 2 2 3 1 1 1 2 ...
## $ risk9 : num 1 2 1 1 1 1 2 1 2 1 ...
## $ risk10 : num 2 2 1 1 1 1 1 2 1 2 ...
## $ Risk_total : num 20 21 12 17 18 18 18 13 17 19 ...
## $ AQ1 : num 5 4 5 4 4 2 3 5 3 3 ...
## $ AQ2 : num 5 4 5 2 5 4 3 4 3 4 ...
## $ AQ3 : num 4 4 2 4 4 4 3 2 4 4 ...
## $ AQ4 : num 1 2 2 4 2 2 1 4 2 2 ...
## $ AQ5 : num 2 5 5 3 5 4 1 4 2 1 ...
## $ AQ6 : num 5 4 4 4 5 4 3 3 3 4 ...
## $ AQ7 : num 3 4 5 5 5 4 2 5 4 2 ...
## $ AQ8 : num 5 4 5 4 5 5 4 4 4 1 ...
## $ AQ9 : num 2 5 5 4 5 4 3 3 3 1 ...
## $ AQ10 : num 2 4 5 2 5 4 2 4 4 1 ...
## $ AQ11 : num 1 3 5 5 4 2 2 3 3 1 ...
## $ AQ12 : num 5 3 5 4 5 5 4 3 3 1 ...
## $ AQ13 : num 1 3 5 2 4 2 2 2 2 1 ...
## $ AQ14 : num 2 4 5 4 4 2 2 5 4 5 ...
## $ AQ15 : num 4 4 3 1 3 4 5 2 4 4 ...
## $ AQ16 : num 2 2 3 4 4 2 2 4 2 4 ...
## $ AQ17 : num 2 5 5 4 5 4 2 3 3 2 ...
## $ AQ18 : num 2 4 2 4 2 2 2 3 2 3 ...
## $ AQ19 : num 4 5 5 4 2 5 4 3 3 5 ...
## $ AQ20 : num 5 2 1 2 1 2 1 3 3 5 ...
## $ AQ21 : num 1 5 1 3 5 4 1 3 1 1 ...
## $ AQ22 : num 4 5 5 4 5 5 5 5 3 3 ...
## $ AQ23 : num 4 2 1 4 2 2 4 4 2 3 ...
## $ AQ24 : num 2 2 5 2 2 2 1 2 2 1 ...
## $ AQ25 : num 1 5 1 2 2 3 1 4 2 2 ...
## $ AQ26 : num 4 4 2 1 1 2 1 3 4 4 ...
## $ AQ27 : num 4 4 4 4 4 4 4 4 3 4 ...
## $ AQ28 : num 4 2 2 4 1 2 2 3 3 1 ...
## $ AQ29 : num 3 4 3 3 4 4 3 3 3 4 ...
## $ AQ_anger : num 26 25 25 28 21 22 22 24 19 17 ...
## $ AQ_verbal : num 13 19 20 19 20 16 11 19 13 16 ...
## $ AQ_physical : num 24 35 29 29 38 31 23 33 24 21 ...
## $ AQ_suspicious: num 26 29 26 21 26 26 17 24 28 23 ...
## $ AQ_Total : num 89 108 100 97 105 95 73 100 84 77 ...
## $ BIS1 : num 3 4 4 3 3 4 3 4 4 4 ...
## $ BIS2 : num 2 3 1 1 3 3 1 3 1 3 ...
## $ BIS3 : num 4 4 4 3 4 4 3 4 3 4 ...
## $ BIS4 : num 1 3 3 3 1 1 3 3 3 3 ...
## $ BIS5 : num 4 4 2 1 4 4 2 4 2 4 ...
## $ BIS6 : num 3 4 3 1 4 4 2 3 3 3 ...
## $ BIS7 : num 1 2 1 2 3 2 3 2 3 4 ...
## $ BIS8 : num 1 2 3 3 4 3 1 1 3 1 ...
## $ BIS9 : num 3 4 3 2 3 3 2 4 4 3 ...
## $ BIS10 : num 2 4 4 4 4 4 4 3 4 4 ...
## $ BIS11 : num 4 1 1 1 1 2 2 2 1 1 ...
## $ BIS12 : num 2 4 4 3 3 3 3 4 4 4 ...
## $ BIS13 : num 2 4 4 2 3 3 1 2 2 3 ...
## $ BIS14 : num 1 1 1 1 1 1 1 1 2 1 ...
## $ BIS15 : num 1 4 4 3 4 3 3 3 3 4 ...
## $ BIS16 : num 2 2 1 1 2 2 1 3 1 2 ...
## $ BIS17 : num 1 3 4 4 2 1 2 4 3 3 ...
## $ BIS18 : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BIS19 : num 2 1 2 1 2 2 1 2 1 2 ...
## $ BIS20 : num 3 2 1 3 2 3 2 4 3 3 ...
## $ BIS21 : num 1 1 1 3 1 1 1 1 2 1 ...
## [list output truncated]
將所需的類別變項整理,此時使用forcats,可將屬性變更外也可將多個因子合併,交互處理多的因子數據。此時先將人口學資料整理完成。
::p_load(forcats)
pacman<-dta raw
::p_load(forcats)#reordering factor levels
pacman#設定資料屬性與名稱
<-dta
raw$sex<-factor(raw$sex, levels = c("1","2"),exclude = NA, ordered = FALSE)
raw$edu<-factor(raw$edu, levels = c("2","3","5"),exclude = NA, ordered = FALSE)
raw$marriage<-factor(raw$marriage, levels = c("1","3"),exclude = NA, ordered = FALSE)
raw$occupation<-factor(raw$occupation, levels = c("1","5"),exclude = NA, ordered = FALSE)
raw$income<-factor(raw$income, levels = c("1","2"),exclude = NA, ordered = FALSE)
raw$alcohol<-factor(raw$alcohol, levels = c("1","2"),exclude = NA, ordered = FALSE)
raw$smoking<-factor(raw$smoking, levels = c("1","2"),exclude = NA, ordered = FALSE)
raw$activity<-factor(raw$activity, levels = c("1","2"),exclude = NA, ordered = FALSE)
raw$time<-factor(raw$time, levels = c("1","2","3"),exclude = NA, ordered = FALSE)
raw$Intervention <-factor(raw$Intervention , levels = c("1","2"),exclude = NA, ordered = FALSE)
raw
$sex<-fct_collapse(raw$sex,"M" = "1","F" = "2")
raw$edu<-fct_collapse(raw$edu,"Elementary" = "2","Secondary" = "3","Junior college" = "5")
raw$marriage<-fct_collapse(raw$marriage,"Unmarried" = "1","
rawDivorce" = "3")
$occupation<-fct_collapse(raw$occupation,"No job " = "1","Worker" = "5")
raw$income<-fct_collapse(raw$income,"Below NT5,000" = "1","NT 25,001-50,000" = "2")
raw$alcohol<-fct_collapse(raw$alcohol,"No" = "1","Yes" = "2")
raw$smoking<-fct_collapse(raw$smoking,"No" = "1","Yes" = "2")
raw$activity<-fct_collapse(raw$activity,"No" = "1","Yes" = "2")
raw$Intervention <-fct_collapse(raw$Intervention,"Intervention" = "1","Control" = "2") raw
2.1.1 總膽固醇的分布
實驗組與對照組,總膽固醇在第三次測量有提升。實驗組思覺失調症患者的總膽固醇皆低於對照組的濃度,實驗組的平均值明顯低於對照組。 註:第二次測量並無測量總膽固醇濃度
## Warning: Removed 62 rows containing non-finite values (stat_boxplot).
## Warning: Removed 62 rows containing non-finite values (stat_boxplot).
總膽固醇:長條圖及曲線圖 看第1次及第3次測量的分布如下,第三次的測量明顯總膽固醇濃度較高。
ggplot(data=raw)+
geom_histogram(mapping=aes(x=cholesterol, color=time))+
facet_wrap(~time, nrow=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 62 rows containing non-finite values (stat_bin).
ggplot(data=raw,mapping=aes(x=cholesterol, color=time))+
geom_freqpoly(binwidth=1)+
facet_wrap(~time, nrow=2)
## Warning: Removed 62 rows containing non-finite values (stat_bin).
實驗組的暴力頻率明顯高於對照組,在第二次及第三次測量後兩組差異不明顯,箱型大小非常接近。
2.2.1 不同時間介入的兩組比較
ggplot(data=raw ,mapping=aes(x=time,y=MOAS_Total))+
geom_boxplot()+
facet_wrap(~Intervention, nrow=2)
ggplot(data=raw ,mapping=aes(x=Intervention,y=MOAS_Total))+
geom_boxplot()+
facet_wrap(~time, nrow=2)
2.2.2 兩組間三個時間點比較
不同的排列方式,在暴力頻率的箱型圖比較上,更可看出實驗組的前後差異。
ggplot(raw, aes(x=time, y=MOAS_Total, group=time,color=Intervention))+
facet_wrap(~ Intervention)+geom_boxplot()
2.2.3 以個人角度,兩組間三個時間點比較 以下圖可看出在實驗組個別的差異非常明顯,對照組與實驗組相比,曲線則趨近緩和。
ggplot(raw, aes(x=time, y=MOAS_Total, group=id))+
geom_line(mapping = aes(color=Intervention))+
geom_point()+
facet_wrap(~ Intervention)+#facet_wrap前面有用過,分類一個變項用
labs(x="Time", y="暴力頻率")+
theme_minimal()
加上平均值,可得知每個時間點的平均值移動的情況,實驗組隨時間暴力頻率有下降。
ggplot(raw, aes(x=time, y=MOAS_Total, group=id))+
geom_line(mapping = aes(color=Intervention))+
geom_point()+
stat_summary( aes(group= 1) ,geom="point",fun.y=mean ,
shape=17 , size=3 )+
facet_wrap(~ Intervention)+#facet_wrap前面有用過,分類一個變項用
labs(x="Time", y="暴力頻率")+
theme_minimal()
## Warning: `fun.y` is deprecated. Use `fun` instead.
這裡我們選擇使用局部加權回歸(lowess)添加一條“平滑”的線, 加上誤差區間,看起來有線性感覺。
ggplot(raw, aes(x=time, y=MOAS_Total, group=id))+
geom_line(mapping=aes(color=Intervention))+
stat_smooth(aes(group=1))+stat_summary( aes(group= 1) ,
geom = "point" , fun.y = mean , shape = 17 ,size=3)+
facet_grid (.~Intervention)
## Warning: `fun.y` is deprecated. Use `fun` instead.
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 1.0946e-016
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 4.0401
## Warning in predLoess(object$y, object$x, newx = if
## (is.null(newdata)) object$x else if (is.data.frame(newdata))
## as.matrix(model.frame(delete.response(terms(object)), : pseudoinverse used at
## 0.99
## Warning in predLoess(object$y, object$x, newx = if
## (is.null(newdata)) object$x else if (is.data.frame(newdata))
## as.matrix(model.frame(delete.response(terms(object)), : neighborhood radius 2.01
## Warning in predLoess(object$y, object$x, newx = if
## (is.null(newdata)) object$x else if (is.data.frame(newdata))
## as.matrix(model.frame(delete.response(terms(object)), : reciprocal condition
## number 1.0946e-016
## Warning in predLoess(object$y, object$x, newx = if
## (is.null(newdata)) object$x else if (is.data.frame(newdata))
## as.matrix(model.frame(delete.response(terms(object)), : There are other near
## singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 3.886e-016
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 4.0401
## Warning in predLoess(object$y, object$x, newx = if
## (is.null(newdata)) object$x else if (is.data.frame(newdata))
## as.matrix(model.frame(delete.response(terms(object)), : pseudoinverse used at
## 0.99
## Warning in predLoess(object$y, object$x, newx = if
## (is.null(newdata)) object$x else if (is.data.frame(newdata))
## as.matrix(model.frame(delete.response(terms(object)), : neighborhood radius 2.01
## Warning in predLoess(object$y, object$x, newx = if
## (is.null(newdata)) object$x else if (is.data.frame(newdata))
## as.matrix(model.frame(delete.response(terms(object)), : reciprocal condition
## number 3.886e-016
## Warning in predLoess(object$y, object$x, newx = if
## (is.null(newdata)) object$x else if (is.data.frame(newdata))
## as.matrix(model.frame(delete.response(terms(object)), : There are other near
## singularities as well. 4.0401
因上張圖有線性感,故拿掉誤差項,直接畫圖線性圖。
ggplot(raw, aes(x=time, y=MOAS_Total, group=id))+
geom_line(mapping=aes(color=Intervention))+
geom_point()+
stat_smooth(aes(group=1),method="lm",formula=y~x*I(x>1),se=FALSE)+
stat_summary(aes(group=1) ,
geom="point",fun.y =mean ,shape=17,size=3 )+
facet_wrap(~ Intervention)+
labs(x="Time", y="暴力頻率")+
theme_minimal()
## Warning: `fun.y` is deprecated. Use `fun` instead.
## Warning in predict.lm(model, newdata = new_data_frame(list(x = xseq)), se.fit =
## se, : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(model, newdata = new_data_frame(list(x = xseq)), se.fit =
## se, : prediction from a rank-deficient fit may be misleading
危險評估分布,對照組三次測量差異不明顯,實驗組在第三次測量分數明顯有下降。在第一次及第二次測量時危險評估分數兩組差異不大。
ggplot(data=raw ,mapping=aes(x=time,y=Risk_total))+
geom_boxplot()+
facet_wrap(~Intervention, nrow=2)
ggplot(data=raw ,mapping=aes(x=Intervention,y=Risk_total))+
geom_boxplot()+
facet_wrap(~time, nrow=2)
暴力危險評估,實驗組在介入後第三次的測量危險評估明顯下降。
ggplot(raw, aes(x=time, y=Risk_total, group=time,color=Intervention))+
facet_wrap(~ Intervention)+geom_boxplot()
以個人角度來看,暴力危險評估上依然是實驗組有明顯的差異,隨介入而下降,第一次測量的分數明顯高於第二及第三次測量。
ggplot(raw, aes(x=time, y=Risk_total, group=id))+
geom_line(mapping=aes(color=Intervention))+
geom_point()+
stat_smooth(aes(group= 1),method="lm",formula=y~x * I(x>1),se=FALSE)+
stat_summary(aes(group=1) ,
geom="point",fun.y =mean ,shape=17,size=3 )+
facet_wrap(~ Intervention)+
labs(x="Time", y="暴力危險")+
theme_minimal()
## Warning: `fun.y` is deprecated. Use `fun` instead.
## Warning in predict.lm(model, newdata = new_data_frame(list(x = xseq)), se.fit =
## se, : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(model, newdata = new_data_frame(list(x = xseq)), se.fit =
## se, : prediction from a rank-deficient fit may be misleading
探討總膽固醇與暴力頻率的關係,由圖得知,實驗組與對照組介入的測量(藍色)暴力頻率分數較低且總膽固醇濃度也較高。介入似乎有成效。
註:第二次測量並無測量總膽固醇濃度
par(mfrow=c(4,4))
ggplot(data=raw)+geom_point(mapping=aes(x=MOAS_Total,y=cholesterol,color=time))+facet_wrap(~Intervention, nrow=2)
## Warning: Removed 62 rows containing missing values (geom_point).
ggplot(data=raw)+geom_smooth(mapping=aes(x=MOAS_Total,y=cholesterol,color=time))+facet_wrap(~Intervention, nrow=2)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 62 rows containing non-finite values (stat_smooth).
ggplot(data=raw)+geom_point(mapping=aes(x=MOAS_Total,y=cholesterol,color=time))+
geom_smooth(mapping=aes(x=Risk_total,y=cholesterol,color=time))+
facet_wrap(~Intervention, nrow=2)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 62 rows containing non-finite values (stat_smooth).
## Warning: Removed 62 rows containing missing values (geom_point).
探討總膽固醇與暴力危險評估的關係,以暴力危險評估來看,實驗組與對照組皆可看出介入後總膽固醇有提升,尤以對照組更為符合。
attach(raw)
par(mfrow=c(4,2))
ggplot(data=raw)+geom_point(mapping=aes(x=Risk_total,y=cholesterol,color=time))+facet_wrap(~Intervention, nrow=2)
## Warning: Removed 62 rows containing missing values (geom_point).
ggplot(data=raw)+geom_smooth(mapping=aes(x=Risk_total,y=cholesterol,color=time))+facet_wrap(~Intervention, nrow=2)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 62 rows containing non-finite values (stat_smooth).
ggplot(data=raw)+geom_point(mapping=aes(x=Risk_total,y=cholesterol,color=time))+
geom_smooth(mapping=aes(x=Risk_total,y=cholesterol,color=time))+
facet_wrap(~Intervention, nrow=2)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 62 rows containing non-finite values (stat_smooth).
## Warning: Removed 62 rows containing missing values (geom_point).
以表一人口學變項而言,僅有性別、教育程度、婚姻狀況、職業別、收入及活動力等皆沒有差異,其他變項如暴力頻率、暴力危險量表及總膽固醇皆有差異。
::p_load(gtsummary)
pacman#去除第二次測量資料, 沒有測量總膽固醇,以畫圖而言有沒有去除NA資料都可
<-na.omit(raw)
raw13<- raw13 %>%
tlselect(sex,age, BW,BMI,edu, marriage, occupation,income,alcohol,smoking, activity, cholesterol,Triglyceride, HDL, LDL,Intervention) %>%
tbl_summary(by = Intervention, label = list(sex ~ "Sex", age ~ "Age", edu ~ "Education",marriage ~ "Marriage", occupation ~ "Occupation", income ~ "Income", alcohol ~ "Alcohol", smoking ~ "Smoking", activity ~ "Activity")) %>%
add_p()%>%
add_stat_label() %>%
bold_labels() %>%
modify_header(list(label ~ "**Variable**", all_stat_cols() ~ "**{level}**")) %>%
modify_spanning_header(all_stat_cols() ~ "**Group**") %>%
as_gt() %>%
::tab_header(
gttitle = gt::md("**Table 1. Demography**"))
tl
Table 1. Demography | |||
---|---|---|---|
Variable | Group | p-value1 | |
Intervention | Control | ||
Sex, n (%) | 0.7 | ||
M | 36 (56%) | 32 (53%) | |
F | 28 (44%) | 28 (47%) | |
Age, Median (IQR) | 40 (29, 43) | 43 (37, 48) | 0.020 |
BW, Median (IQR) | 68 (56, 76) | 81 (63, 86) | <0.001 |
BMI, Median (IQR) | 23.70 (21.20, 25.88) | 27.80 (24.54, 29.60) | <0.001 |
Education, n (%) | >0.9 | ||
Elementary | 14 (22%) | 12 (20%) | |
Secondary | 40 (62%) | 38 (63%) | |
Junior college | 10 (16%) | 10 (17%) | |
Marriage, n (%) | 0.9 | ||
Unmarried | 56 (88%) | 52 (87%) | |
Divorce | 8 (12%) | 8 (13%) | |
Occupation, n (%) | 0.8 | ||
No job | 50 (78%) | 46 (77%) | |
Worker | 14 (22%) | 14 (23%) | |
Income, n (%) | 0.8 | ||
Below NT5,000 | 50 (78%) | 46 (77%) | |
NT 25,001-50,000 | 14 (22%) | 14 (23%) | |
Alcohol, n (%) | 8 (12%) | 16 (27%) | 0.046 |
Smoking, n (%) | 10 (16%) | 20 (33%) | 0.021 |
Activity, n (%) | 0 (0%) | 0 (0%) | >0.9 |
cholesterol, Median (IQR) | 150 (138, 157) | 191 (186, 196) | <0.001 |
Triglyceride, Median (IQR) | 122 (106, 136) | 143 (126, 155) | <0.001 |
HDL, Median (IQR) | 41 (35, 44) | 44 (42, 48) | 0.002 |
LDL, Median (IQR) | 102 (95, 115) | 122 (97, 140) | <0.001 |
1
Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test
|
表二問卷測量,以暴力頻率及暴力危險問卷來看,隨時間皆有下降,且達顯著意義,也證實介入確實有效。
<- raw %>%
t2select(MOAS_Total,
Risk_total,
AQ_Total,
BIS_Total,%>%
time) tbl_summary(by = time) %>%
add_p()%>%
add_stat_label() %>%
bold_labels() %>%
modify_header(list(label ~ "**Variable**", all_stat_cols() ~ "**{level}**")) %>%
modify_spanning_header(all_stat_cols() ~ "**Time**") %>%
as_gt() %>%
::tab_header(
gttitle = gt::md("**Table 2. Questionnaire**"))
t2
Table 2. Questionnaire | ||||
---|---|---|---|---|
Variable | Time | p-value1 | ||
1 | 2 | 3 | ||
MOAS_Total, Median (IQR) | 10.5 (6.0, 16.8) | 8.0 (4.0, 10.0) | 4.0 (3.0, 8.0) | <0.001 |
Risk_total, Median (IQR) | 18.00 (17.00, 19.00) | 17.00 (14.00, 18.00) | 15.50 (12.00, 17.00) | <0.001 |
AQ_Total, Median (IQR) | 88 (79, 98) | 81 (74, 92) | 79 (68, 88) | <0.001 |
BIS_Total, Median (IQR) | 72 (62, 76) | 67 (58, 75) | 64 (54, 73) | 0.002 |
1
Kruskal-Wallis rank sum test
|
::p_load(gtsummary) pacman
raw
## id 組別編號 Intervention sex age edu marriage occupation
## 1 32 低膽1 Intervention M 28 Junior college Unmarried Worker
## 2 33 低膽2 Intervention F 47 Elementary Unmarried No job
## 3 34 低膽3 Intervention F 40 Secondary Unmarried No job
## 4 35 低膽4 Intervention M 29 Secondary Unmarried No job
## 5 36 低膽5 Intervention F 43 Secondary Unmarried No job
## 6 37 低膽6 Intervention F 38 Elementary Unmarried Worker
## 7 38 低膽7 Intervention M 29 Junior college \nDivorce No job
## 8 39 低膽8 Intervention F 43 Secondary \nDivorce No job
## 9 40 低膽9 Intervention M 23 Secondary Unmarried No job
## 10 41 低膽10 Intervention F 40 Secondary Unmarried No job
## 11 42 低膽11 Intervention F 33 Junior college Unmarried Worker
## 12 43 低膽12 Intervention F 56 Elementary Unmarried No job
## 13 44 低膽13 Intervention F 33 Secondary Unmarried No job
## 14 45 低膽14 Intervention M 43 Secondary Unmarried No job
## 15 46 低膽15 Intervention M 28 Secondary Unmarried No job
## 16 47 低膽16 Intervention F 47 Elementary Unmarried Worker
## 17 48 低膽17 Intervention F 40 Secondary Unmarried No job
## 18 49 低膽18 Intervention F 29 Secondary Unmarried No job
## 19 50 低膽19 Intervention F 43 Elementary Unmarried Worker
## 20 51 低膽20 Intervention M 23 Junior college \nDivorce No job
## 21 52 低膽21 Intervention F 47 Secondary \nDivorce No job
## 22 53 低膽22 Intervention M 23 Secondary Unmarried No job
## 23 54 低膽23 Intervention M 40 Secondary Unmarried No job
## 24 55 低膽24 Intervention M 21 Junior college Unmarried Worker
## 25 56 低膽25 Intervention M 33 Elementary Unmarried No job
## 26 57 低膽26 Intervention M 56 Secondary Unmarried No job
## 27 58 低膽27 Intervention M 33 Secondary Unmarried No job
## 28 59 低膽28 Intervention M 43 Secondary Unmarried No job
## 29 60 低膽29 Intervention M 37 Elementary Unmarried Worker
## 30 61 低膽30 Intervention M 40 Secondary Unmarried No job
## 31 62 低膽31 Intervention M 51 Secondary Unmarried No job
## 32 63 低膽32 Intervention M 49 Secondary Unmarried No job
## 33 64 控制1 Control M 47 Secondary Unmarried No job
## 34 65 控制2 Control F 28 Secondary Unmarried No job
## 35 66 控制3 Control M 40 Elementary Unmarried Worker
## 36 67 控制4 Control M 44 Secondary Unmarried No job
## 37 68 控制5 Control M 40 Secondary Unmarried No job
## 38 69 控制6 Control M 43 Junior college Unmarried Worker
## 39 70 控制7 Control F 23 Elementary Unmarried No job
## 40 71 控制8 Control M 40 Secondary Unmarried No job
## 41 72 控制9 Control M 51 Secondary Unmarried No job
## 42 73 控制10 Control M 49 Secondary Unmarried No job
## 43 74 控制11 Control M 22 Elementary Unmarried Worker
## 44 75 控制12 Control M 60 Secondary Unmarried No job
## 45 76 控制13 Control M 29 Secondary Unmarried No job
## 46 77 控制14 Control F 30 Junior college Unmarried Worker
## 47 78 控制15 Control M 43 Secondary Unmarried No job
## 48 79 控制16 Control M 43 Secondary Unmarried No job
## 49 80 控制17 Control F 43 Elementary Unmarried Worker
## 50 81 控制18 Control M 37 Junior college \nDivorce No job
## 51 82 控制19 Control F 51 Secondary \nDivorce No job
## 52 83 控制20 Control F 34 Secondary Unmarried No job
## 53 84 控制21 Control F 57 Elementary Unmarried Worker
## 54 85 控制22 Control F 45 Junior college \nDivorce No job
## 55 86 控制23 Control F 59 Secondary \nDivorce No job
## 56 87 控制24 Control F 55 Secondary Unmarried No job
## 57 88 控制25 Control F 32 Secondary Unmarried No job
## 58 89 控制26 Control F 40 Junior college Unmarried Worker
## 59 90 控制27 Control F 38 Elementary Unmarried No job
## 60 91 控制28 Control F 48 Secondary Unmarried No job
## 61 92 控制29 Control M 46 Secondary Unmarried No job
## 62 93 控制30 Control M 40 Secondary Unmarried No job
## 63 32 低膽1 Intervention M 28 Junior college Unmarried Worker
## 64 33 低膽2 Intervention F 47 Elementary Unmarried No job
## 65 34 低膽3 Intervention F 40 Secondary Unmarried No job
## 66 35 低膽4 Intervention M 29 Secondary Unmarried No job
## 67 36 低膽5 Intervention F 43 Secondary Unmarried No job
## 68 37 低膽6 Intervention F 38 Elementary Unmarried Worker
## 69 38 低膽7 Intervention M 29 Junior college \nDivorce No job
## 70 39 低膽8 Intervention F 43 Secondary \nDivorce No job
## 71 40 低膽9 Intervention M 23 Secondary Unmarried No job
## 72 41 低膽10 Intervention F 40 Secondary Unmarried No job
## 73 42 低膽11 Intervention F 33 Junior college Unmarried Worker
## 74 43 低膽12 Intervention F 56 Elementary Unmarried No job
## 75 44 低膽13 Intervention F 33 Secondary Unmarried No job
## 76 45 低膽14 Intervention M 43 Secondary Unmarried No job
## 77 46 低膽15 Intervention M 28 Secondary Unmarried No job
## 78 47 低膽16 Intervention F 47 Elementary Unmarried Worker
## 79 48 低膽17 Intervention F 40 Secondary Unmarried No job
## 80 49 低膽18 Intervention F 29 Secondary Unmarried No job
## 81 50 低膽19 Intervention F 43 Elementary Unmarried Worker
## 82 51 低膽20 Intervention M 23 Junior college \nDivorce No job
## 83 52 低膽21 Intervention F 47 Secondary \nDivorce No job
## 84 53 低膽22 Intervention M 23 Secondary Unmarried No job
## 85 54 低膽23 Intervention M 40 Secondary Unmarried No job
## 86 55 低膽24 Intervention M 21 Junior college Unmarried Worker
## 87 56 低膽25 Intervention M 33 Elementary Unmarried No job
## 88 57 低膽26 Intervention M 56 Secondary Unmarried No job
## 89 58 低膽27 Intervention M 33 Secondary Unmarried No job
## 90 59 低膽28 Intervention M 43 Secondary Unmarried No job
## 91 60 低膽29 Intervention M 37 Elementary Unmarried Worker
## 92 61 低膽30 Intervention M 40 Secondary Unmarried No job
## 93 62 低膽31 Intervention M 51 Secondary Unmarried No job
## 94 63 低膽32 Intervention M 49 Secondary Unmarried No job
## 95 64 控制1 Control M 47 Secondary Unmarried No job
## 96 65 控制2 Control F 28 Secondary Unmarried No job
## 97 66 控制3 Control M 40 Elementary Unmarried Worker
## 98 67 控制4 Control M 44 Secondary Unmarried No job
## 99 68 控制5 Control M 40 Secondary Unmarried No job
## 100 69 控制6 Control M 43 Junior college Unmarried Worker
## 101 70 控制7 Control F 23 Elementary Unmarried No job
## 102 71 控制8 Control M 40 Secondary Unmarried No job
## 103 72 控制9 Control M 51 Secondary Unmarried No job
## 104 73 控制10 Control M 49 Secondary Unmarried No job
## 105 74 控制11 Control M 22 Elementary Unmarried Worker
## 106 75 控制12 Control M 60 Secondary Unmarried No job
## 107 76 控制13 Control M 29 Secondary Unmarried No job
## 108 77 控制14 Control F 30 Junior college Unmarried Worker
## 109 78 控制15 Control M 43 Secondary Unmarried No job
## 110 79 控制16 Control M 43 Secondary Unmarried No job
## 111 80 控制17 Control F 43 Elementary Unmarried Worker
## 112 81 控制18 Control M 37 Junior college \nDivorce No job
## 113 82 控制19 Control F 51 Secondary \nDivorce No job
## 114 83 控制20 Control F 34 Secondary Unmarried No job
## 115 84 控制21 Control F 57 Elementary Unmarried Worker
## 116 85 控制22 Control F 45 Junior college \nDivorce No job
## 117 86 控制23 Control F 59 Secondary \nDivorce No job
## 118 87 控制24 Control F 55 Secondary Unmarried No job
## 119 88 控制25 Control F 32 Secondary Unmarried No job
## 120 89 控制26 Control F 40 Junior college Unmarried Worker
## 121 90 控制27 Control F 38 Elementary Unmarried No job
## 122 91 控制28 Control F 48 Secondary Unmarried No job
## 123 92 控制29 Control M 46 Secondary Unmarried No job
## 124 93 控制30 Control M 40 Secondary Unmarried No job
## 125 32 低膽1 Intervention M 28 Junior college Unmarried Worker
## 126 33 低膽2 Intervention F 47 Elementary Unmarried No job
## 127 34 低膽3 Intervention F 40 Secondary Unmarried No job
## 128 35 低膽4 Intervention M 29 Secondary Unmarried No job
## 129 36 低膽5 Intervention F 43 Secondary Unmarried No job
## 130 37 低膽6 Intervention F 38 Elementary Unmarried Worker
## 131 38 低膽7 Intervention M 29 Junior college \nDivorce No job
## 132 39 低膽8 Intervention F 43 Secondary \nDivorce No job
## 133 40 低膽9 Intervention M 23 Secondary Unmarried No job
## 134 41 低膽10 Intervention F 40 Secondary Unmarried No job
## 135 42 低膽11 Intervention F 33 Junior college Unmarried Worker
## 136 43 低膽12 Intervention F 56 Elementary Unmarried No job
## 137 44 低膽13 Intervention F 33 Secondary Unmarried No job
## 138 45 低膽14 Intervention M 43 Secondary Unmarried No job
## 139 46 低膽15 Intervention M 28 Secondary Unmarried No job
## 140 47 低膽16 Intervention F 47 Elementary Unmarried Worker
## 141 48 低膽17 Intervention F 40 Secondary Unmarried No job
## 142 49 低膽18 Intervention F 29 Secondary Unmarried No job
## 143 50 低膽19 Intervention F 43 Elementary Unmarried Worker
## 144 51 低膽20 Intervention M 23 Junior college \nDivorce No job
## 145 52 低膽21 Intervention F 47 Secondary \nDivorce No job
## 146 53 低膽22 Intervention M 23 Secondary Unmarried No job
## 147 54 低膽23 Intervention M 40 Secondary Unmarried No job
## 148 55 低膽24 Intervention M 21 Junior college Unmarried Worker
## 149 56 低膽25 Intervention M 33 Elementary Unmarried No job
## 150 57 低膽26 Intervention M 56 Secondary Unmarried No job
## 151 58 低膽27 Intervention M 33 Secondary Unmarried No job
## 152 59 低膽28 Intervention M 43 Secondary Unmarried No job
## 153 60 低膽29 Intervention M 37 Elementary Unmarried Worker
## 154 61 低膽30 Intervention M 40 Secondary Unmarried No job
## 155 62 低膽31 Intervention M 51 Secondary Unmarried No job
## 156 63 低膽32 Intervention M 49 Secondary Unmarried No job
## 157 64 控制1 Control M 47 Secondary Unmarried No job
## 158 65 控制2 Control F 28 Secondary Unmarried No job
## 159 66 控制3 Control M 40 Elementary Unmarried Worker
## 160 67 控制4 Control M 44 Secondary Unmarried No job
## 161 68 控制5 Control M 40 Secondary Unmarried No job
## 162 69 控制6 Control M 43 Junior college Unmarried Worker
## 163 70 控制7 Control F 23 Elementary Unmarried No job
## 164 71 控制8 Control M 40 Secondary Unmarried No job
## 165 72 控制9 Control M 51 Secondary Unmarried No job
## 166 73 控制10 Control M 49 Secondary Unmarried No job
## 167 74 控制11 Control M 22 Elementary Unmarried Worker
## 168 75 控制12 Control M 60 Secondary Unmarried No job
## 169 76 控制13 Control M 29 Secondary Unmarried No job
## 170 77 控制14 Control F 30 Junior college Unmarried Worker
## 171 78 控制15 Control M 43 Secondary Unmarried No job
## 172 79 控制16 Control M 43 Secondary Unmarried No job
## 173 80 控制17 Control F 43 Elementary Unmarried Worker
## 174 81 控制18 Control M 37 Junior college \nDivorce No job
## 175 82 控制19 Control F 51 Secondary \nDivorce No job
## 176 83 控制20 Control F 34 Secondary Unmarried No job
## 177 84 控制21 Control F 57 Elementary Unmarried Worker
## 178 85 控制22 Control F 45 Junior college \nDivorce No job
## 179 86 控制23 Control F 59 Secondary \nDivorce No job
## 180 87 控制24 Control F 55 Secondary Unmarried No job
## 181 88 控制25 Control F 32 Secondary Unmarried No job
## 182 89 控制26 Control F 40 Junior college Unmarried Worker
## 183 90 控制27 Control F 38 Elementary Unmarried No job
## 184 91 控制28 Control F 48 Secondary Unmarried No job
## 185 92 控制29 Control M 46 Secondary Unmarried No job
## 186 93 控制30 Control M 40 Secondary Unmarried No job
## income alcohol smoking activity BW BMI Age.of.onset
## 1 NT 25,001-50,000 No Yes No 71.1 25.65 23
## 2 Below NT5,000 No No No 62.0 20.60 30
## 3 Below NT5,000 No No No 70.0 25.80 36
## 4 Below NT5,000 Yes Yes No 78.6 27.60 24
## 5 Below NT5,000 No No No 53.0 20.90 15
## 6 NT 25,001-50,000 No No No 51.1 20.65 23
## 7 Below NT5,000 Yes Yes No 88.0 28.30 18
## 8 Below NT5,000 No No No 49.5 22.30 22
## 9 Below NT5,000 Yes Yes No 84.0 27.60 24
## 10 Below NT5,000 No No No 54.6 20.90 15
## 11 NT 25,001-50,000 No No No 60.0 20.65 23
## 12 Below NT5,000 No No No 55.0 22.60 30
## 13 Below NT5,000 No No No 64.0 22.80 36
## 14 Below NT5,000 Yes Yes No 79.0 27.60 24
## 15 Below NT5,000 No No No 75.0 27.90 15
## 16 NT 25,001-50,000 No No No 67.0 20.65 23
## 17 Below NT5,000 No No No 78.0 26.60 24
## 18 Below NT5,000 No No No 47.0 20.90 15
## 19 NT 25,001-50,000 No No No 67.0 24.65 23
## 20 Below NT5,000 No No No 89.0 28.30 18
## 21 Below NT5,000 No No No 45.0 23.30 22
## 22 Below NT5,000 No No No 82.0 26.60 24
## 23 Below NT5,000 No No No 75.5 24.90 15
## 24 NT 25,001-50,000 No No No 81.1 25.65 23
## 25 Below NT5,000 No No No 77.0 24.60 30
## 26 Below NT5,000 No No No 78.0 22.80 36
## 27 Below NT5,000 No No No 71.5 27.60 24
## 28 Below NT5,000 No No No 66.0 21.90 15
## 29 NT 25,001-50,000 No No No 61.1 20.65 23
## 30 Below NT5,000 No No No 88.5 28.60 24
## 31 Below NT5,000 No No No 45.0 21.90 15
## 32 Below NT5,000 No No No 65.0 22.80 36
## 33 Below NT5,000 No No No 92.6 29.60 24
## 34 Below NT5,000 No No No 66.6 21.90 15
## 35 NT 25,001-50,000 No No No 61.1 27.65 23
## 36 Below NT5,000 Yes Yes No 83.6 29.60 24
## 37 Below NT5,000 Yes Yes No 83.6 28.90 15
## 38 NT 25,001-50,000 No No No 81.1 29.65 23
## 39 Below NT5,000 No No No 59.0 23.60 30
## 40 Below NT5,000 No No No 86.0 28.80 36
## 41 Below NT5,000 No No No 80.6 27.60 24
## 42 Below NT5,000 Yes Yes No 93.6 28.90 15
## 43 NT 25,001-50,000 No No No 75.1 22.65 23
## 44 Below NT5,000 No No No 80.6 29.60 24
## 45 Below NT5,000 No No No 85.6 26.90 15
## 46 NT 25,001-50,000 No No No 61.1 20.65 23
## 47 Below NT5,000 Yes Yes No 89.0 29.60 30
## 48 Below NT5,000 Yes Yes No 83.6 28.90 15
## 49 NT 25,001-50,000 No No No 58.1 20.65 23
## 50 Below NT5,000 No No No 82.0 28.30 18
## 51 Below NT5,000 No No No 71.5 25.30 22
## 52 Below NT5,000 No No No 59.6 21.90 15
## 53 NT 25,001-50,000 Yes Yes No 61.1 26.65 23
## 54 Below NT5,000 Yes Yes No 82.0 28.30 18
## 55 Below NT5,000 No No No 64.5 23.30 22
## 56 Below NT5,000 No No No 80.6 29.60 24
## 57 Below NT5,000 No No No 63.6 23.90 15
## 58 NT 25,001-50,000 No No No 61.1 20.65 23
## 59 Below NT5,000 No No No 62.0 25.60 30
## 60 Below NT5,000 No Yes No 60.0 22.80 36
## 61 Below NT5,000 No Yes No 80.6 29.60 24
## 62 Below NT5,000 Yes Yes No 93.6 30.90 15
## 63 NT 25,001-50,000 No Yes No NA NA 23
## 64 Below NT5,000 No No No NA NA 30
## 65 Below NT5,000 No No No NA NA 36
## 66 Below NT5,000 Yes Yes No NA NA 24
## 67 Below NT5,000 No No No NA NA 15
## 68 NT 25,001-50,000 No No No NA NA 23
## 69 Below NT5,000 Yes Yes No NA NA 18
## 70 Below NT5,000 No No No NA NA 22
## 71 Below NT5,000 Yes Yes No NA NA 24
## 72 Below NT5,000 No No No NA NA 15
## 73 NT 25,001-50,000 No No No NA NA 23
## 74 Below NT5,000 No No No NA NA 30
## 75 Below NT5,000 No No No NA NA 36
## 76 Below NT5,000 Yes Yes No NA NA 24
## 77 Below NT5,000 No No No NA NA 15
## 78 NT 25,001-50,000 No No No NA NA 23
## 79 Below NT5,000 No No No NA NA 24
## 80 Below NT5,000 No No No NA NA 15
## 81 NT 25,001-50,000 No No No NA NA 23
## 82 Below NT5,000 No No No NA NA 18
## 83 Below NT5,000 No No No NA NA 22
## 84 Below NT5,000 No No No NA NA 24
## 85 Below NT5,000 No No No NA NA 15
## 86 NT 25,001-50,000 No No No NA NA 23
## 87 Below NT5,000 No No No NA NA 30
## 88 Below NT5,000 No No No NA NA 36
## 89 Below NT5,000 No No No NA NA 24
## 90 Below NT5,000 No No No NA NA 15
## 91 NT 25,001-50,000 No No No NA NA 23
## 92 Below NT5,000 No No No NA NA 24
## 93 Below NT5,000 No No No NA NA 15
## 94 Below NT5,000 No No No NA NA 36
## 95 Below NT5,000 No No No NA NA 24
## 96 Below NT5,000 No No No NA NA 15
## 97 NT 25,001-50,000 No No No NA NA 23
## 98 Below NT5,000 Yes Yes No NA NA 24
## 99 Below NT5,000 Yes Yes No NA NA 15
## 100 NT 25,001-50,000 No No No NA NA 23
## 101 Below NT5,000 No No No NA NA 30
## 102 Below NT5,000 No No No NA NA 36
## 103 Below NT5,000 No No No NA NA 24
## 104 Below NT5,000 Yes Yes No NA NA 15
## 105 NT 25,001-50,000 No No No NA NA 23
## 106 Below NT5,000 No No No NA NA 24
## 107 Below NT5,000 No No No NA NA 15
## 108 NT 25,001-50,000 No No No NA NA 23
## 109 Below NT5,000 Yes Yes No NA NA 30
## 110 Below NT5,000 Yes Yes No NA NA 15
## 111 NT 25,001-50,000 No No No NA NA 23
## 112 Below NT5,000 No No No NA NA 18
## 113 Below NT5,000 No No No NA NA 22
## 114 Below NT5,000 No No No NA NA 15
## 115 NT 25,001-50,000 Yes Yes No NA NA 23
## 116 Below NT5,000 Yes Yes No NA NA 18
## 117 Below NT5,000 No No No NA NA 22
## 118 Below NT5,000 No No No NA NA 24
## 119 Below NT5,000 No No No NA NA 15
## 120 NT 25,001-50,000 No No No NA NA 23
## 121 Below NT5,000 No No No NA NA 30
## 122 Below NT5,000 No Yes No NA NA 36
## 123 Below NT5,000 No Yes No NA NA 24
## 124 Below NT5,000 Yes Yes No NA NA 15
## 125 NT 25,001-50,000 No Yes No 71.1 25.65 23
## 126 Below NT5,000 No No No 62.0 20.60 30
## 127 Below NT5,000 No No No 70.0 25.80 36
## 128 Below NT5,000 Yes Yes No 75.6 26.50 24
## 129 Below NT5,000 No No No 53.0 20.90 15
## 130 NT 25,001-50,000 No No No 51.1 20.65 23
## 131 Below NT5,000 Yes Yes No 77.0 25.10 18
## 132 Below NT5,000 No No No 50.5 21.30 22
## 133 Below NT5,000 Yes Yes No 78.0 25.50 24
## 134 Below NT5,000 No No No 54.6 20.90 15
## 135 NT 25,001-50,000 No No No 56.0 20.05 23
## 136 Below NT5,000 No No No 55.0 22.60 30
## 137 Below NT5,000 No No No 63.0 22.80 36
## 138 Below NT5,000 Yes Yes No 75.0 26.40 24
## 139 Below NT5,000 No No No 74.0 27.90 15
## 140 NT 25,001-50,000 No No No 67.0 20.65 23
## 141 Below NT5,000 No No No 78.0 26.40 24
## 142 Below NT5,000 No No No 47.5 19.90 15
## 143 NT 25,001-50,000 No No No 67.0 24.65 23
## 144 Below NT5,000 No No No 76.0 24.10 18
## 145 Below NT5,000 No No No 47.0 23.30 22
## 146 Below NT5,000 No No No 78.0 25.10 24
## 147 Below NT5,000 No No No 75.5 24.70 15
## 148 NT 25,001-50,000 No No No 76.1 24.15 23
## 149 Below NT5,000 No No No 75.0 24.10 30
## 150 Below NT5,000 No No No 74.0 21.80 36
## 151 Below NT5,000 No No No 71.5 27.60 24
## 152 Below NT5,000 No No No 66.0 21.90 15
## 153 NT 25,001-50,000 No No No 61.1 20.65 23
## 154 Below NT5,000 No No No 80.5 26.10 24
## 155 Below NT5,000 No No No 45.0 21.90 15
## 156 Below NT5,000 No No No 65.0 22.80 36
## 157 Below NT5,000 No No No 95.6 29.90 24
## 158 Below NT5,000 No No No 70.6 22.90 15
## 159 NT 25,001-50,000 No No No 65.1 27.95 23
## 160 Below NT5,000 Yes Yes No 86.6 29.90 24
## 161 Below NT5,000 Yes Yes No 87.6 29.30 15
## 162 NT 25,001-50,000 No No No 84.1 29.95 23
## 163 Below NT5,000 No No No 59.0 23.60 30
## 164 Below NT5,000 No No No 88.0 28.90 36
## 165 Below NT5,000 No No No 85.6 28.20 24
## 166 Below NT5,000 Yes Yes No 93.6 30.90 15
## 167 NT 25,001-50,000 No No No 77.0 22.75 23
## 168 Below NT5,000 No No No 86.6 30.20 24
## 169 Below NT5,000 No No No 89.0 27.10 15
## 170 NT 25,001-50,000 No No No 63.1 24.75 23
## 171 Below NT5,000 Yes Yes No 89.0 29.60 30
## 172 Below NT5,000 Yes Yes No 83.6 28.90 15
## 173 NT 25,001-50,000 No No No 61.0 20.90 23
## 174 Below NT5,000 No No No 84.0 28.50 18
## 175 Below NT5,000 No No No 71.5 25.30 22
## 176 Below NT5,000 No No No 62.6 22.10 15
## 177 NT 25,001-50,000 Yes Yes No 69.5 27.25 23
## 178 Below NT5,000 Yes Yes No 82.0 28.30 18
## 179 Below NT5,000 No No No 64.5 26.30 22
## 180 Below NT5,000 No No No 82.0 29.70 24
## 181 Below NT5,000 No No No 63.6 25.90 15
## 182 NT 25,001-50,000 No No No 61.1 25.65 23
## 183 Below NT5,000 No No No 62.0 25.60 30
## 184 Below NT5,000 No Yes No 67.0 25.10 36
## 185 Below NT5,000 No Yes No 87.0 31.10 24
## 186 Below NT5,000 Yes Yes No 99.0 31.50 15
## cholesterol Triglyceride HDL LDL time MOAS1_1 MOAS1_2 MOAS1_3 MOAS1_4 MOAS2
## 1 148.0 102 38 95 1 2 2 1 2 4
## 2 128.0 110 30 137 1 2 2 1 2 4
## 3 156.0 160 44 99 1 2 2 1 1 3
## 4 159.0 105 44 109 1 2 1 2 1 4
## 5 138.0 120 32 104 1 2 2 1 1 4
## 6 138.0 102 38 95 1 2 2 1 2 3
## 7 153.0 171 41 147 1 2 1 1 1 4
## 8 134.0 125 35 87 1 1 2 1 2 0
## 9 158.0 105 44 109 1 2 2 1 2 3
## 10 137.0 130 32 104 1 2 2 1 1 4
## 11 146.0 102 48 95 1 2 1 1 2 2
## 12 134.0 110 35 137 1 2 2 2 2 4
## 13 148.0 128 44 109 1 2 2 1 2 2
## 14 159.0 105 44 99 1 2 2 1 2 4
## 15 134.0 111 31 104 1 2 2 2 2 4
## 16 138.0 102 38 95 1 2 1 1 2 2
## 17 156.0 105 44 89 1 2 2 1 1 4
## 18 130.0 107 30 84 1 2 2 2 2 2
## 19 137.0 102 34 95 1 2 2 2 2 3
## 20 157.0 171 41 147 1 2 2 1 1 4
## 21 132.0 136 35 97 1 1 2 1 2 0
## 22 155.0 105 44 89 1 2 2 1 1 3
## 23 138.0 140 32 84 1 2 1 2 2 3
## 24 140.0 102 38 95 1 2 1 1 2 4
## 25 137.0 138 35 117 1 1 2 1 2 0
## 26 130.0 116 34 129 1 1 2 2 2 0
## 27 159.0 105 44 89 1 2 2 1 1 4
## 28 138.0 129 36 84 1 2 1 1 1 2
## 29 132.0 102 38 95 1 2 1 2 1 4
## 30 153.0 105 44 89 1 2 1 1 1 4
## 31 137.0 136 32 84 1 2 2 1 2 4
## 32 130.0 123 34 89 1 2 2 2 1 4
## 33 191.0 162 44 139 1 2 2 1 1 2
## 34 192.0 151 42 124 1 2 1 1 1 4
## 35 189.0 142 41 105 1 2 1 1 1 3
## 36 196.0 155 40 129 1 2 2 1 1 4
## 37 196.0 140 42 114 1 2 2 2 1 4
## 38 188.0 132 48 105 1 2 1 2 1 2
## 39 176.0 129 55 97 1 2 1 1 1 2
## 40 177.0 143 44 89 1 2 1 1 1 2
## 41 192.0 155 34 119 1 2 1 2 2 4
## 42 198.0 152 42 134 1 2 1 2 2 4
## 43 174.0 120 48 95 1 2 1 1 1 4
## 44 196.0 123 44 149 1 2 2 1 1 4
## 45 186.0 146 42 124 1 2 1 1 2 2
## 46 178.0 112 48 95 1 2 2 1 1 4
## 47 197.0 153 35 147 1 2 2 2 2 4
## 48 193.5 142 38 124 1 2 1 1 1 2
## 49 171.0 122 48 95 1 2 1 1 1 2
## 50 198.0 151 41 147 1 2 2 1 2 2
## 51 176.0 147 55 97 1 2 1 1 1 4
## 52 178.0 107 62 94 1 1 1 2 1 0
## 53 190.0 136 48 115 1 2 2 1 1 3
## 54 199.0 161 35 147 1 2 2 1 2 3
## 55 185.0 126 45 97 1 2 2 1 1 2
## 56 197.0 105 44 159 1 2 2 1 2 2
## 57 188.0 142 48 134 1 2 1 1 1 3
## 58 179.0 102 48 95 1 2 1 1 1 4
## 59 172.0 123 55 87 1 1 2 1 1 0
## 60 186.0 126 44 129 1 2 1 1 1 2
## 61 196.0 105 40 159 1 2 1 1 2 4
## 62 198.0 156 32 148 1 2 2 1 2 4
## 63 NA NA NA NA 2 2 2 1 1 4
## 64 NA NA NA NA 2 2 1 1 1 4
## 65 NA NA NA NA 2 2 2 1 1 3
## 66 NA NA NA NA 2 2 1 1 1 4
## 67 NA NA NA NA 2 2 2 1 1 4
## 68 NA NA NA NA 2 2 2 1 1 3
## 69 NA NA NA NA 2 2 1 1 1 4
## 70 NA NA NA NA 2 1 2 1 2 0
## 71 NA NA NA NA 2 2 2 1 1 3
## 72 NA NA NA NA 2 2 2 1 1 4
## 73 NA NA NA NA 2 2 1 1 2 2
## 74 NA NA NA NA 2 2 2 1 1 4
## 75 NA NA NA NA 2 2 2 1 1 2
## 76 NA NA NA NA 2 2 2 1 1 4
## 77 NA NA NA NA 2 2 2 1 1 4
## 78 NA NA NA NA 2 2 1 1 2 2
## 79 NA NA NA NA 2 2 2 1 1 4
## 80 NA NA NA NA 2 2 2 2 1 2
## 81 NA NA NA NA 2 2 1 2 1 3
## 82 NA NA NA NA 2 2 2 1 1 4
## 83 NA NA NA NA 2 1 2 1 1 0
## 84 NA NA NA NA 2 2 2 1 1 2
## 85 NA NA NA NA 2 2 2 1 1 3
## 86 NA NA NA NA 2 2 1 1 2 4
## 87 NA NA NA NA 2 1 2 1 2 0
## 88 NA NA NA NA 2 1 2 2 2 0
## 89 NA NA NA NA 2 2 2 1 1 3
## 90 NA NA NA NA 2 2 1 1 2 2
## 91 NA NA NA NA 2 2 1 2 1 4
## 92 NA NA NA NA 2 2 1 1 2 4
## 93 NA NA NA NA 2 2 2 1 2 4
## 94 NA NA NA NA 2 2 2 1 1 4
## 95 NA NA NA NA 2 2 2 1 1 2
## 96 NA NA NA NA 2 2 1 1 1 4
## 97 NA NA NA NA 2 2 1 1 1 3
## 98 NA NA NA NA 2 2 2 1 1 4
## 99 NA NA NA NA 2 2 2 1 1 4
## 100 NA NA NA NA 2 2 1 2 1 2
## 101 NA NA NA NA 2 2 1 1 1 2
## 102 NA NA NA NA 2 2 1 1 1 2
## 103 NA NA NA NA 2 2 1 2 2 4
## 104 NA NA NA NA 2 2 1 2 2 4
## 105 NA NA NA NA 2 2 1 1 1 4
## 106 NA NA NA NA 2 2 2 1 1 4
## 107 NA NA NA NA 2 2 1 1 2 2
## 108 NA NA NA NA 2 2 2 1 1 4
## 109 NA NA NA NA 2 2 2 2 2 4
## 110 NA NA NA NA 2 2 1 1 1 3
## 111 NA NA NA NA 2 2 1 1 1 2
## 112 NA NA NA NA 2 2 2 1 2 2
## 113 NA NA NA NA 2 2 1 1 1 4
## 114 NA NA NA NA 2 1 1 2 1 0
## 115 NA NA NA NA 2 2 2 1 1 3
## 116 NA NA NA NA 2 2 2 1 2 3
## 117 NA NA NA NA 2 2 2 1 1 2
## 118 NA NA NA NA 2 2 2 1 2 2
## 119 NA NA NA NA 2 2 1 1 1 3
## 120 NA NA NA NA 2 2 1 1 1 4
## 121 NA NA NA NA 2 1 2 1 1 0
## 122 NA NA NA NA 2 2 1 1 1 2
## 123 NA NA NA NA 2 2 1 1 2 4
## 124 NA NA NA NA 2 2 2 1 2 3
## 125 148.0 121 38 95 3 1 2 1 1 0
## 126 148.0 132 41 137 3 2 1 1 1 2
## 127 156.0 160 44 109 3 2 1 1 1 3
## 128 168.0 118 54 120 3 2 1 1 1 4
## 129 149.0 120 32 104 3 2 1 1 1 4
## 130 146.0 125 48 115 3 2 1 1 1 3
## 131 164.0 161 52 137 3 1 1 1 1 0
## 132 150.0 119 45 114 3 2 1 1 1 1
## 133 169.0 142 56 132 3 2 2 1 1 3
## 134 156.0 129 42 101 3 2 1 1 1 4
## 135 166.0 112 58 115 3 2 1 1 1 2
## 136 154.0 138 45 117 3 2 2 1 1 1
## 137 148.0 128 44 109 3 2 1 1 1 2
## 138 159.0 105 44 119 3 2 1 1 1 4
## 139 146.0 111 41 104 3 2 2 1 1 2
## 140 154.0 122 52 105 3 2 1 1 1 3
## 141 156.0 135 44 105 3 2 1 1 1 4
## 142 149.0 117 42 94 3 2 2 1 1 1
## 143 157.0 126 34 95 3 2 1 2 1 3
## 144 169.0 141 59 142 3 2 1 1 1 4
## 145 148.0 112 45 90 3 1 2 1 1 0
## 146 165.0 100 54 109 3 1 2 1 1 0
## 147 152.0 140 32 91 3 2 1 1 1 4
## 148 152.0 114 48 99 3 2 1 1 2 4
## 149 157.0 138 35 117 3 1 2 1 1 0
## 150 142.0 136 44 139 3 1 2 1 1 0
## 151 159.0 112 44 89 3 2 2 1 1 3
## 152 138.0 129 36 84 3 2 1 1 1 4
## 153 156.0 138 38 95 3 2 1 2 1 3
## 154 176.0 136 59 98 3 2 1 1 2 4
## 155 157.0 136 32 84 3 2 1 1 2 4
## 156 159.0 142 41 108 3 2 2 1 1 4
## 157 191.0 162 44 139 3 2 2 1 1 2
## 158 192.0 151 42 124 3 2 1 1 1 4
## 159 189.0 142 41 105 3 2 1 1 1 3
## 160 196.0 155 40 129 3 2 2 1 1 4
## 161 196.0 140 42 114 3 2 2 1 1 4
## 162 188.0 148 48 105 3 2 1 2 1 2
## 163 176.0 129 55 97 3 2 1 1 1 2
## 164 191.0 162 44 89 3 2 1 1 1 2
## 165 192.0 155 34 119 3 2 1 2 1 4
## 166 217.0 189 42 134 3 2 1 1 2 4
## 167 174.0 120 48 95 3 2 1 1 1 4
## 168 215.0 177 49 171 3 2 2 1 1 4
## 169 197.0 162 47 139 3 2 1 1 2 2
## 170 178.0 112 48 95 3 2 2 1 1 4
## 171 213.0 172 39 165 3 2 2 1 2 4
## 172 193.5 142 38 124 3 2 1 1 1 3
## 173 190.0 155 50 112 3 2 1 1 1 2
## 174 198.0 151 41 147 3 2 2 1 2 2
## 175 196.0 147 45 97 3 2 1 1 1 4
## 176 189.0 136 42 94 3 1 1 2 1 0
## 177 190.0 136 48 115 3 2 2 1 1 3
## 178 218.0 183 46 158 3 2 2 1 2 3
## 179 185.0 126 45 97 3 2 2 1 1 2
## 180 197.0 145 44 159 3 2 2 1 2 2
## 181 188.0 163 48 134 3 1 2 1 1 0
## 182 192.0 124 48 95 3 2 1 1 1 4
## 183 172.0 123 55 87 3 1 2 1 1 0
## 184 186.0 159 46 141 3 2 1 1 1 2
## 185 196.0 143 42 178 3 2 1 1 2 4
## 186 227.0 185 48 172 3 2 2 1 1 3
## MOAS3 MOAS4 MOAS5 MOAS_oral MOAS_item MOAS_lself MOAS_body MOAS_Total risk1
## 1 3 0 0 4 6 0 0 10 2
## 2 3 0 4 4 6 0 16 26 2
## 3 2 0 0 3 4 0 0 7 1
## 4 0 2 0 4 0 6 0 10 2
## 5 3 0 0 4 6 0 0 10 2
## 6 2 0 3 3 4 0 12 19 2
## 7 0 0 0 4 0 0 0 4 3
## 8 2 0 3 0 4 0 12 16 2
## 9 2 0 3 3 4 0 12 19 2
## 10 4 0 0 4 8 0 0 12 3
## 11 0 0 3 2 0 0 12 14 2
## 12 3 1 2 4 6 3 8 21 2
## 13 2 0 2 2 4 0 8 14 2
## 14 2 0 0 4 4 0 0 8 2
## 15 2 1 4 4 4 3 16 27 3
## 16 0 0 3 2 0 0 12 14 2
## 17 4 0 0 4 8 0 0 12 2
## 18 2 3 4 2 4 9 16 31 2
## 19 2 2 1 3 4 6 4 17 2
## 20 1 0 0 4 2 0 0 6 3
## 21 2 0 4 0 4 0 16 20 2
## 22 2 0 0 3 4 0 0 7 2
## 23 0 2 3 3 0 6 12 21 2
## 24 0 0 2 4 0 0 8 12 2
## 25 4 0 2 0 8 0 8 16 2
## 26 3 1 3 0 6 3 12 21 2
## 27 1 0 0 4 2 0 0 6 2
## 28 0 0 4 2 0 0 16 18 2
## 29 0 4 0 4 0 12 0 16 2
## 30 0 0 1 4 0 0 4 8 2
## 31 2 0 3 4 4 0 12 20 2
## 32 2 3 0 4 4 9 0 17 2
## 33 3 0 0 2 6 0 0 8 2
## 34 0 0 0 4 0 0 0 4 3
## 35 0 0 0 3 0 0 0 3 3
## 36 2 0 0 4 4 0 0 8 2
## 37 2 2 0 4 4 6 0 14 3
## 38 0 3 0 2 0 9 0 11 1
## 39 0 0 0 2 0 0 0 2 1
## 40 0 0 0 2 0 0 0 2 1
## 41 0 1 2 4 0 3 8 15 2
## 42 0 1 2 4 0 3 8 15 2
## 43 0 0 0 4 0 0 0 4 1
## 44 1 0 0 4 2 0 0 6 2
## 45 0 0 8 2 0 0 0 10 2
## 46 2 0 0 4 4 0 0 8 1
## 47 1 2 1 4 2 6 4 16 3
## 48 0 0 0 2 0 0 0 2 2
## 49 0 0 0 4 0 0 0 4 1
## 50 2 0 3 2 4 0 12 18 3
## 51 0 0 0 4 0 0 0 4 1
## 52 0 1 0 0 0 3 0 3 1
## 53 2 0 0 3 4 0 0 7 2
## 54 2 0 3 3 4 0 12 19 3
## 55 2 0 0 2 4 0 0 6 2
## 56 2 0 1 2 4 0 4 10 2
## 57 3 0 0 3 6 0 0 9 2
## 58 0 0 0 1 0 0 0 4 1
## 59 2 0 0 0 4 0 0 4 2
## 60 0 0 0 2 0 0 0 2 2
## 61 0 0 2 4 0 0 8 12 3
## 62 2 0 3 4 4 0 12 20 3
## 63 3 0 0 4 6 0 0 10 2
## 64 0 0 0 4 0 0 0 4 2
## 65 2 0 0 3 4 0 0 7 1
## 66 0 0 0 4 0 0 0 4 2
## 67 3 0 0 4 6 0 0 10 2
## 68 2 0 0 3 4 0 0 7 2
## 69 0 0 0 4 0 0 0 4 3
## 70 2 0 1 0 4 0 4 8 2
## 71 1 0 0 3 2 0 0 5 2
## 72 4 0 0 4 8 0 0 12 2
## 73 0 0 3 2 0 0 12 14 2
## 74 0 0 0 4 0 0 0 4 2
## 75 2 0 0 2 4 0 0 6 2
## 76 2 0 0 4 4 0 0 8 2
## 77 2 0 0 4 4 0 0 8 3
## 78 0 0 2 2 0 0 8 10 2
## 79 3 0 0 4 6 0 0 10 2
## 80 2 3 0 2 4 9 0 15 2
## 81 0 2 0 3 0 6 0 9 2
## 82 1 0 0 4 2 0 0 6 2
## 83 2 0 0 0 4 0 0 4 2
## 84 2 0 0 2 4 0 0 6 2
## 85 3 0 0 3 6 0 0 9 2
## 86 0 0 1 4 0 0 4 8 2
## 87 4 0 2 0 8 0 8 16 2
## 88 3 1 3 0 6 3 12 21 2
## 89 1 0 0 3 2 0 0 5 2
## 90 0 0 2 2 0 0 8 10 2
## 91 0 3 0 4 0 9 0 13 2
## 92 0 0 1 4 0 0 4 8 2
## 93 2 0 1 4 4 0 4 12 2
## 94 2 0 0 4 4 0 0 8 2
## 95 2 0 0 2 4 0 0 6 2
## 96 0 0 0 4 0 0 0 4 2
## 97 0 0 0 3 0 0 0 3 2
## 98 2 0 0 4 4 0 0 8 2
## 99 2 0 0 4 4 0 0 8 2
## 100 0 3 0 2 0 9 0 11 1
## 101 0 0 0 2 0 0 0 2 1
## 102 0 0 0 2 0 0 0 2 1
## 103 0 1 2 4 0 3 8 15 2
## 104 0 1 1 4 0 3 4 11 2
## 105 0 0 0 4 0 0 0 4 1
## 106 2 0 0 4 4 0 0 8 2
## 107 0 0 1 2 0 0 4 6 2
## 108 2 0 0 4 4 0 0 8 1
## 109 1 1 1 4 2 3 4 13 2
## 110 0 0 0 3 0 0 0 3 2
## 111 0 0 0 2 0 0 0 2 1
## 112 2 0 1 2 4 0 4 10 2
## 113 0 0 0 4 0 0 0 4 1
## 114 0 1 0 0 0 3 0 3 1
## 115 1 0 0 3 2 0 0 5 2
## 116 2 0 1 3 4 0 4 11 3
## 117 2 0 0 2 4 0 0 6 2
## 118 2 0 1 2 4 0 4 10 2
## 119 3 0 0 3 6 0 0 9 2
## 120 0 0 0 4 0 0 0 4 1
## 121 2 0 0 0 4 0 0 4 2
## 122 0 0 0 2 0 0 0 2 2
## 123 0 0 2 4 0 0 8 12 3
## 124 2 0 1 3 4 0 4 11 2
## 125 1 0 0 0 2 0 0 2 2
## 126 0 0 0 2 0 0 0 2 2
## 127 0 0 0 3 0 0 0 3 1
## 128 0 0 0 4 0 0 0 4 1
## 129 0 0 0 4 0 0 0 4 2
## 130 0 0 0 3 0 0 0 3 2
## 131 0 0 0 0 0 0 0 0 1
## 132 0 0 0 1 0 0 0 1 2
## 133 1 0 0 3 2 0 0 5 1
## 134 0 0 0 4 0 0 0 4 1
## 135 0 0 0 2 0 0 0 2 1
## 136 1 0 0 1 2 0 0 3 2
## 137 0 0 0 2 0 0 0 2 2
## 138 0 0 0 4 0 0 0 4 1
## 139 2 0 0 2 4 0 0 6 1
## 140 0 0 0 3 0 0 0 3 2
## 141 0 0 0 4 0 0 0 4 1
## 142 2 0 0 1 4 0 0 5 2
## 143 0 2 0 3 0 6 0 9 2
## 144 0 0 0 4 0 0 0 4 1
## 145 2 0 0 0 4 0 0 4 2
## 146 2 0 0 0 4 0 0 4 1
## 147 0 0 0 4 0 0 0 4 2
## 148 0 0 1 4 0 0 4 8 2
## 149 3 0 0 0 6 0 0 6 2
## 150 3 0 0 0 6 0 0 6 2
## 151 1 0 0 3 2 0 0 5 1
## 152 0 0 0 4 0 0 0 2 2
## 153 0 2 0 3 0 6 0 9 1
## 154 0 0 1 4 0 0 4 8 1
## 155 0 0 1 4 0 0 4 8 2
## 156 2 0 0 4 4 0 0 8 2
## 157 2 0 0 2 4 0 0 6 2
## 158 0 0 0 4 0 0 0 4 1
## 159 0 0 0 3 0 0 0 3 2
## 160 2 0 0 4 4 0 0 8 2
## 161 2 0 0 4 4 0 0 8 2
## 162 0 3 0 2 0 9 0 11 1
## 163 0 0 0 2 0 0 0 2 1
## 164 0 0 0 2 0 0 0 2 1
## 165 0 1 0 4 0 3 0 7 2
## 166 0 0 1 4 0 0 4 8 1
## 167 0 0 0 4 0 0 0 4 1
## 168 2 0 0 4 4 0 0 8 2
## 169 0 0 1 2 0 0 4 6 2
## 170 2 0 0 4 4 0 0 8 1
## 171 1 0 1 4 2 0 4 10 2
## 172 0 0 0 3 0 0 0 3 2
## 173 0 0 0 2 0 0 0 2 1
## 174 2 0 1 2 4 0 4 10 2
## 175 0 0 0 4 0 0 0 4 1
## 176 0 1 0 0 0 3 0 3 1
## 177 1 0 0 3 2 0 0 5 2
## 178 2 0 1 3 4 0 4 11 3
## 179 2 0 0 2 4 0 0 6 2
## 180 2 0 1 2 4 0 4 10 2
## 181 2 0 0 0 4 0 0 4 2
## 182 0 0 0 4 0 0 0 4 1
## 183 2 0 0 0 4 0 0 4 2
## 184 0 0 0 2 0 0 0 2 2
## 185 0 0 2 4 0 0 8 12 3
## 186 2 0 0 3 4 0 0 7 2
## risk2 risk3 risk4 risk5 risk6 risk7 risk8 risk9 risk10 Risk_total AQ1 AQ2
## 1 3 1 3 1 2 3 2 1 2 20 5 5
## 2 3 1 3 1 2 3 2 2 2 21 4 4
## 3 1 1 3 1 1 1 1 1 1 12 5 5
## 4 2 1 3 1 2 2 2 1 1 17 4 2
## 5 3 1 3 1 2 2 2 1 1 18 4 5
## 6 2 1 3 1 2 2 3 1 1 18 2 4
## 7 2 1 3 1 2 2 1 2 1 18 3 3
## 8 2 1 1 1 1 1 1 1 2 13 5 4
## 9 2 1 3 1 2 2 1 2 1 17 3 3
## 10 2 1 3 1 2 2 2 1 2 19 3 4
## 11 2 1 3 1 2 2 3 1 1 18 3 3
## 12 2 1 3 1 2 2 3 2 2 20 4 3
## 13 2 1 3 1 2 2 2 1 1 17 3 4
## 14 2 1 3 1 2 2 2 1 1 17 4 4
## 15 2 1 3 1 3 3 3 2 1 22 5 5
## 16 2 1 3 1 2 2 2 2 1 18 3 3
## 17 2 1 3 1 2 2 2 1 1 17 3 2
## 18 2 1 3 1 2 2 2 1 2 18 3 4
## 19 2 1 3 1 2 3 2 1 2 19 3 4
## 20 3 1 3 1 2 2 1 2 1 19 3 3
## 21 1 1 1 1 1 1 2 1 2 13 3 2
## 22 2 1 3 1 2 2 2 0 1 16 3 3
## 23 2 1 3 1 2 3 2 2 1 19 5 5
## 24 2 1 3 1 2 3 2 1 1 18 5 5
## 25 2 1 3 1 2 2 2 1 2 18 5 5
## 26 2 1 3 1 2 4 2 1 2 20 5 5
## 27 2 1 3 1 2 3 1 2 1 18 3 4
## 28 2 1 3 1 2 2 2 2 1 18 5 5
## 29 2 1 3 1 2 3 2 1 2 19 5 5
## 30 2 1 3 1 2 2 1 1 1 16 5 2
## 31 3 1 3 1 2 2 2 2 2 20 5 5
## 32 2 1 3 1 2 3 2 2 2 20 5 5
## 33 3 1 3 1 2 2 2 2 1 19 3 5
## 34 2 1 3 1 2 2 2 2 1 19 3 3
## 35 3 1 3 1 2 2 2 2 1 20 3 5
## 36 2 1 3 1 2 2 2 2 1 18 3 5
## 37 2 1 3 1 2 2 2 2 1 19 3 5
## 38 1 1 3 1 2 3 2 2 1 17 3 5
## 39 1 1 3 1 1 1 1 1 1 12 1 4
## 40 1 1 3 1 1 1 1 1 1 12 1 2
## 41 2 1 3 1 2 2 2 2 1 18 3 5
## 42 2 1 3 1 2 2 2 2 1 18 3 5
## 43 1 1 3 1 1 1 1 1 1 12 1 4
## 44 2 1 3 1 2 2 2 2 1 18 3 5
## 45 2 1 3 1 2 1 2 2 1 17 3 5
## 46 1 1 3 1 1 1 1 1 1 12 1 4
## 47 2 1 3 1 2 1 2 2 1 18 3 5
## 48 3 1 3 1 2 1 2 2 1 18 3 5
## 49 1 1 3 1 1 1 1 1 1 12 1 1
## 50 2 1 3 1 2 2 2 2 1 19 4 5
## 51 1 1 3 1 1 1 1 1 1 12 1 2
## 52 1 1 3 1 1 1 1 1 1 12 1 4
## 53 2 1 3 1 2 2 1 2 1 17 2 4
## 54 3 1 3 1 2 2 2 2 1 20 2 3
## 55 1 1 1 1 1 1 1 1 1 11 3 2
## 56 2 1 3 1 2 2 2 2 1 18 2 2
## 57 2 1 3 1 2 2 2 2 1 18 4 2
## 58 1 1 3 1 1 1 1 1 1 12 1 4
## 59 2 1 3 1 1 1 1 1 1 14 1 4
## 60 3 1 3 1 2 1 2 2 1 18 2 4
## 61 2 1 3 1 2 1 2 2 1 18 3 5
## 62 3 1 3 1 2 1 2 2 1 19 3 5
## 63 3 1 3 1 2 2 2 1 2 19 5 5
## 64 3 1 3 1 2 2 2 2 1 19 4 4
## 65 1 1 3 1 1 1 1 1 1 12 5 2
## 66 2 1 3 1 1 1 1 1 1 14 4 1
## 67 2 1 3 1 2 2 2 1 1 17 4 5
## 68 2 1 3 1 2 2 3 1 1 18 2 4
## 69 2 1 3 1 1 1 1 2 1 16 3 3
## 70 2 1 1 1 1 1 1 1 1 12 5 4
## 71 2 1 3 1 1 1 1 2 1 15 3 3
## 72 2 1 3 1 1 2 1 1 1 15 3 4
## 73 2 1 3 1 1 1 1 1 1 14 3 3
## 74 2 1 3 1 1 2 3 2 1 18 4 3
## 75 2 1 3 1 2 2 2 1 1 17 3 4
## 76 2 1 3 1 1 1 1 1 1 14 4 4
## 77 2 1 3 1 3 3 3 2 1 22 5 5
## 78 2 1 3 1 1 2 2 2 1 17 3 3
## 79 2 1 3 1 1 1 2 1 1 15 3 2
## 80 2 1 3 1 2 2 2 1 2 18 3 4
## 81 2 1 3 1 2 3 2 1 1 18 3 4
## 82 2 1 3 1 1 1 1 2 1 15 3 3
## 83 1 1 1 1 1 1 2 1 2 13 3 2
## 84 2 1 3 1 1 1 1 0 1 13 3 3
## 85 2 1 3 1 2 3 2 2 1 19 5 5
## 86 2 1 3 1 2 3 2 1 1 18 5 5
## 87 2 1 3 1 1 2 2 1 1 16 5 5
## 88 2 1 3 1 2 4 2 1 2 20 5 5
## 89 2 1 3 1 1 3 1 2 1 17 3 4
## 90 2 1 3 1 2 2 2 2 1 18 5 5
## 91 2 1 3 1 1 3 2 1 1 17 5 5
## 92 2 1 3 1 1 2 1 1 1 15 5 2
## 93 3 1 3 1 2 2 2 2 1 19 5 5
## 94 2 1 3 1 2 2 2 2 1 18 5 5
## 95 3 1 3 1 2 2 2 2 1 19 3 5
## 96 2 1 3 1 2 2 2 2 2 19 3 3
## 97 2 1 3 1 1 1 2 2 1 16 3 5
## 98 2 1 3 1 2 2 2 2 1 18 3 5
## 99 2 1 3 1 2 2 2 2 1 18 3 5
## 100 1 1 3 1 1 3 2 2 1 16 3 5
## 101 1 1 3 1 1 1 1 1 1 12 1 4
## 102 1 1 3 1 1 1 1 1 1 12 1 2
## 103 2 1 3 1 2 2 2 2 1 18 3 5
## 104 2 1 3 1 2 2 2 2 2 19 3 5
## 105 1 1 3 1 1 1 1 1 1 12 1 4
## 106 2 1 3 1 2 2 2 2 2 19 3 5
## 107 2 1 3 1 2 1 2 2 1 17 3 5
## 108 1 1 3 1 1 1 1 1 1 12 1 4
## 109 2 1 3 1 2 1 2 2 2 18 3 5
## 110 3 1 3 1 2 1 1 2 1 17 3 5
## 111 1 1 3 1 1 1 1 1 1 12 1 1
## 112 2 1 3 1 2 2 2 2 2 19 4 5
## 113 1 1 3 1 1 1 1 1 1 12 1 2
## 114 1 1 3 1 1 1 1 1 1 12 1 4
## 115 2 1 3 1 2 2 1 2 1 17 2 4
## 116 3 1 3 1 2 2 2 2 2 21 2 3
## 117 1 1 1 1 1 1 1 1 1 11 3 2
## 118 2 1 3 1 2 2 2 2 1 18 2 2
## 119 2 1 3 1 2 2 2 2 1 18 4 2
## 120 1 1 3 1 1 1 1 1 1 12 1 4
## 121 2 1 3 1 1 1 1 1 1 14 1 4
## 122 2 1 3 1 1 1 2 2 1 16 2 4
## 123 2 1 3 1 1 1 2 2 1 17 3 5
## 124 2 1 3 1 2 1 2 2 2 18 3 5
## 125 2 1 3 1 2 2 2 1 1 17 3 5
## 126 2 1 3 1 2 2 1 2 1 17 3 4
## 127 1 1 3 1 1 1 1 1 1 12 2 2
## 128 1 1 3 1 1 1 1 1 1 12 1 1
## 129 2 1 3 1 2 2 2 1 1 17 4 5
## 130 2 1 3 1 2 2 2 1 1 17 2 4
## 131 1 1 3 1 1 1 1 1 1 12 1 3
## 132 2 1 3 1 1 1 1 1 1 14 5 4
## 133 1 1 3 1 1 1 1 1 1 12 1 3
## 134 1 1 3 1 1 1 1 1 1 12 2 4
## 135 1 1 3 1 1 1 1 1 1 12 1 3
## 136 2 1 3 1 1 1 1 2 1 15 3 3
## 137 2 1 3 1 2 2 2 1 1 17 3 4
## 138 1 1 3 1 1 1 1 1 1 12 2 4
## 139 2 1 3 1 3 2 1 2 1 17 5 5
## 140 1 1 3 1 1 1 1 2 1 14 2 3
## 141 1 1 3 1 1 1 1 1 1 12 2 2
## 142 2 1 3 1 2 2 2 1 2 18 2 4
## 143 2 1 3 1 2 1 2 1 1 16 3 4
## 144 1 1 3 1 1 1 1 2 1 13 1 3
## 145 1 1 3 1 1 1 2 1 2 15 3 2
## 146 1 1 3 1 1 1 1 1 1 12 1 3
## 147 2 1 3 1 2 1 1 1 1 15 3 5
## 148 2 1 3 1 2 1 1 1 1 15 3 5
## 149 2 1 3 1 1 1 1 1 1 14 3 5
## 150 2 1 3 1 2 2 2 1 2 18 5 5
## 151 1 1 3 1 1 1 1 1 1 12 3 4
## 152 2 1 3 1 2 2 2 2 1 18 5 5
## 153 1 1 3 1 1 1 2 1 1 13 3 5
## 154 1 1 3 1 1 1 1 1 1 12 1 2
## 155 3 1 3 1 2 1 2 2 1 18 2 5
## 156 2 1 3 1 2 1 2 2 1 17 2 5
## 157 3 1 3 1 2 2 2 2 1 19 2 5
## 158 1 1 3 1 2 2 2 2 2 17 2 3
## 159 2 1 3 1 1 1 2 2 1 16 1 5
## 160 2 1 3 1 2 2 2 2 1 18 3 5
## 161 2 1 3 1 2 2 2 2 1 18 3 5
## 162 1 1 3 1 2 3 2 2 1 17 3 5
## 163 1 1 3 1 1 1 1 1 1 12 1 4
## 164 1 1 3 1 1 1 1 1 1 12 1 2
## 165 2 1 3 1 2 2 2 2 1 18 3 5
## 166 1 1 3 1 2 2 2 2 2 17 3 5
## 167 1 1 3 1 1 1 1 1 1 12 1 4
## 168 2 1 3 1 2 2 2 2 2 19 3 5
## 169 2 1 3 1 2 1 2 2 1 17 3 5
## 170 1 1 3 1 1 1 1 1 1 12 1 4
## 171 2 1 3 1 2 1 2 2 2 18 3 5
## 172 1 1 3 1 2 1 1 2 1 15 3 5
## 173 1 1 3 1 2 2 1 1 1 14 1 1
## 174 2 1 3 1 2 2 2 2 2 19 2 5
## 175 1 1 3 1 1 1 1 1 1 12 1 2
## 176 1 1 3 1 1 1 1 1 1 12 1 4
## 177 2 1 3 1 2 2 1 2 1 17 2 4
## 178 1 1 3 1 2 2 2 2 2 19 2 3
## 179 1 1 3 1 1 1 1 1 1 13 3 2
## 180 2 1 3 1 2 2 2 2 1 18 2 2
## 181 2 1 3 1 2 2 2 2 1 18 2 2
## 182 1 1 3 1 1 1 1 1 1 12 1 4
## 183 2 1 3 1 1 1 1 1 1 14 1 4
## 184 2 1 3 1 1 1 2 2 1 16 2 4
## 185 2 1 3 1 1 1 2 2 1 17 3 5
## 186 2 1 3 1 2 1 2 2 2 18 3 5
## AQ3 AQ4 AQ5 AQ6 AQ7 AQ8 AQ9 AQ10 AQ11 AQ12 AQ13 AQ14 AQ15 AQ16 AQ17 AQ18
## 1 4 1 2 5 3 5 2 2 1 5 1 2 4 2 2 2
## 2 4 2 5 4 4 4 5 4 3 3 3 4 4 2 5 4
## 3 2 2 5 4 5 5 5 5 5 5 5 5 3 3 5 2
## 4 4 4 3 4 5 4 4 2 5 4 2 4 1 4 4 4
## 5 4 2 5 5 5 5 5 5 4 5 4 4 3 4 5 2
## 6 4 2 4 4 4 5 4 4 2 5 2 2 4 2 4 2
## 7 3 1 1 3 2 4 3 2 2 4 2 2 5 2 2 2
## 8 2 4 4 3 5 4 3 4 3 3 2 5 2 4 3 3
## 9 4 2 2 3 4 4 3 4 3 3 2 4 4 2 3 2
## 10 4 2 1 4 2 1 1 1 1 1 1 5 4 4 2 3
## 11 5 4 4 3 4 4 5 4 4 4 2 2 4 3 4 2
## 12 4 2 2 4 2 2 3 2 2 2 1 3 4 4 3 3
## 13 4 4 1 1 1 4 1 1 1 2 1 1 5 1 1 3
## 14 5 5 5 2 4 1 5 4 1 1 5 5 1 4 5 2
## 15 3 2 3 3 4 2 3 3 3 3 2 4 2 2 4 5
## 16 2 3 3 3 2 3 3 2 2 2 2 2 3 3 3 3
## 17 4 2 4 4 4 3 2 2 3 2 4 3 3 2 1 3
## 18 4 3 2 2 4 3 2 5 3 2 2 2 3 3 3 3
## 19 3 3 4 4 5 2 3 4 2 2 3 4 3 3 4 3
## 20 3 2 2 2 3 4 2 3 2 3 2 2 3 2 2 3
## 21 2 2 2 2 3 3 3 3 3 2 2 2 4 3 3 3
## 22 3 3 3 4 3 3 3 4 4 2 3 3 3 3 4 2
## 23 1 3 2 2 2 1 2 3 2 1 2 2 2 2 1 5
## 24 3 4 4 2 4 4 4 2 3 4 3 2 2 4 3 5
## 25 4 4 4 2 4 5 4 2 2 4 2 4 4 3 4 5
## 26 4 3 4 3 4 4 3 4 2 4 3 2 4 4 4 5
## 27 4 3 3 3 4 4 3 2 2 4 3 3 2 3 3 2
## 28 4 4 4 4 4 4 4 4 2 4 2 4 3 2 4 5
## 29 4 4 4 3 4 4 4 3 2 4 3 4 4 4 4 5
## 30 4 4 4 3 4 5 3 4 3 4 2 4 4 4 4 4
## 31 4 2 4 4 4 5 4 4 4 3 4 4 2 2 4 5
## 32 4 4 4 2 2 2 4 4 1 2 2 4 2 3 4 5
## 33 3 2 2 2 2 2 2 2 1 3 2 2 4 2 2 5
## 34 3 4 4 2 4 4 3 2 3 2 3 2 2 2 2 2
## 35 4 4 4 2 4 5 3 2 2 2 2 4 4 2 2 5
## 36 4 3 4 3 4 4 3 4 3 2 3 2 4 2 2 5
## 37 4 3 3 3 4 4 3 2 3 2 3 3 2 2 2 5
## 38 4 4 4 4 4 4 3 4 3 2 2 4 3 2 2 5
## 39 4 4 4 3 4 4 1 3 1 1 3 4 4 1 1 4
## 40 4 4 4 3 4 5 1 4 1 1 2 4 4 1 1 4
## 41 4 2 2 4 3 4 3 2 3 2 2 3 4 2 2 2
## 42 4 4 4 4 4 4 3 4 3 2 2 4 4 2 2 2
## 43 4 4 2 3 3 4 1 3 1 1 2 2 4 1 1 2
## 44 3 4 4 2 4 4 3 2 3 2 3 2 2 2 2 5
## 45 4 4 4 2 4 5 3 2 2 2 2 4 4 2 2 5
## 46 4 3 4 3 4 4 1 4 1 1 3 2 4 1 1 3
## 47 4 3 3 3 4 4 3 2 2 2 3 3 2 2 3 5
## 48 4 4 4 4 4 4 3 4 2 2 2 4 3 2 4 5
## 49 4 4 4 3 4 4 1 3 1 1 3 4 4 1 1 2
## 50 4 4 4 3 4 5 3 4 3 2 2 4 4 2 2 5
## 51 4 2 2 4 3 4 1 2 1 1 2 3 4 1 1 2
## 52 4 4 4 4 4 4 1 4 1 1 2 4 4 1 1 2
## 53 4 4 2 3 3 4 2 3 2 2 2 2 4 2 2 2
## 54 4 2 2 2 4 4 2 4 2 3 2 2 4 2 2 2
## 55 4 2 2 2 4 4 3 4 2 2 2 4 3 2 2 2
## 56 2 2 4 4 4 2 3 4 2 2 4 3 1 2 2 4
## 57 3 4 4 2 4 4 3 2 1 4 3 2 2 2 2 3
## 58 4 4 4 2 4 5 1 2 1 2 2 4 4 1 1 2
## 59 4 3 4 3 4 4 1 4 1 2 3 2 4 1 1 2
## 60 4 3 3 3 4 4 3 2 2 2 3 3 2 2 2 2
## 61 3 3 1 3 3 1 2 3 2 2 0 1 4 2 2 5
## 62 5 5 5 2 2 2 3 5 2 3 5 5 1 2 1 5
## 63 4 1 2 5 3 5 2 2 1 5 1 2 4 2 2 2
## 64 4 2 5 4 4 4 5 2 3 5 3 4 4 2 5 4
## 65 2 2 5 4 2 5 4 3 5 2 5 5 3 3 5 1
## 66 4 4 3 1 1 4 2 2 5 1 2 4 1 4 4 1
## 67 4 2 5 5 4 5 5 3 4 4 4 4 3 4 5 2
## 68 4 2 4 4 4 5 4 4 2 4 2 2 4 2 4 2
## 69 1 1 1 1 1 4 1 2 2 1 2 2 1 2 2 1
## 70 2 4 4 3 2 4 3 4 3 2 2 5 2 4 3 3
## 71 1 2 2 1 1 4 1 1 3 1 2 4 1 2 3 1
## 72 2 2 1 4 2 1 1 1 1 2 1 5 4 4 2 3
## 73 1 4 4 1 1 4 1 1 4 1 2 2 1 3 4 1
## 74 4 2 2 4 2 2 3 2 2 2 1 3 2 4 3 3
## 75 4 4 1 1 1 4 1 1 1 3 1 1 5 1 1 3
## 76 2 5 5 1 2 1 3 2 1 2 5 5 1 4 5 1
## 77 3 2 3 3 4 2 3 3 3 4 2 4 2 2 4 3
## 78 2 3 3 3 2 3 3 2 2 2 2 2 2 3 3 2
## 79 2 2 4 1 2 3 2 2 3 2 4 3 2 2 1 2
## 80 4 3 2 2 4 3 2 5 3 3 2 2 3 3 3 3
## 81 3 3 4 4 2 2 3 4 2 3 3 4 3 3 4 2
## 82 1 2 2 1 1 4 1 1 2 1 2 2 1 2 2 1
## 83 2 2 2 2 3 3 3 3 3 2 2 2 4 3 3 3
## 84 3 3 3 1 1 3 1 4 4 1 3 3 1 3 4 1
## 85 1 3 2 2 1 1 2 3 2 1 2 2 2 2 1 2
## 86 3 4 4 2 2 4 2 2 3 2 3 2 2 4 3 2
## 87 4 4 4 2 2 5 2 2 2 2 2 4 2 3 4 2
## 88 4 3 4 3 4 4 3 4 2 4 3 2 4 4 4 3
## 89 4 3 3 1 2 4 2 2 2 3 3 3 2 3 3 1
## 90 4 4 4 4 4 4 4 4 2 4 2 4 3 2 4 4
## 91 4 4 4 1 2 4 2 3 2 2 3 4 2 4 4 3
## 92 4 4 4 1 1 5 3 4 3 1 2 4 1 4 4 4
## 93 4 2 4 4 2 5 2 4 4 2 4 4 2 2 4 2
## 94 4 4 4 2 2 2 2 4 1 2 2 4 2 3 4 2
## 95 3 2 2 2 2 2 2 2 1 1 2 2 4 2 2 3
## 96 3 4 4 2 3 4 3 2 3 2 3 2 2 2 2 2
## 97 1 4 4 1 3 5 1 2 2 2 2 4 4 2 2 2
## 98 4 3 4 3 3 4 3 4 3 2 3 2 4 2 2 3
## 99 4 3 3 3 3 4 3 2 3 2 3 3 2 2 2 3
## 100 1 4 4 1 3 4 2 4 3 2 2 4 3 2 2 2
## 101 1 4 4 1 2 4 1 3 1 1 3 4 1 1 1 1
## 102 4 4 4 3 3 5 1 4 1 2 2 4 4 1 1 3
## 103 4 2 2 4 3 4 3 2 3 2 2 3 4 2 2 2
## 104 4 4 4 4 4 4 3 4 3 3 2 4 4 2 2 2
## 105 1 4 2 1 2 4 1 3 1 1 2 1 4 1 1 2
## 106 3 4 4 2 4 4 3 2 3 3 3 2 2 2 2 4
## 107 4 4 4 2 4 5 1 2 2 1 2 4 4 2 2 3
## 108 1 3 4 1 4 4 1 4 1 1 3 2 4 1 1 1
## 109 4 3 3 3 4 4 4 2 2 2 3 3 2 2 3 4
## 110 4 4 4 4 4 4 3 4 2 1 2 4 3 2 4 3
## 111 4 4 4 3 4 4 1 3 1 1 3 4 4 1 1 2
## 112 4 4 4 3 4 5 3 4 3 1 2 4 4 2 2 5
## 113 4 2 2 4 3 4 1 2 1 1 2 3 4 1 1 2
## 114 4 4 4 4 4 4 1 4 1 1 2 4 4 1 1 2
## 115 4 4 2 1 3 4 1 3 2 1 2 2 4 2 2 2
## 116 4 2 2 2 4 4 3 4 2 3 2 2 4 2 2 2
## 117 4 2 2 2 4 4 1 4 2 1 2 4 3 2 2 2
## 118 2 2 4 4 4 2 3 4 2 2 4 3 1 2 2 4
## 119 3 4 4 1 4 4 3 2 1 1 3 2 2 2 2 1
## 120 4 4 4 2 4 5 1 2 1 2 2 4 4 1 1 1
## 121 4 3 4 1 4 4 1 4 1 1 3 2 4 1 1 1
## 122 4 3 3 1 4 4 1 2 2 2 3 3 2 2 2 1
## 123 3 3 1 3 3 1 2 3 2 2 0 1 4 2 2 2
## 124 5 5 5 4 2 2 4 5 2 5 5 5 1 2 1 5
## 125 4 1 2 5 3 5 2 2 1 5 1 2 4 2 2 2
## 126 4 2 5 4 4 4 5 2 3 5 3 4 4 2 5 3
## 127 2 2 5 4 2 5 4 3 2 2 5 5 3 3 2 1
## 128 4 4 3 1 1 4 2 2 1 1 2 4 1 1 1 1
## 129 4 2 5 5 4 5 5 3 4 4 4 4 3 4 5 2
## 130 4 2 4 4 4 5 4 4 2 4 2 2 4 2 4 2
## 131 1 1 1 1 1 4 1 2 1 1 2 2 1 1 1 1
## 132 2 4 4 3 2 4 3 4 3 2 2 5 2 4 2 2
## 133 1 2 2 1 1 4 1 1 1 1 2 4 1 1 1 1
## 134 2 2 1 4 2 1 1 1 1 2 1 5 4 4 2 3
## 135 1 4 4 1 1 4 1 1 1 1 2 2 1 1 1 1
## 136 4 2 2 4 2 2 3 2 2 2 1 3 2 4 2 3
## 137 4 4 1 1 1 4 1 1 1 3 1 1 5 1 1 3
## 138 2 5 5 1 2 1 3 2 1 2 5 5 1 4 2 1
## 139 3 2 3 3 4 2 3 3 3 4 2 4 2 2 4 3
## 140 2 3 3 3 2 3 3 2 2 2 2 2 2 3 3 2
## 141 2 2 4 1 2 3 2 2 3 2 4 3 2 2 1 2
## 142 4 3 2 2 4 3 2 5 3 3 2 2 3 3 3 3
## 143 3 3 4 4 2 2 3 4 2 3 3 4 3 3 2 2
## 144 1 2 2 1 1 4 1 1 1 1 2 2 1 2 1 1
## 145 2 2 2 2 3 3 3 3 3 2 2 2 4 3 3 3
## 146 3 3 3 1 1 3 1 4 1 1 3 3 1 3 1 1
## 147 1 3 2 2 1 1 2 3 2 1 2 2 2 2 1 2
## 148 3 4 4 2 2 4 2 2 3 2 3 2 2 4 3 2
## 149 4 4 4 2 2 5 2 2 2 2 2 4 2 3 2 2
## 150 4 3 4 3 4 4 3 4 2 4 3 2 4 4 4 3
## 151 4 3 3 1 2 4 2 2 2 3 3 3 1 3 2 1
## 152 4 4 4 4 4 4 4 4 2 4 2 4 3 2 4 4
## 153 4 4 4 1 2 4 2 3 2 2 3 4 2 4 2 3
## 154 4 4 4 1 1 5 3 4 1 1 2 4 1 4 1 4
## 155 4 2 4 4 2 5 2 4 2 2 4 4 1 2 2 2
## 156 4 4 4 2 2 2 2 4 1 2 2 4 1 3 2 2
## 157 3 2 2 2 2 2 2 2 1 1 2 2 4 2 2 3
## 158 3 4 4 2 3 4 3 2 3 2 3 2 2 2 2 2
## 159 1 4 4 1 3 5 1 2 2 2 2 4 4 1 2 2
## 160 4 3 4 3 3 4 3 4 3 2 3 2 4 2 2 3
## 161 4 3 3 3 3 4 3 2 3 2 3 3 2 2 2 3
## 162 1 4 4 1 3 4 2 4 3 2 2 4 3 2 2 2
## 163 1 4 4 1 2 4 1 3 1 1 3 4 1 1 1 1
## 164 4 4 4 3 3 5 1 4 1 2 2 4 4 1 1 3
## 165 4 2 2 4 3 4 3 2 3 2 2 3 4 2 2 2
## 166 4 4 4 4 4 4 3 4 3 3 2 4 4 2 2 2
## 167 1 4 2 1 2 4 1 3 1 1 2 1 4 1 1 2
## 168 3 4 4 2 4 4 3 2 3 3 3 2 2 2 2 5
## 169 4 4 4 2 4 5 1 2 2 1 2 4 4 2 2 3
## 170 1 3 4 1 4 4 1 4 1 1 3 2 4 1 1 1
## 171 4 3 3 3 4 4 4 2 2 2 3 3 2 2 3 5
## 172 4 4 4 4 4 4 3 4 2 1 2 4 3 2 4 3
## 173 4 4 4 3 4 4 1 3 1 1 3 4 4 1 1 2
## 174 4 4 4 3 4 5 3 4 3 1 2 4 4 2 2 5
## 175 4 2 2 4 3 4 1 2 1 1 2 3 4 1 1 2
## 176 4 4 4 4 4 4 1 4 1 1 2 4 4 1 1 2
## 177 4 4 2 1 3 4 1 3 2 1 2 2 4 2 2 2
## 178 4 2 2 2 4 4 3 4 2 3 2 2 4 2 2 4
## 179 4 2 2 2 4 4 1 4 2 1 2 4 3 2 2 2
## 180 2 2 4 4 4 2 3 4 2 2 4 3 1 2 2 4
## 181 3 4 4 1 4 4 3 2 1 1 3 2 2 2 2 1
## 182 4 4 4 2 4 5 1 2 1 2 2 4 4 1 1 4
## 183 4 3 4 1 4 4 1 4 1 1 3 2 4 1 1 1
## 184 4 3 3 1 4 4 1 2 2 2 3 3 2 2 2 1
## 185 3 3 1 3 3 1 2 3 2 2 0 1 4 1 2 2
## 186 5 5 5 4 2 2 4 5 2 5 5 5 1 2 1 5
## AQ19 AQ20 AQ21 AQ22 AQ23 AQ24 AQ25 AQ26 AQ27 AQ28 AQ29 AQ_anger AQ_verbal
## 1 4 5 1 4 4 2 1 4 4 4 3 26 13
## 2 5 2 5 5 2 2 5 4 4 2 4 25 19
## 3 5 1 1 5 1 5 1 2 4 2 3 25 20
## 4 4 2 3 4 4 2 2 1 4 4 3 28 19
## 5 2 1 5 5 2 2 2 1 4 1 4 21 20
## 6 5 2 4 5 2 2 3 2 4 2 4 22 16
## 7 4 1 1 5 4 1 1 1 4 2 3 22 11
## 8 3 3 3 5 4 2 4 3 4 3 3 24 19
## 9 3 3 1 3 2 2 2 4 3 3 3 19 13
## 10 5 5 1 3 3 1 2 4 4 1 4 17 16
## 11 3 1 2 2 2 1 4 2 4 2 4 21 15
## 12 2 3 2 2 2 1 1 3 2 3 4 19 13
## 13 3 1 1 3 1 1 4 1 4 1 4 14 11
## 14 5 5 5 5 4 4 5 5 4 4 3 25 21
## 15 5 3 3 2 4 2 3 3 4 2 4 27 16
## 16 3 2 2 2 4 2 2 2 3 3 4 21 13
## 17 3 4 4 2 2 2 2 4 4 4 3 19 17
## 18 3 2 2 2 4 2 3 3 3 3 4 20 12
## 19 4 4 3 3 4 2 2 4 4 2 4 21 18
## 20 3 2 2 2 2 2 2 2 4 2 3 18 12
## 21 3 3 3 3 4 2 2 2 4 2 4 20 13
## 22 3 3 3 3 2 3 3 3 4 2 3 17 17
## 23 5 2 2 2 4 2 2 2 4 2 4 24 13
## 24 5 4 4 4 4 2 4 2 4 2 4 29 16
## 25 5 3 4 4 4 2 5 4 4 4 4 31 18
## 26 5 4 4 4 4 2 2 3 4 2 4 28 16
## 27 4 3 4 5 2 2 5 3 4 3 3 21 17
## 28 5 4 4 4 4 2 2 4 4 4 4 31 20
## 29 5 4 4 5 4 3 2 4 4 4 4 31 19
## 30 2 4 4 4 3 4 2 4 4 4 3 25 19
## 31 5 3 4 4 4 2 2 4 4 2 4 28 18
## 32 5 3 2 4 4 2 2 4 3 2 0 27 15
## 33 5 2 1 3 4 2 1 2 4 4 4 26 11
## 34 3 2 4 2 4 2 4 2 2 2 4 19 14
## 35 5 3 4 2 4 2 5 2 4 4 4 26 18
## 36 5 2 4 2 4 2 2 2 4 4 4 26 16
## 37 5 2 4 2 4 2 5 2 4 4 4 26 17
## 38 5 2 4 2 4 2 2 2 4 4 4 26 20
## 39 4 1 4 1 4 3 2 1 4 4 3 19 19
## 40 2 1 4 1 4 4 2 1 4 4 3 17 19
## 41 2 2 4 1 4 2 2 2 3 4 4 20 16
## 42 2 2 1 1 4 2 2 2 4 4 4 20 17
## 43 3 2 4 2 2 2 2 2 4 2 3 12 17
## 44 5 2 4 2 4 2 4 2 4 4 4 26 16
## 45 5 2 4 2 4 2 5 2 4 4 4 26 18
## 46 3 1 4 1 2 2 2 1 4 2 3 15 16
## 47 5 2 4 2 4 2 3 2 4 4 4 26 17
## 48 5 2 4 2 4 2 2 2 4 4 4 26 20
## 49 2 1 4 1 4 3 2 1 4 4 3 15 19
## 50 5 2 4 2 4 4 2 1 4 4 4 27 19
## 51 2 2 4 1 3 2 2 1 3 2 3 13 16
## 52 2 3 1 1 4 2 2 3 4 3 3 15 17
## 53 3 2 4 2 2 2 2 2 4 2 4 15 17
## 54 5 3 4 1 2 1 5 2 2 2 4 18 12
## 55 2 2 4 2 4 2 2 2 4 4 3 20 16
## 56 3 2 4 2 3 2 2 2 4 2 4 19 17
## 57 3 2 4 2 2 2 4 2 2 2 4 21 14
## 58 2 3 4 1 3 2 5 1 4 4 3 17 18
## 59 2 1 4 1 2 2 2 1 4 2 3 14 16
## 60 4 3 4 3 4 2 3 3 4 3 4 20 17
## 61 5 3 3 3 1 5 3 3 4 4 4 22 14
## 62 5 2 5 2 4 5 5 2 4 4 4 27 21
## 63 4 5 1 4 4 2 1 4 4 4 3 26 13
## 64 5 2 5 5 2 2 3 4 4 2 4 27 19
## 65 5 1 1 5 1 5 1 2 4 2 3 20 16
## 66 4 2 3 2 4 2 1 1 2 4 1 20 14
## 67 2 1 5 5 2 2 2 1 4 1 4 20 20
## 68 5 2 4 5 2 2 3 2 4 2 4 21 16
## 69 4 1 1 2 4 1 1 1 2 2 1 16 7
## 70 3 3 3 5 4 2 3 3 4 3 3 23 19
## 71 3 3 1 1 2 2 1 4 1 3 1 14 9
## 72 5 5 1 3 3 1 2 4 1 1 4 18 13
## 73 3 1 2 1 2 1 1 2 4 2 1 13 13
## 74 2 3 2 2 2 1 1 3 2 3 4 19 13
## 75 3 1 1 3 1 1 4 1 4 1 4 15 11
## 76 2 5 5 2 4 4 2 5 4 4 1 20 20
## 77 5 3 3 2 4 2 3 3 4 2 2 26 16
## 78 3 2 2 2 4 2 2 2 3 3 4 20 13
## 79 3 4 4 2 2 2 2 4 4 4 1 18 14
## 80 3 2 2 2 4 2 3 3 3 3 4 21 12
## 81 2 4 3 3 4 2 2 4 4 2 1 19 18
## 82 3 2 2 1 2 2 1 2 1 2 1 13 8
## 83 3 3 3 3 4 2 2 2 4 2 4 20 13
## 84 3 3 3 1 2 3 1 3 4 2 1 13 14
## 85 2 2 2 2 4 2 2 2 4 2 4 18 13
## 86 2 4 4 4 4 2 3 2 4 2 4 21 16
## 87 2 3 4 4 4 2 3 4 4 4 2 23 18
## 88 5 4 4 4 4 2 2 3 4 2 4 26 16
## 89 2 3 4 5 2 2 1 3 4 3 3 17 15
## 90 5 4 4 4 4 2 2 4 4 4 4 30 20
## 91 2 4 4 5 4 3 2 4 4 4 4 24 17
## 92 1 4 4 4 3 4 1 4 4 4 1 21 17
## 93 2 3 4 4 4 2 2 4 4 2 1 21 18
## 94 2 3 2 4 4 2 1 4 3 2 1 21 15
## 95 5 2 1 3 4 2 1 2 4 4 4 22 11
## 96 3 2 4 2 4 2 4 2 2 2 4 19 14
## 97 5 3 4 2 4 2 2 2 4 4 4 21 17
## 98 5 2 4 2 4 2 2 2 4 4 4 24 16
## 99 5 2 4 2 4 2 3 2 4 4 4 24 17
## 100 5 2 4 2 4 2 2 2 4 4 4 22 17
## 101 4 1 4 1 4 3 2 1 1 4 3 16 14
## 102 2 1 4 1 4 4 2 1 4 4 3 17 19
## 103 2 2 4 1 4 2 2 2 3 4 4 20 16
## 104 2 2 1 1 4 2 2 2 4 4 4 21 17
## 105 3 2 4 2 2 2 2 2 4 2 3 12 15
## 106 5 2 4 2 4 2 4 2 4 4 4 26 16
## 107 5 2 4 2 4 2 5 2 4 4 4 21 18
## 108 3 1 4 1 2 2 2 1 4 2 1 11 14
## 109 5 2 4 2 4 2 3 2 4 4 4 26 17
## 110 5 2 4 2 4 2 2 2 4 4 4 23 20
## 111 2 1 4 1 4 3 2 1 4 4 3 15 19
## 112 5 2 4 2 4 4 2 1 4 4 4 26 19
## 113 2 2 4 1 3 2 2 1 3 2 3 12 16
## 114 2 3 1 1 4 2 2 3 4 3 3 14 17
## 115 3 2 4 2 2 2 2 2 4 2 1 13 15
## 116 5 3 4 1 2 1 5 2 2 2 4 19 12
## 117 2 2 4 2 4 2 2 2 4 4 1 17 16
## 118 3 2 4 2 3 2 2 2 4 2 4 19 17
## 119 3 2 4 2 2 2 4 2 2 2 4 16 13
## 120 2 3 4 1 3 2 5 1 4 4 3 14 18
## 121 2 1 4 1 2 2 2 1 4 2 1 10 14
## 122 4 3 4 1 4 2 3 3 4 3 1 17 15
## 123 5 3 3 3 1 5 4 3 4 4 4 19 14
## 124 5 2 5 2 4 5 5 2 4 4 4 30 23
## 125 3 3 1 4 4 2 1 3 4 3 3 22 13
## 126 3 2 5 5 2 2 3 3 4 2 4 23 19
## 127 2 1 1 5 1 2 1 2 1 1 3 13 13
## 128 4 2 1 2 1 2 1 1 1 1 1 11 11
## 129 2 1 5 5 2 2 2 1 4 1 1 20 20
## 130 4 2 4 5 2 2 3 2 4 2 1 20 16
## 131 4 1 1 2 1 1 1 1 1 1 1 10 6
## 132 2 3 3 5 3 2 3 2 4 2 3 19 19
## 133 3 3 1 1 1 1 1 1 1 1 1 9 9
## 134 2 2 1 3 2 1 2 2 1 1 2 13 13
## 135 3 1 2 1 1 1 1 2 1 2 1 10 10
## 136 2 3 2 2 2 1 1 3 2 2 2 17 13
## 137 3 1 1 3 1 1 4 1 4 1 3 15 11
## 138 2 2 2 2 2 2 2 2 1 2 1 14 14
## 139 5 3 3 2 4 2 3 3 4 2 2 26 16
## 140 2 2 2 2 4 1 2 2 2 2 1 17 12
## 141 2 4 4 2 2 1 2 2 2 2 1 14 12
## 142 3 2 2 2 4 2 3 3 3 3 1 20 12
## 143 2 4 3 3 2 2 2 4 1 1 1 16 15
## 144 1 2 1 1 1 1 1 2 1 1 1 7 7
## 145 3 3 3 3 4 2 2 2 4 2 1 20 13
## 146 3 3 1 1 2 1 1 3 1 1 1 10 9
## 147 2 2 2 2 4 2 2 2 4 2 1 16 13
## 148 2 2 4 4 4 2 3 2 4 2 1 17 16
## 149 2 3 2 4 4 1 3 4 4 1 2 16 16
## 150 5 4 4 4 4 2 2 3 4 2 1 26 16
## 151 1 3 2 5 2 2 1 3 1 3 3 15 10
## 152 5 4 4 4 4 2 2 4 4 4 1 30 20
## 153 2 4 4 5 4 3 2 2 4 1 1 17 17
## 154 1 1 4 4 3 1 1 1 4 1 1 14 17
## 155 2 3 2 4 4 2 2 2 4 1 1 15 16
## 156 2 3 2 4 4 2 1 2 3 1 1 15 15
## 157 5 2 1 3 4 2 1 2 4 4 1 21 11
## 158 3 2 4 2 4 2 4 2 2 2 4 18 14
## 159 5 1 4 2 4 2 2 2 4 4 4 19 17
## 160 5 2 4 2 4 2 2 2 4 4 4 24 16
## 161 5 2 4 2 4 2 3 2 4 4 4 24 17
## 162 5 2 4 2 4 2 1 2 4 4 4 22 17
## 163 4 1 4 1 4 3 1 1 4 4 3 16 17
## 164 2 4 4 1 4 4 2 1 4 4 3 17 19
## 165 2 4 4 1 4 2 2 2 3 4 4 20 16
## 166 2 2 1 1 4 2 2 2 4 4 4 21 17
## 167 3 2 4 2 2 2 1 2 4 4 3 14 14
## 168 5 4 4 2 4 2 4 2 4 4 4 27 16
## 169 5 2 4 2 4 2 2 2 4 4 4 21 18
## 170 3 1 4 1 2 2 2 1 4 4 1 13 14
## 171 5 2 4 2 4 2 3 2 4 4 4 27 17
## 172 5 2 4 2 4 2 2 2 4 4 4 23 20
## 173 2 1 4 1 4 3 1 1 4 4 3 15 19
## 174 5 2 4 2 4 4 2 1 4 4 4 24 19
## 175 2 2 4 1 3 2 2 1 3 4 3 14 16
## 176 2 1 1 1 4 2 2 3 4 3 3 14 17
## 177 3 2 4 2 2 2 2 2 2 4 2 15 13
## 178 5 4 4 1 2 1 3 2 2 2 4 21 12
## 179 2 2 4 2 4 2 2 2 4 4 2 17 16
## 180 3 4 4 2 3 2 2 2 2 4 4 21 15
## 181 3 2 4 2 2 2 2 2 2 2 4 14 13
## 182 2 4 4 1 3 2 3 1 4 4 3 17 18
## 183 2 1 4 1 2 2 2 1 2 2 1 10 12
## 184 4 1 4 1 4 2 3 3 4 3 1 17 15
## 185 5 4 3 3 4 5 3 3 4 4 4 22 14
## 186 5 4 5 2 4 5 5 2 4 4 4 30 23
## AQ_physical AQ_suspicious AQ_Total BIS1 BIS2 BIS3 BIS4 BIS5 BIS6 BIS7 BIS8
## 1 24 26 89 3 2 4 1 4 3 1 1
## 2 35 29 108 4 3 4 3 4 4 2 2
## 3 29 26 100 4 1 4 3 2 3 1 3
## 4 29 21 97 3 1 3 3 1 1 2 3
## 5 38 26 105 3 3 4 1 4 4 3 4
## 6 31 26 95 4 3 4 1 4 4 2 3
## 7 23 17 73 3 1 3 3 2 2 3 1
## 8 33 24 100 4 3 4 3 4 3 2 1
## 9 24 28 84 4 1 3 3 2 3 3 3
## 10 21 23 77 4 3 4 3 4 3 4 1
## 11 30 25 91 3 2 4 1 4 2 2 1
## 12 21 22 75 4 3 4 2 4 4 2 1
## 13 23 15 63 3 2 4 3 4 2 3 1
## 14 33 33 112 3 1 3 3 2 2 2 1
## 15 26 24 93 4 3 4 3 4 2 2 3
## 16 24 18 76 4 3 4 3 4 2 2 1
## 17 25 24 85 3 1 2 2 2 1 2 1
## 18 26 26 84 4 2 4 3 4 2 3 1
## 19 27 29 95 4 3 4 3 4 4 2 1
## 20 22 20 72 4 1 1 1 2 1 2 1
## 21 24 22 79 4 3 4 2 4 2 3 1
## 22 28 26 88 4 1 2 1 2 1 2 1
## 23 22 15 74 4 3 4 2 4 4 2 3
## 24 35 22 102 4 2 4 3 4 4 2 4
## 25 34 27 110 4 3 4 3 4 4 2 3
## 26 32 29 105 4 3 4 2 4 4 2 2
## 27 32 23 93 3 1 2 1 2 2 3 1
## 28 29 29 109 4 3 4 2 4 4 3 1
## 29 33 30 113 4 2 4 2 4 4 3 1
## 30 29 32 105 3 1 2 1 2 2 2 1
## 31 34 27 107 4 2 4 2 4 4 1 1
## 32 23 25 90 4 1 4 1 4 4 2 1
## 33 22 19 78 4 2 4 2 4 1 1 1
## 34 29 19 81 2 1 4 1 4 1 2 2
## 35 31 23 98 3 2 4 1 4 1 2 2
## 36 29 24 95 3 2 4 2 4 3 3 3
## 37 31 20 94 2 2 4 2 4 2 3 3
## 38 28 23 97 4 2 4 2 3 2 1 2
## 39 23 21 82 4 1 2 1 1 1 2 2
## 40 21 23 80 4 1 1 1 1 1 2 1
## 41 25 21 82 3 2 4 2 3 1 1 1
## 42 27 24 88 2 2 4 1 4 2 2 1
## 43 21 21 71 3 1 2 1 1 2 3 1
## 44 31 19 92 3 2 3 2 4 3 2 1
## 45 31 22 97 4 2 3 2 4 2 2 1
## 46 23 21 75 3 1 1 1 1 2 1 1
## 47 28 21 92 4 3 4 2 3 2 2 2
## 48 27 25 98 2 1 3 1 2 1 2 2
## 49 20 21 75 4 3 1 1 1 1 1 3
## 50 29 25 100 4 2 4 1 2 1 1 1
## 51 18 19 66 3 3 1 3 1 1 1 1
## 52 22 25 79 2 2 1 2 1 2 1 1
## 53 24 22 78 3 2 4 2 4 2 2 1
## 54 25 24 79 3 3 4 2 4 3 2 1
## 55 21 23 80 4 3 3 2 3 2 3 1
## 56 24 19 79 3 3 4 2 4 2 2 1
## 57 26 19 80 4 3 4 2 3 2 2 2
## 58 26 21 82 2 1 1 1 1 1 2 2
## 59 23 21 74 4 3 1 1 1 1 1 3
## 60 28 22 87 2 1 4 1 4 1 2 2
## 61 21 26 83 3 2 4 1 4 1 2 2
## 62 32 23 103 3 3 4 3 2 3 1 3
## 63 24 26 89 3 2 4 1 4 3 1 1
## 64 33 27 106 4 3 4 3 4 4 2 2
## 65 37 23 96 4 1 4 3 2 1 1 3
## 66 24 17 75 3 1 3 1 1 1 1 3
## 67 38 23 101 3 3 4 1 4 4 3 4
## 68 31 26 94 4 3 4 1 4 4 2 3
## 69 18 10 51 3 1 3 1 2 1 1 1
## 70 32 21 95 4 3 4 3 4 3 2 1
## 71 19 16 58 4 1 3 1 2 1 1 3
## 72 21 21 73 4 3 4 3 4 1 4 1
## 73 23 12 61 3 2 4 1 4 1 1 1
## 74 21 20 73 4 3 4 2 4 1 2 1
## 75 23 15 64 3 2 4 3 4 2 3 1
## 76 25 26 91 3 1 3 3 2 1 1 1
## 77 24 24 90 4 3 4 3 4 2 2 3
## 78 24 17 74 4 3 4 1 4 2 2 1
## 79 23 19 74 3 1 2 1 2 1 2 1
## 80 26 26 85 4 2 4 3 4 2 3 1
## 81 24 26 87 4 3 4 1 4 2 2 1
## 82 18 12 51 4 1 1 1 2 1 1 1
## 83 24 22 79 4 3 4 2 4 2 3 1
## 84 22 22 71 4 1 2 1 2 1 1 1
## 85 22 14 67 4 3 4 2 4 4 2 3
## 86 34 20 91 4 2 4 2 4 4 2 4
## 87 30 23 94 4 3 4 3 4 2 1 3
## 88 32 29 103 4 3 4 2 4 4 2 2
## 89 28 21 81 3 1 2 1 2 1 1 1
## 90 29 29 108 4 3 4 2 4 4 3 1
## 91 33 26 100 4 2 4 1 4 2 3 1
## 92 26 26 90 3 1 2 1 2 1 2 1
## 93 31 25 95 4 2 4 2 4 2 1 1
## 94 23 25 84 4 1 4 1 4 2 2 1
## 95 22 19 74 4 2 4 2 4 1 1 1
## 96 29 18 80 2 1 4 1 4 1 2 2
## 97 28 19 85 3 2 4 1 4 1 2 2
## 98 29 23 92 3 2 4 2 4 3 2 3
## 99 29 19 89 2 2 4 2 4 2 2 3
## 100 28 19 86 4 2 4 2 3 2 1 2
## 101 23 13 66 4 1 2 1 1 1 1 2
## 102 21 22 79 4 1 1 1 1 1 2 1
## 103 25 21 82 3 2 4 2 3 1 1 1
## 104 27 24 89 2 2 4 1 4 2 2 1
## 105 21 17 65 3 1 2 1 1 2 1 1
## 106 31 19 92 3 2 3 2 4 3 2 1
## 107 31 22 92 4 2 3 2 4 2 2 1
## 108 21 18 64 3 1 1 1 1 2 1 1
## 109 28 21 92 4 3 4 2 3 2 2 2
## 110 27 25 95 2 1 3 1 2 1 2 2
## 111 20 21 75 4 3 1 1 1 1 1 3
## 112 29 25 99 4 2 4 1 2 1 1 1
## 113 18 19 65 3 3 1 2 1 1 1 1
## 114 22 25 78 2 2 1 1 1 2 1 1
## 115 21 22 71 3 2 4 1 4 2 2 1
## 116 25 24 80 3 3 4 2 4 3 2 1
## 117 19 23 75 4 3 3 1 3 2 1 1
## 118 24 19 79 3 3 4 2 4 2 2 1
## 119 26 19 74 4 3 4 1 3 2 1 2
## 120 26 21 79 2 1 1 1 1 1 2 2
## 121 21 21 66 4 3 1 1 1 1 1 3
## 122 23 22 77 2 1 4 1 4 1 1 2
## 123 22 26 81 3 2 4 1 4 1 2 2
## 124 32 23 108 3 3 4 3 2 3 1 3
## 125 24 23 82 3 2 4 1 4 3 1 1
## 126 33 26 101 4 3 4 3 4 4 2 2
## 127 31 17 74 4 1 4 3 2 1 1 3
## 128 16 14 52 3 1 3 1 1 1 1 3
## 129 35 23 98 3 3 4 1 4 4 3 4
## 130 28 26 90 4 3 4 1 4 4 2 3
## 131 16 9 41 3 1 3 1 2 1 1 1
## 132 32 19 89 4 3 4 3 4 3 2 1
## 133 16 10 44 4 1 3 1 2 1 1 3
## 134 19 16 61 4 3 4 3 4 1 4 1
## 135 18 9 47 3 2 4 1 4 1 1 1
## 136 19 19 68 4 3 4 2 4 1 2 1
## 137 22 15 63 3 2 4 3 4 2 3 1
## 138 25 15 68 3 1 3 3 2 1 1 1
## 139 24 24 90 4 3 4 3 4 2 2 3
## 140 21 16 66 4 3 4 1 4 2 2 1
## 141 23 16 65 3 1 2 1 2 1 2 1
## 142 23 26 81 4 2 4 3 4 2 3 1
## 143 24 24 79 4 3 4 1 4 2 2 1
## 144 17 10 41 4 1 1 1 2 1 1 1
## 145 21 22 76 4 3 4 2 4 2 3 1
## 146 19 17 55 4 1 2 1 2 1 1 1
## 147 19 14 62 4 3 4 2 4 4 2 3
## 148 31 18 82 4 2 4 2 4 4 2 4
## 149 30 20 82 4 3 4 3 4 2 1 3
## 150 29 29 100 4 3 4 2 4 4 2 2
## 151 28 19 72 3 1 2 1 2 1 1 1
## 152 26 29 105 4 3 4 2 4 4 3 1
## 153 30 22 86 4 2 4 1 4 2 3 1
## 154 24 14 69 3 1 2 1 2 1 2 1
## 155 29 20 80 4 2 4 2 4 2 1 1
## 156 23 20 73 4 1 4 1 4 2 2 1
## 157 19 19 70 4 2 4 2 4 1 1 1
## 158 29 18 79 2 1 4 1 4 1 2 2
## 159 27 17 80 3 2 4 1 4 1 2 2
## 160 29 23 92 3 2 4 2 4 3 2 3
## 161 29 19 89 2 2 4 2 4 2 2 3
## 162 27 19 85 4 2 4 2 3 2 1 2
## 163 22 13 68 4 1 2 1 1 1 1 2
## 164 21 25 82 4 1 1 1 1 1 2 1
## 165 25 23 84 3 2 4 2 3 1 1 1
## 166 27 24 89 2 2 4 1 4 2 2 1
## 167 20 17 65 3 1 2 1 1 2 1 1
## 168 31 21 95 3 2 3 2 4 3 2 1
## 169 28 22 89 4 2 3 2 4 2 2 1
## 170 21 18 66 3 1 1 1 1 2 1 1
## 171 28 21 93 4 3 4 2 3 2 2 2
## 172 27 25 95 2 1 3 1 2 1 2 2
## 173 19 21 74 4 3 1 1 1 1 1 3
## 174 29 25 97 4 2 4 1 2 1 1 1
## 175 18 19 67 3 3 1 2 1 1 1 1
## 176 22 23 76 2 2 1 1 1 2 1 1
## 177 22 22 72 3 2 4 1 4 2 2 1
## 178 23 25 81 3 3 4 2 4 3 2 1
## 179 20 23 76 4 3 3 1 3 2 1 1
## 180 24 21 81 3 3 4 2 4 2 2 1
## 181 24 19 70 4 3 4 1 3 2 1 2
## 182 24 22 81 2 1 1 1 1 1 2 2
## 183 21 21 64 4 3 1 1 1 1 1 3
## 184 23 20 75 2 1 4 1 4 1 1 2
## 185 20 27 83 3 2 4 1 4 1 2 2
## 186 32 25 110 3 3 4 3 2 3 1 3
## BIS9 BIS10 BIS11 BIS12 BIS13 BIS14 BIS15 BIS16 BIS17 BIS18 BIS19 BIS20
## 1 3 2 4 2 2 1 1 2 1 1 2 3
## 2 4 4 1 4 4 1 4 2 3 1 1 2
## 3 3 4 1 4 4 1 4 1 4 1 2 1
## 4 2 4 1 3 2 1 3 1 4 1 1 3
## 5 3 4 1 3 3 1 4 2 2 1 2 2
## 6 3 4 2 3 3 1 3 2 1 1 2 3
## 7 2 4 2 3 1 1 3 1 2 1 1 2
## 8 4 3 2 4 2 1 3 3 4 1 2 4
## 9 4 4 1 4 2 2 3 1 3 1 1 3
## 10 3 4 1 4 3 1 4 2 3 1 2 3
## 11 2 3 1 3 2 2 2 2 2 1 2 3
## 12 3 4 1 4 4 3 3 2 2 1 2 3
## 13 2 3 2 4 2 1 4 1 2 1 2 3
## 14 2 3 1 4 1 1 4 1 3 1 1 2
## 15 3 4 2 3 4 1 4 2 3 1 2 3
## 16 3 3 2 3 3 1 3 2 2 1 2 4
## 17 2 4 2 4 3 1 4 1 3 1 1 4
## 18 3 4 4 4 4 1 3 2 3 1 2 3
## 19 3 3 2 4 2 1 4 1 2 1 2 4
## 20 3 3 2 3 4 2 4 2 1 1 1 4
## 21 3 3 2 4 3 3 3 2 2 2 2 3
## 22 4 4 1 4 3 1 3 1 2 1 1 4
## 23 4 4 4 4 2 1 3 2 2 1 2 3
## 24 4 3 4 4 2 1 4 1 2 1 2 4
## 25 3 4 4 4 3 1 4 2 3 1 2 3
## 26 2 4 4 3 2 1 3 2 3 1 2 2
## 27 3 4 2 4 3 1 3 1 2 1 1 2
## 28 2 4 4 3 3 1 3 1 3 1 2 3
## 29 3 3 4 3 2 1 3 1 2 1 2 3
## 30 3 4 1 3 4 2 3 1 2 1 1 3
## 31 3 4 4 3 3 3 3 1 2 1 2 2
## 32 2 4 4 2 2 1 2 1 2 1 2 2
## 33 3 4 4 4 4 1 4 1 3 1 2 2
## 34 3 2 2 2 2 1 3 2 2 1 1 3
## 35 3 4 4 3 3 1 3 2 2 1 2 3
## 36 3 3 4 3 3 1 4 2 3 1 2 2
## 37 2 4 4 3 3 1 4 2 3 1 2 2
## 38 3 2 2 3 2 1 3 2 3 1 2 2
## 39 3 4 2 3 3 1 4 1 2 1 1 2
## 40 4 3 1 4 2 1 4 1 2 1 1 4
## 41 3 4 3 4 3 1 4 2 3 1 2 3
## 42 2 4 2 3 2 1 3 2 3 1 2 2
## 43 3 4 2 4 3 1 3 1 2 1 1 2
## 44 2 4 4 3 3 1 3 2 3 1 2 3
## 45 3 3 4 3 2 2 3 2 2 1 2 3
## 46 3 4 1 3 4 1 3 1 2 1 1 3
## 47 3 4 3 3 3 1 3 2 2 3 2 2
## 48 2 4 4 2 2 1 2 2 2 3 2 2
## 49 3 4 3 4 4 1 4 1 3 1 1 2
## 50 4 3 4 4 2 1 4 1 2 1 2 4
## 51 3 4 3 4 3 1 4 1 3 1 1 3
## 52 2 4 2 3 2 1 3 1 3 1 2 2
## 53 3 4 2 4 3 3 3 2 2 1 2 2
## 54 2 4 4 3 3 3 3 2 3 1 2 3
## 55 3 3 4 3 2 1 3 1 2 1 2 3
## 56 3 4 4 3 4 1 3 2 2 2 2 3
## 57 3 4 3 3 3 1 3 2 2 1 2 2
## 58 2 4 1 2 2 1 2 1 2 1 1 2
## 59 3 4 3 4 4 1 4 1 3 1 1 2
## 60 3 2 4 2 2 2 3 2 2 1 1 3
## 61 3 4 4 3 3 1 3 1 2 1 2 3
## 62 3 3 4 3 3 1 4 1 3 1 2 2
## 63 3 2 4 2 2 1 1 2 1 1 2 3
## 64 4 4 1 4 4 1 4 2 3 1 1 2
## 65 3 4 1 2 4 1 4 1 4 1 2 1
## 66 2 1 1 1 2 1 3 1 4 1 1 1
## 67 3 4 1 3 3 1 4 2 2 1 2 2
## 68 3 4 2 3 3 1 3 2 1 1 2 3
## 69 1 1 2 1 1 1 3 1 2 1 1 1
## 70 4 3 2 4 2 1 3 3 4 1 2 4
## 71 1 1 1 1 2 2 3 1 3 1 1 1
## 72 3 2 1 2 3 1 4 2 3 1 2 3
## 73 1 1 1 3 2 2 2 2 2 1 2 1
## 74 3 2 1 2 4 3 3 2 2 1 2 3
## 75 2 3 2 4 2 1 4 1 2 1 2 3
## 76 1 3 1 2 1 1 4 1 3 1 1 1
## 77 3 4 2 3 4 1 4 2 3 1 2 3
## 78 1 3 2 3 3 1 3 2 2 1 2 4
## 79 2 3 2 2 3 1 4 1 3 1 1 4
## 80 3 3 4 4 4 1 3 2 3 1 2 3
## 81 1 1 2 2 2 1 4 1 2 1 2 1
## 82 3 1 2 1 4 2 4 2 1 1 1 4
## 83 3 3 2 4 3 3 3 2 2 2 2 3
## 84 1 1 1 1 3 1 3 1 2 1 1 1
## 85 2 2 4 4 2 1 3 2 2 1 2 3
## 86 2 3 4 4 2 1 4 1 2 1 2 1
## 87 3 2 4 2 3 1 4 2 3 1 2 1
## 88 2 4 4 3 2 1 3 2 3 1 2 2
## 89 1 2 2 2 3 1 3 1 2 1 1 1
## 90 2 4 4 3 3 1 3 1 3 1 2 3
## 91 1 3 4 2 2 1 3 1 2 1 2 1
## 92 1 1 1 3 4 2 3 1 2 1 1 1
## 93 1 2 4 3 3 3 3 1 2 1 2 1
## 94 2 1 4 2 2 1 2 1 2 1 2 1
## 95 3 4 4 4 4 1 4 1 3 1 2 2
## 96 3 2 2 2 2 1 3 2 2 1 1 3
## 97 3 4 4 1 3 1 3 2 2 1 2 3
## 98 3 3 4 3 3 1 4 2 3 1 2 2
## 99 2 4 4 3 3 1 4 2 3 1 2 2
## 100 1 2 2 3 2 1 3 2 3 1 2 1
## 101 1 4 2 1 3 1 4 1 2 1 1 1
## 102 3 3 1 2 2 1 4 1 2 1 1 4
## 103 2 4 3 2 3 1 4 2 3 1 2 3
## 104 2 4 2 3 2 1 3 2 3 1 2 2
## 105 1 1 2 4 3 1 3 1 2 1 1 1
## 106 2 4 4 3 3 1 3 2 3 1 2 2
## 107 2 3 4 3 2 2 3 2 2 1 2 2
## 108 1 1 1 3 4 1 3 1 2 1 1 1
## 109 3 4 3 3 3 1 3 2 2 3 2 2
## 110 2 2 4 2 2 1 2 2 2 3 2 2
## 111 3 2 3 2 4 1 4 1 3 1 1 2
## 112 3 3 4 3 2 1 4 1 2 1 2 2
## 113 3 4 3 3 3 1 4 1 3 1 1 2
## 114 2 2 2 3 2 1 3 1 3 1 2 2
## 115 2 2 2 4 3 3 3 2 2 1 2 2
## 116 2 4 4 3 3 3 3 2 3 1 2 3
## 117 1 1 4 3 2 1 3 1 2 1 2 3
## 118 3 4 4 3 4 1 3 2 2 2 2 3
## 119 2 2 3 3 3 1 3 2 2 1 2 2
## 120 2 4 1 2 2 1 2 1 2 1 1 2
## 121 1 1 3 1 4 1 4 1 3 1 1 1
## 122 3 2 4 2 2 2 3 2 2 1 1 3
## 123 3 3 4 3 3 1 3 1 2 1 2 2
## 124 3 3 4 4 3 1 4 1 3 1 2 3
## 125 3 2 4 2 2 1 1 2 1 1 2 3
## 126 4 4 1 4 2 1 4 2 3 1 1 2
## 127 3 4 1 2 1 1 4 1 4 1 2 1
## 128 2 1 1 1 1 1 3 1 4 1 1 1
## 129 3 4 1 3 2 1 4 2 2 1 2 2
## 130 3 4 2 3 2 1 3 2 1 1 2 3
## 131 1 1 2 1 1 1 3 1 2 1 1 1
## 132 4 3 2 4 1 1 3 3 4 1 2 4
## 133 1 1 1 1 1 2 3 1 3 1 1 1
## 134 3 2 1 2 2 1 4 2 3 1 2 3
## 135 1 1 1 3 2 2 2 2 2 1 2 1
## 136 3 2 1 2 2 3 3 2 2 1 2 3
## 137 2 3 2 4 2 1 4 1 2 1 2 3
## 138 1 3 1 2 1 1 4 1 3 1 1 1
## 139 3 4 2 3 2 1 4 2 3 1 2 3
## 140 1 3 2 3 2 1 3 2 2 1 2 4
## 141 2 3 2 2 1 1 4 1 3 1 1 4
## 142 3 3 4 4 2 1 3 2 3 1 2 3
## 143 1 1 2 2 1 1 4 1 2 1 2 1
## 144 3 1 2 1 1 2 4 2 1 1 1 4
## 145 3 3 2 4 2 3 3 2 2 2 2 3
## 146 1 1 1 1 1 1 3 1 2 1 1 1
## 147 2 2 4 4 2 1 3 2 2 1 2 3
## 148 2 3 4 4 2 1 4 1 2 1 2 1
## 149 3 2 4 2 3 1 4 2 3 1 2 1
## 150 2 4 4 3 2 1 3 2 3 1 2 2
## 151 1 2 2 2 1 1 3 1 2 1 1 1
## 152 2 4 4 3 3 1 3 1 3 1 2 3
## 153 1 3 4 2 2 1 3 1 2 1 2 1
## 154 1 1 1 3 1 2 3 1 2 1 1 1
## 155 1 2 4 3 3 3 3 1 2 1 2 1
## 156 2 1 4 2 1 1 2 1 2 1 2 1
## 157 3 4 4 4 4 1 4 1 3 1 2 2
## 158 3 2 2 2 2 1 3 2 2 1 1 3
## 159 3 4 4 1 3 1 3 2 2 1 2 3
## 160 3 3 4 3 3 1 4 2 3 1 2 2
## 161 2 4 4 3 3 1 4 2 3 1 2 2
## 162 1 2 2 3 2 1 3 2 3 1 2 1
## 163 1 4 2 1 3 1 4 1 2 1 1 1
## 164 3 3 1 2 2 1 4 1 2 1 1 4
## 165 2 4 3 2 3 1 4 2 3 1 2 3
## 166 2 4 2 3 2 1 3 2 3 1 2 2
## 167 1 1 2 4 3 1 3 1 2 1 1 1
## 168 2 4 4 3 3 1 3 2 3 1 2 2
## 169 2 3 4 3 2 2 3 2 2 1 2 2
## 170 1 1 1 3 4 1 3 1 2 1 1 1
## 171 3 4 3 3 3 1 3 2 2 3 2 2
## 172 2 2 4 2 2 1 2 2 2 3 2 2
## 173 3 2 3 2 4 1 4 1 3 1 1 2
## 174 3 3 4 3 2 1 4 1 2 1 2 2
## 175 3 4 3 3 3 1 4 1 3 1 1 2
## 176 2 2 2 3 2 1 3 1 3 1 2 2
## 177 2 2 2 4 3 3 3 2 2 1 2 2
## 178 2 4 4 3 3 3 3 2 3 1 2 3
## 179 1 1 4 3 2 1 3 1 2 1 2 3
## 180 3 4 4 3 4 1 3 2 2 2 2 3
## 181 2 2 3 3 3 1 3 2 2 1 2 2
## 182 2 4 1 2 2 1 2 1 2 1 1 2
## 183 1 1 3 1 4 1 4 1 3 1 1 1
## 184 3 2 4 2 2 2 3 2 2 1 1 3
## 185 3 3 4 3 3 1 3 1 2 1 2 2
## 186 3 3 4 4 3 1 4 1 3 1 2 3
## BIS21 BIS22 BIS23 BIS24 BIS25 BIS26 BIS27 BIS28 BIS29 BIS30 BIS_attention
## 1 1 1 4 2 4 4 2 4 1 4 15
## 2 1 1 4 1 4 4 2 2 1 4 20
## 3 1 2 2 2 3 2 1 4 1 4 20
## 4 3 2 2 2 3 3 1 1 1 2 18
## 5 1 1 4 1 4 4 2 1 1 2 19
## 6 1 1 4 1 4 4 2 2 1 4 18
## 7 1 2 2 2 2 2 1 3 1 1 18
## 8 1 1 4 1 4 4 1 4 1 2 18
## 9 2 2 2 2 2 3 1 3 1 2 19
## 10 1 1 4 1 4 4 2 2 4 4 22
## 11 1 1 4 1 4 4 2 2 3 3 16
## 12 1 1 4 1 4 4 2 2 3 4 20
## 13 1 1 3 1 4 4 2 1 4 2 18
## 14 1 2 2 2 2 3 1 2 3 1 16
## 15 1 1 4 1 4 4 1 2 4 4 20
## 16 1 1 4 1 4 4 1 2 3 3 18
## 17 3 2 2 2 2 3 1 2 1 4 18
## 18 1 1 4 1 4 4 2 2 1 3 22
## 19 1 1 4 1 4 4 2 1 1 3 17
## 20 1 2 2 1 2 2 1 2 1 3 17
## 21 2 1 4 1 4 4 2 2 1 3 19
## 22 2 2 2 1 1 2 1 2 1 4 16
## 23 1 1 4 1 4 4 1 1 1 3 17
## 24 1 1 4 1 4 4 3 1 4 2 18
## 25 1 1 4 1 4 4 2 2 3 4 20
## 26 1 1 4 1 4 4 2 2 4 3 18
## 27 1 1 3 1 1 2 1 2 4 3 16
## 28 0 1 4 1 3 4 1 2 3 4 18
## 29 1 2 4 1 3 4 2 2 1 3 18
## 30 1 3 3 2 1 2 1 2 1 3 19
## 31 1 1 4 1 1 4 2 2 1 4 17
## 32 1 1 4 1 4 4 2 2 1 3 16
## 33 1 1 4 1 4 2 2 2 1 4 18
## 34 1 1 4 1 3 2 2 1 1 2 14
## 35 1 1 4 1 1 2 2 2 4 3 18
## 36 2 1 4 2 1 3 1 1 3 3 19
## 37 2 1 4 2 3 2 3 1 3 2 22
## 38 1 1 3 1 2 2 2 2 3 2 15
## 39 2 1 1 2 1 1 1 2 1 3 16
## 40 1 1 1 2 2 1 1 1 1 2 14
## 41 1 1 4 1 3 4 1 2 1 4 17
## 42 1 1 4 1 3 4 1 2 1 3 16
## 43 1 1 1 2 2 1 1 2 1 3 17
## 44 0 1 4 1 3 4 3 2 1 4 20
## 45 1 1 4 1 3 4 2 2 1 3 17
## 46 1 1 1 2 3 1 1 2 1 3 16
## 47 1 1 1 1 1 4 2 2 3 4 19
## 48 1 1 4 1 2 4 1 2 1 3 16
## 49 1 1 1 2 4 1 1 2 1 4 16
## 50 1 1 4 1 2 4 2 1 1 2 14
## 51 1 1 1 2 3 1 1 2 1 4 17
## 52 1 1 1 2 3 1 1 2 1 3 16
## 53 1 1 4 1 2 4 2 2 1 3 19
## 54 0 1 4 1 3 4 2 2 1 4 19
## 55 1 1 4 1 3 4 2 2 3 3 17
## 56 1 1 4 1 3 4 2 2 3 3 20
## 57 1 1 4 1 1 4 2 2 1 4 19
## 58 1 1 1 1 2 1 1 2 1 3 14
## 59 1 1 1 2 4 1 1 2 1 4 16
## 60 1 1 4 1 3 1 2 1 1 2 14
## 61 1 1 4 1 1 1 2 2 1 3 17
## 62 2 1 4 1 1 2 2 1 1 3 17
## 63 1 1 4 2 4 4 2 4 1 4 15
## 64 1 1 4 1 4 4 2 2 1 4 20
## 65 1 2 2 2 1 2 1 4 1 4 20
## 66 3 2 2 2 1 3 1 1 1 2 12
## 67 1 1 4 1 3 4 2 1 1 2 19
## 68 1 1 4 1 3 4 2 2 1 4 18
## 69 1 2 2 2 2 2 1 3 1 1 11
## 70 1 1 4 1 2 4 1 4 1 2 18
## 71 2 2 2 2 2 3 1 3 1 2 12
## 72 1 1 4 1 2 4 2 2 4 4 20
## 73 1 1 4 1 1 4 2 2 3 3 13
## 74 1 1 4 1 2 4 2 2 3 4 18
## 75 1 1 3 1 3 4 2 1 4 2 18
## 76 1 2 2 2 2 3 1 2 3 1 15
## 77 1 1 4 1 4 4 1 2 4 4 20
## 78 1 1 4 1 2 4 1 2 3 3 16
## 79 3 2 2 2 2 3 1 2 1 4 16
## 80 1 1 4 1 4 4 2 2 1 3 21
## 81 1 1 4 1 2 4 2 1 1 3 13
## 82 1 2 2 1 2 2 1 2 1 3 14
## 83 2 1 4 1 4 4 2 2 1 3 19
## 84 2 2 2 1 1 2 1 2 1 4 12
## 85 1 1 4 1 2 4 1 1 1 3 15
## 86 1 1 4 1 2 4 3 1 4 2 17
## 87 1 1 4 1 2 4 2 2 3 4 17
## 88 1 1 4 1 4 4 2 2 4 3 18
## 89 1 1 3 1 1 2 1 2 4 3 12
## 90 0 1 4 1 3 4 1 2 3 4 18
## 91 1 2 4 1 3 4 2 2 1 3 17
## 92 1 3 3 2 1 2 1 2 1 3 16
## 93 1 1 4 1 1 4 2 2 1 4 15
## 94 1 1 4 1 2 4 2 2 1 3 13
## 95 1 1 4 1 2 2 2 2 1 4 18
## 96 1 1 4 1 2 2 2 1 1 2 14
## 97 1 1 4 1 1 2 2 2 4 3 18
## 98 2 1 4 2 1 3 1 1 3 3 18
## 99 2 1 4 2 3 2 3 1 3 2 21
## 100 1 1 3 1 2 2 2 2 3 2 15
## 101 2 1 1 2 1 1 1 2 1 3 15
## 102 1 1 1 2 2 1 1 1 1 2 14
## 103 1 1 4 1 3 4 1 2 1 4 17
## 104 1 1 4 1 3 4 1 2 1 3 16
## 105 1 1 1 2 2 1 1 2 1 3 12
## 106 0 1 4 1 3 4 3 2 1 4 20
## 107 1 1 4 1 3 4 2 2 1 3 17
## 108 1 1 1 2 3 1 1 2 1 3 13
## 109 1 1 1 1 3 4 2 2 3 4 19
## 110 1 1 4 1 2 4 1 2 1 3 14
## 111 1 1 1 2 2 1 1 2 1 4 14
## 112 1 1 4 1 2 4 2 1 1 2 14
## 113 1 1 1 2 3 1 1 2 1 4 16
## 114 1 1 1 2 3 1 1 2 1 3 13
## 115 1 1 4 1 2 4 2 2 1 3 16
## 116 0 1 4 1 3 4 2 2 1 4 19
## 117 1 1 4 1 2 4 2 2 3 3 12
## 118 1 1 4 1 2 4 2 2 3 3 20
## 119 1 1 4 1 1 4 2 2 1 4 15
## 120 1 1 1 1 2 1 1 2 1 3 14
## 121 1 1 1 2 1 1 1 2 1 4 13
## 122 1 1 4 1 3 1 2 1 1 2 13
## 123 1 1 4 1 1 1 2 2 1 3 16
## 124 2 1 4 1 3 2 2 1 1 3 17
## 125 1 1 4 2 2 4 2 4 1 3 15
## 126 1 1 4 1 2 4 2 2 1 3 18
## 127 1 2 2 2 1 2 1 4 1 2 17
## 128 3 2 2 2 1 3 1 1 1 1 11
## 129 1 1 4 1 2 4 2 1 1 2 18
## 130 1 1 4 1 2 4 2 2 1 3 17
## 131 1 2 1 2 1 2 1 3 1 1 11
## 132 1 1 2 1 2 4 1 4 1 2 17
## 133 2 2 1 2 1 3 1 3 1 1 11
## 134 1 1 2 1 1 4 2 2 4 2 19
## 135 1 1 1 1 1 4 2 2 3 1 13
## 136 1 1 2 1 1 4 2 2 3 2 16
## 137 1 1 3 1 2 4 2 1 4 2 18
## 138 1 2 2 2 2 3 1 2 3 1 15
## 139 1 1 3 1 2 4 1 2 4 3 18
## 140 1 1 3 1 1 4 1 2 3 2 15
## 141 3 2 2 2 1 3 1 2 1 2 14
## 142 1 1 3 1 2 4 2 2 1 3 19
## 143 1 1 2 1 2 2 2 1 1 2 12
## 144 1 2 2 1 2 2 1 2 1 1 11
## 145 2 1 4 1 2 4 2 2 1 2 18
## 146 2 2 2 1 1 2 1 2 1 1 10
## 147 1 1 4 1 2 2 1 1 1 2 15
## 148 1 1 4 1 2 2 3 1 4 2 17
## 149 1 1 2 1 2 2 2 2 3 3 17
## 150 1 1 4 1 2 4 2 2 4 3 18
## 151 1 1 3 1 1 2 1 2 4 1 10
## 152 0 1 4 1 3 4 1 2 3 4 18
## 153 1 2 2 1 1 2 2 2 1 2 17
## 154 1 3 3 2 1 2 1 2 1 1 13
## 155 1 1 2 1 1 2 2 2 1 2 15
## 156 1 1 2 1 1 2 2 2 1 2 12
## 157 1 1 4 1 2 2 2 2 1 2 18
## 158 1 1 3 1 2 2 2 1 1 2 14
## 159 1 1 3 1 1 2 2 2 4 2 18
## 160 2 1 3 2 1 3 1 1 3 2 18
## 161 2 1 3 2 3 2 3 1 3 3 21
## 162 1 1 3 1 2 2 2 2 3 2 15
## 163 2 1 1 2 1 1 1 2 1 3 15
## 164 1 1 1 2 2 1 1 1 1 2 14
## 165 1 1 4 1 3 4 1 2 1 3 17
## 166 1 1 4 1 3 4 1 2 1 4 16
## 167 1 1 1 2 2 1 1 2 1 1 12
## 168 0 1 4 1 3 4 3 2 1 4 20
## 169 1 1 4 1 3 4 1 2 1 3 16
## 170 1 1 1 2 1 1 1 2 1 3 13
## 171 1 1 1 1 3 4 2 2 3 4 19
## 172 1 1 3 1 2 4 1 2 1 3 14
## 173 1 1 1 2 2 1 1 2 1 4 14
## 174 1 1 3 1 2 4 1 1 1 2 13
## 175 1 1 1 2 3 1 1 2 1 4 16
## 176 1 1 1 2 3 1 1 2 1 3 13
## 177 1 1 3 1 2 4 1 2 1 3 15
## 178 0 1 4 1 3 4 2 2 1 4 19
## 179 1 1 2 1 2 4 1 2 3 3 11
## 180 1 1 3 1 2 4 2 2 3 3 20
## 181 1 1 2 1 1 4 2 2 1 4 15
## 182 1 1 1 1 2 1 1 2 1 3 14
## 183 1 1 1 2 1 1 1 2 1 4 13
## 184 1 1 4 1 3 1 1 1 1 2 12
## 185 1 1 4 1 1 1 2 2 1 3 16
## 186 2 1 4 1 3 2 2 1 1 3 17
## BIS_action BIS_Noplan BIS_Total MMSE1 MMSE2 MMSE3 MMSE4 MMSE5 MMSE6 MMSE7
## 1 22 33 70 0 1 0 0 1 1 1
## 2 30 31 81 1 1 1 0 0 1 1
## 3 22 31 73 1 1 0 1 1 1 1
## 4 20 25 63 1 1 1 1 1 1 1
## 5 28 28 75 1 1 1 1 1 1 1
## 6 27 32 77 1 1 1 0 0 1 1
## 7 18 22 58 1 1 1 1 1 1 1
## 8 28 34 80 1 1 1 1 1 1 1
## 9 24 28 71 1 1 1 1 1 1 1
## 10 31 31 84 1 0 0 1 0 1 1
## 11 24 29 69 1 1 1 0 1 1 1
## 12 30 32 82 1 1 1 1 1 1 1
## 13 27 27 72 1 1 1 1 1 1 1
## 14 23 21 60 0 0 0 1 0 1 1
## 15 29 34 83 1 1 1 1 1 1 1
## 16 27 31 76 1 1 1 1 1 1 1
## 17 22 26 66 1 1 1 1 1 1 1
## 18 25 33 80 1 1 1 1 1 1 1
## 19 29 30 76 0 1 1 1 1 1 1
## 20 19 24 60 1 1 1 1 1 1 1
## 21 28 32 79 1 1 1 1 1 1 1
## 22 21 24 61 1 1 1 1 1 1 1
## 23 29 33 79 1 1 1 1 1 1 1
## 24 32 34 84 1 1 1 1 1 1 1
## 25 31 36 87 0 1 0 0 0 1 1
## 26 29 33 80 1 1 1 1 1 1 1
## 27 24 21 61 1 1 1 1 1 1 1
## 28 27 33 78 1 1 1 1 1 1 1
## 29 26 31 75 0 1 0 1 1 1 1
## 30 20 22 61 1 1 0 1 1 1 1
## 31 26 31 74 0 1 0 0 0 1 1
## 32 22 31 69 1 1 0 0 1 1 1
## 33 23 33 74 0 1 1 1 1 1 1
## 34 19 26 59 0 1 1 1 1 1 1
## 35 24 29 71 1 1 1 1 1 1 1
## 36 28 29 76 1 1 1 1 1 1 1
## 37 25 29 76 1 1 1 1 1 1 1
## 38 23 27 65 1 1 1 1 1 1 1
## 39 18 22 56 1 1 1 0 1 1 1
## 40 19 20 53 1 1 1 1 1 1 1
## 41 25 30 72 0 1 0 0 0 1 1
## 42 23 27 66 1 1 1 1 1 1 1
## 43 18 21 56 1 1 1 1 1 1 1
## 44 23 31 74 1 1 1 1 1 1 1
## 45 24 31 72 0 1 0 1 1 1 1
## 46 17 21 54 1 1 0 1 1 1 1
## 47 26 28 73 0 1 0 0 0 1 1
## 48 21 25 62 1 1 0 0 1 1 1
## 49 20 28 64 0 1 1 1 1 1 1
## 50 26 27 67 1 1 1 1 1 1 1
## 51 20 25 62 0 1 0 0 0 1 1
## 52 17 21 54 1 1 1 1 1 1 1
## 53 25 28 72 1 1 1 1 1 1 1
## 54 24 34 77 1 1 1 1 1 1 1
## 55 27 29 73 0 1 0 1 1 1 1
## 56 28 30 78 1 1 0 1 1 1 1
## 57 25 28 72 0 1 0 0 0 1 1
## 58 13 19 46 1 1 0 0 1 1 1
## 59 20 28 64 0 1 1 1 1 1 1
## 60 18 29 61 0 1 1 1 1 1 1
## 61 20 29 66 1 1 1 1 1 1 1
## 62 26 27 70 1 1 1 1 1 1 1
## 63 22 33 70 0 1 0 0 1 1 1
## 64 30 31 81 1 1 1 0 0 1 1
## 65 18 29 67 1 1 0 1 1 1 1
## 66 18 21 51 1 1 1 1 1 1 1
## 67 28 27 74 1 1 1 1 1 1 1
## 68 27 31 76 1 1 1 0 0 1 1
## 69 14 21 46 1 1 1 1 1 1 1
## 70 28 32 78 1 1 1 1 1 1 1
## 71 16 26 54 1 1 1 1 1 1 1
## 72 27 29 76 1 0 0 1 0 1 1
## 73 22 24 59 1 1 1 0 1 1 1
## 74 25 30 73 1 1 1 1 1 1 1
## 75 27 26 71 1 1 1 1 1 1 1
## 76 19 20 54 0 0 0 1 0 1 1
## 77 29 34 83 1 1 1 1 1 1 1
## 78 25 29 70 1 1 1 1 1 1 1
## 79 20 26 62 1 1 1 1 1 1 1
## 80 25 33 79 1 1 1 1 1 1 1
## 81 23 25 61 0 1 1 1 1 1 1
## 82 17 24 55 1 1 1 1 1 1 1
## 83 28 32 79 1 1 1 1 1 1 1
## 84 15 21 48 1 1 1 1 1 1 1
## 85 27 31 73 1 1 1 1 1 1 1
## 86 30 29 76 1 1 1 1 1 1 1
## 87 27 32 76 0 1 0 0 0 1 1
## 88 29 33 80 1 1 1 1 1 1 1
## 89 19 20 51 1 1 1 1 1 1 1
## 90 27 33 78 1 1 1 1 1 1 1
## 91 21 29 67 0 1 0 1 1 1 1
## 92 17 20 53 1 1 0 1 1 1 1
## 93 22 30 67 0 1 0 0 0 1 1
## 94 20 28 61 1 1 0 0 1 1 1
## 95 23 31 72 0 1 1 1 1 1 1
## 96 19 25 58 0 1 1 1 1 1 1
## 97 22 29 69 1 1 1 1 1 1 1
## 98 28 29 75 1 1 1 1 1 1 1
## 99 25 29 75 1 1 1 1 1 1 1
## 100 21 26 62 1 1 1 1 1 1 1
## 101 14 21 50 1 1 1 0 1 1 1
## 102 16 20 50 1 1 1 1 1 1 1
## 103 22 30 69 0 1 0 0 0 1 1
## 104 23 27 66 1 1 1 1 1 1 1
## 105 16 20 48 1 1 1 1 1 1 1
## 106 23 30 73 1 1 1 1 1 1 1
## 107 23 30 70 0 1 0 1 1 1 1
## 108 15 19 47 1 1 0 1 1 1 1
## 109 26 30 75 0 1 0 0 0 1 1
## 110 21 25 60 1 1 0 0 1 1 1
## 111 18 26 58 0 1 1 1 1 1 1
## 112 24 25 63 1 1 1 1 1 1 1
## 113 19 24 59 0 1 0 0 0 1 1
## 114 17 21 51 1 1 1 1 1 1 1
## 115 24 28 68 1 1 1 1 1 1 1
## 116 24 34 77 1 1 1 1 1 1 1
## 117 25 28 65 0 1 0 1 1 1 1
## 118 28 29 77 1 1 0 1 1 1 1
## 119 24 28 67 0 1 0 0 0 1 1
## 120 13 19 46 1 1 0 0 1 1 1
## 121 15 24 52 0 1 1 1 1 1 1
## 122 18 29 60 0 1 1 1 1 1 1
## 123 20 28 64 1 1 1 1 1 1 1
## 124 27 30 74 1 1 1 1 1 1 1
## 125 22 30 67 0 1 0 0 1 1 1
## 126 30 28 76 1 1 1 0 0 1 1
## 127 18 27 62 1 1 0 1 1 1 1
## 128 18 20 49 1 1 1 1 1 1 1
## 129 28 26 72 1 1 1 1 1 1 1
## 130 27 29 73 1 1 1 0 0 1 1
## 131 13 20 44 1 1 1 1 1 1 1
## 132 26 32 75 1 1 1 1 1 1 1
## 133 15 24 50 1 1 1 1 1 1 1
## 134 25 26 70 1 0 0 1 0 1 1
## 135 19 22 54 1 1 1 0 1 1 1
## 136 23 27 66 1 1 1 1 1 1 1
## 137 27 25 70 1 1 1 1 1 1 1
## 138 19 20 54 0 0 0 1 0 1 1
## 139 28 31 77 1 1 1 1 1 1 1
## 140 24 27 66 1 1 1 1 1 1 1
## 141 20 23 57 1 1 1 1 1 1 1
## 142 24 31 74 1 1 1 1 1 1 1
## 143 19 24 55 0 1 1 1 1 1 1
## 144 17 22 50 1 1 1 1 1 1 1
## 145 28 29 75 1 1 1 1 1 1 1
## 146 15 18 43 1 1 1 1 1 1 1
## 147 25 30 70 1 1 1 1 1 1 1
## 148 28 29 74 1 1 1 1 1 1 1
## 149 23 31 71 0 1 0 0 0 1 1
## 150 29 31 78 1 1 1 1 1 1 1
## 151 19 18 47 1 1 1 1 1 1 1
## 152 27 33 78 1 1 1 1 1 1 1
## 153 17 26 60 0 1 0 1 1 1 1
## 154 17 18 48 1 1 0 1 1 1 1
## 155 18 28 61 0 1 0 0 0 1 1
## 156 16 26 54 1 1 0 0 1 1 1
## 157 23 29 70 0 1 1 1 1 1 1
## 158 18 25 57 0 1 1 1 1 1 1
## 159 21 28 67 1 1 1 1 1 1 1
## 160 27 28 73 1 1 1 1 1 1 1
## 161 24 30 75 1 1 1 1 1 1 1
## 162 21 26 62 1 1 1 1 1 1 1
## 163 14 21 50 1 1 1 0 1 1 1
## 164 16 20 50 1 1 1 1 1 1 1
## 165 22 29 68 0 1 0 0 0 1 1
## 166 23 28 67 1 1 1 1 1 1 1
## 167 16 18 46 1 1 1 1 1 1 1
## 168 23 30 73 1 1 1 1 1 1 1
## 169 23 30 69 0 1 0 1 1 1 1
## 170 15 17 45 1 1 0 1 1 1 1
## 171 26 30 75 0 1 0 0 0 1 1
## 172 20 25 59 1 1 0 0 1 1 1
## 173 18 26 58 0 1 1 1 1 1 1
## 174 23 25 61 1 1 1 1 1 1 1
## 175 19 24 59 0 1 0 0 0 1 1
## 176 17 21 51 1 1 1 1 1 1 1
## 177 23 28 66 1 1 1 1 1 1 1
## 178 24 34 77 1 1 1 1 1 1 1
## 179 23 28 62 0 1 0 1 1 1 1
## 180 27 29 76 1 1 0 1 1 1 1
## 181 22 28 65 0 1 0 0 0 1 1
## 182 13 19 46 1 1 0 0 1 1 1
## 183 15 24 52 0 1 1 1 1 1 1
## 184 18 29 59 0 1 1 1 1 1 1
## 185 20 28 64 1 1 1 1 1 1 1
## 186 27 30 74 1 1 1 1 1 1 1
## MMSE8 MMSE9 MMSE10 MMSE11_1 MMSE11_2 MMSE11_3 MMSE12_1 MMSE12_2 MMSE12_3
## 1 1 1 1 1 1 1 1 1 1
## 2 1 0 1 1 1 1 0 0 0
## 3 1 1 1 1 1 1 1 0 0
## 4 1 1 1 1 1 1 1 1 1
## 5 1 1 1 1 1 1 1 0 0
## 6 1 1 1 1 1 1 1 1 0
## 7 1 1 1 1 1 1 1 1 1
## 8 1 1 1 1 1 1 1 1 1
## 9 1 1 1 1 1 1 1 1 1
## 10 1 1 1 1 1 1 1 1 1
## 11 0 1 1 1 1 1 1 1 1
## 12 0 1 1 1 1 1 1 1 1
## 13 1 1 1 1 1 1 1 1 1
## 14 1 1 1 1 1 1 1 1 0
## 15 1 1 1 1 1 1 1 0 0
## 16 1 1 1 1 1 1 1 1 1
## 17 1 1 1 1 1 1 1 1 1
## 18 1 1 1 1 1 1 1 1 0
## 19 0 1 1 1 1 1 1 0 0
## 20 1 1 1 1 1 1 1 1 1
## 21 1 1 1 1 1 1 1 1 1
## 22 1 1 1 1 1 1 1 1 0
## 23 1 1 1 1 1 1 1 1 1
## 24 1 1 1 1 1 1 1 1 1
## 25 1 1 1 1 1 1 1 0 0
## 26 1 1 1 1 1 1 1 1 1
## 27 1 1 1 1 1 1 1 0 0
## 28 1 1 1 1 1 1 1 1 1
## 29 1 1 1 1 1 1 1 0 0
## 30 1 1 1 1 1 1 1 1 1
## 31 1 1 1 1 1 1 1 1 1
## 32 1 1 1 1 1 1 1 1 1
## 33 1 1 1 1 1 1 1 1 1
## 34 1 1 1 1 1 1 0 0 1
## 35 1 1 1 1 1 1 1 1 1
## 36 1 1 1 1 1 1 1 1 1
## 37 1 1 1 1 1 1 1 1 1
## 38 1 1 1 1 1 1 1 1 1
## 39 1 1 1 1 1 1 1 1 1
## 40 1 1 1 1 1 1 1 1 1
## 41 1 1 1 1 1 1 1 1 1
## 42 1 1 1 1 1 1 1 1 1
## 43 1 1 1 1 1 1 1 0 1
## 44 1 1 1 1 1 1 1 1 1
## 45 1 1 1 1 1 1 1 1 1
## 46 1 1 1 1 1 1 1 1 1
## 47 1 1 1 1 1 1 1 1 1
## 48 1 1 1 1 1 1 1 1 1
## 49 1 1 1 1 1 1 1 1 1
## 50 1 1 1 1 1 1 1 1 1
## 51 1 1 1 1 1 1 1 1 1
## 52 1 1 1 1 1 1 1 1 1
## 53 1 1 1 1 1 1 1 0 0
## 54 1 1 1 1 1 1 1 1 1
## 55 1 1 1 1 1 1 1 1 1
## 56 1 1 1 1 1 1 1 1 1
## 57 1 1 1 1 1 1 1 1 1
## 58 1 1 1 1 1 1 1 1 1
## 59 1 1 1 1 1 1 1 1 1
## 60 1 1 1 1 1 1 0 0 1
## 61 1 1 1 1 1 1 1 1 1
## 62 1 1 1 1 1 1 1 1 1
## 63 1 1 1 1 1 1 1 1 1
## 64 1 0 1 1 1 1 0 0 0
## 65 1 1 1 1 1 1 1 0 0
## 66 1 1 1 1 1 1 1 1 1
## 67 1 1 1 1 1 1 1 0 0
## 68 1 1 1 1 1 1 1 1 0
## 69 1 1 1 1 1 1 1 1 1
## 70 1 1 1 1 1 1 1 1 1
## 71 1 1 1 1 1 1 1 1 1
## 72 1 1 1 1 1 1 1 1 1
## 73 0 1 1 1 1 1 1 1 1
## 74 0 1 1 1 1 1 1 1 1
## 75 1 1 1 1 1 1 1 1 1
## 76 1 1 1 1 1 1 1 1 0
## 77 1 1 1 1 1 1 1 0 0
## 78 1 1 1 1 1 1 1 1 1
## 79 1 1 1 1 1 1 1 1 1
## 80 1 1 1 1 1 1 1 1 0
## 81 0 1 1 1 1 1 1 1 1
## 82 1 1 1 1 1 1 1 1 1
## 83 1 1 1 1 1 1 1 1 1
## 84 1 1 1 1 1 1 1 1 0
## 85 1 1 1 1 1 1 1 1 1
## 86 1 1 1 1 1 1 1 1 1
## 87 1 1 1 1 1 1 1 0 0
## 88 1 1 1 1 1 1 1 1 1
## 89 1 1 1 1 1 1 1 0 0
## 90 1 1 1 1 1 1 1 1 1
## 91 1 1 1 1 1 1 1 0 0
## 92 1 1 1 1 1 1 1 1 1
## 93 1 1 1 1 1 1 1 1 1
## 94 1 1 1 1 1 1 1 1 1
## 95 1 1 1 1 1 1 1 1 1
## 96 1 1 1 1 1 1 0 0 1
## 97 1 1 1 1 1 1 1 1 1
## 98 1 1 1 1 1 1 1 1 1
## 99 1 1 1 1 1 1 1 1 1
## 100 1 1 1 1 1 1 1 1 1
## 101 1 1 1 1 1 1 1 1 1
## 102 1 1 1 1 1 1 1 1 1
## 103 1 1 1 1 1 1 1 1 1
## 104 1 1 1 1 1 1 1 1 1
## 105 1 1 1 1 1 1 1 0 1
## 106 1 1 1 1 1 1 1 1 1
## 107 1 1 1 1 1 1 1 1 1
## 108 1 1 1 1 1 1 1 1 1
## 109 1 1 1 1 1 1 1 1 1
## 110 1 1 1 1 1 1 1 1 1
## 111 1 1 1 1 1 1 1 1 1
## 112 1 1 1 1 1 1 1 1 1
## 113 1 1 1 1 1 1 1 1 1
## 114 1 1 1 1 1 1 1 1 1
## 115 1 1 1 1 1 1 1 0 0
## 116 1 1 1 1 1 1 1 1 1
## 117 1 1 1 1 1 1 1 1 1
## 118 1 1 1 1 1 1 1 1 1
## 119 1 1 1 1 1 1 1 1 1
## 120 1 1 1 1 1 1 1 1 1
## 121 1 1 1 1 1 1 1 1 1
## 122 1 1 1 1 1 1 0 0 1
## 123 1 1 1 1 1 1 1 1 1
## 124 1 1 1 1 1 1 1 1 1
## 125 1 1 1 1 1 1 1 1 1
## 126 1 0 1 1 1 1 0 0 0
## 127 1 1 1 1 1 1 1 0 0
## 128 1 1 1 1 1 1 1 1 1
## 129 1 1 1 1 1 1 1 0 0
## 130 1 1 1 1 1 1 1 1 0
## 131 1 1 1 1 1 1 1 1 1
## 132 1 1 1 1 1 1 1 1 1
## 133 1 1 1 1 1 1 1 1 1
## 134 1 1 1 1 1 1 1 1 1
## 135 0 1 1 1 1 1 1 1 1
## 136 0 1 1 1 1 1 1 1 1
## 137 1 1 1 1 1 1 1 1 1
## 138 1 1 1 1 1 1 1 1 0
## 139 1 1 1 1 1 1 1 0 0
## 140 1 1 1 1 1 1 1 1 1
## 141 1 1 1 1 1 1 1 1 1
## 142 1 1 1 1 1 1 1 1 0
## 143 0 1 1 1 1 1 1 1 1
## 144 1 1 1 1 1 1 1 1 1
## 145 1 1 1 1 1 1 1 1 1
## 146 1 1 1 1 1 1 1 1 0
## 147 1 1 1 1 1 1 1 1 1
## 148 1 1 1 1 1 1 1 1 1
## 149 1 1 1 1 1 1 1 0 1
## 150 1 1 1 1 1 1 1 1 1
## 151 1 1 1 1 1 1 1 0 1
## 152 1 1 1 1 1 1 1 1 1
## 153 1 1 1 1 1 1 1 0 0
## 154 1 1 1 1 1 1 1 1 1
## 155 1 1 1 1 1 1 1 1 1
## 156 1 1 1 1 1 1 1 1 1
## 157 1 1 1 1 1 1 1 1 1
## 158 1 1 1 1 1 1 0 0 1
## 159 1 1 1 1 1 1 1 1 1
## 160 1 1 1 1 1 1 1 1 1
## 161 1 1 1 1 1 1 1 1 1
## 162 1 1 1 1 1 1 1 1 1
## 163 1 1 1 1 1 1 1 1 1
## 164 1 1 1 1 1 1 1 1 1
## 165 1 1 1 1 1 1 1 1 1
## 166 1 1 1 1 1 1 1 1 1
## 167 1 1 1 1 1 1 1 0 1
## 168 1 1 1 1 1 1 1 1 1
## 169 1 1 1 1 1 1 1 1 1
## 170 1 1 1 1 1 1 1 1 1
## 171 1 1 1 1 1 1 1 1 1
## 172 1 1 1 1 1 1 1 1 1
## 173 1 1 1 1 1 1 1 1 1
## 174 1 1 1 1 1 1 1 1 1
## 175 1 1 1 1 1 1 1 1 1
## 176 1 1 1 1 1 1 1 1 1
## 177 1 1 1 1 1 1 1 0 0
## 178 1 1 1 1 1 1 1 1 1
## 179 1 1 1 1 1 1 1 1 1
## 180 1 1 1 1 1 1 1 1 1
## 181 1 1 1 1 1 1 1 1 1
## 182 1 1 1 1 1 1 1 1 1
## 183 1 1 1 1 1 1 1 1 1
## 184 1 1 1 1 1 1 0 0 1
## 185 1 1 1 1 1 1 1 1 1
## 186 1 1 1 1 1 1 1 1 1
## MMSE12_4 MMSE12_5 MMSE13 MMSE14 MMSE15 MMSE16 MMSE17 MMSE18 MMSE19 MMSE20_1
## 1 1 1 1 1 1 1 1 1 1 1
## 2 0 0 0 0 0 1 0 0 1 1
## 3 1 0 0 0 0 1 1 0 1 1
## 4 1 1 1 0 1 1 1 1 1 1
## 5 0 0 1 0 0 1 0 0 1 1
## 6 0 1 0 0 0 1 1 1 1 1
## 7 1 1 1 1 1 1 0 1 1 1
## 8 1 1 1 1 1 1 1 1 1 1
## 9 1 1 1 1 1 1 1 1 1 1
## 10 1 1 1 1 1 1 1 1 1 1
## 11 1 1 1 0 1 1 1 1 1 1
## 12 1 1 1 0 1 1 1 1 1 1
## 13 1 0 1 1 1 1 1 1 1 1
## 14 0 0 1 1 1 1 0 0 0 0
## 15 0 0 1 1 1 1 0 0 1 1
## 16 1 1 1 1 1 1 1 1 1 1
## 17 1 1 1 1 1 1 1 1 1 1
## 18 1 0 1 1 1 1 1 1 1 1
## 19 0 0 1 1 1 1 1 1 1 1
## 20 1 1 1 1 1 1 1 1 1 1
## 21 1 1 1 1 1 1 0 0 1 1
## 22 1 1 1 1 1 1 1 1 1 1
## 23 1 1 1 1 1 1 1 1 1 1
## 24 1 1 1 1 1 1 1 1 0 0
## 25 0 0 1 1 1 1 0 0 1 1
## 26 1 1 1 1 1 1 0 0 0 0
## 27 0 0 0 0 0 1 1 1 1 1
## 28 1 1 1 1 1 1 0 0 0 0
## 29 0 0 1 1 1 1 0 0 1 0
## 30 1 1 1 1 1 0 0 0 0 0
## 31 1 1 1 1 0 1 0 0 1 1
## 32 1 1 1 1 1 1 1 1 1 1
## 33 1 1 1 1 1 1 1 1 1 1
## 34 0 0 1 0 1 0 0 0 1 1
## 35 1 1 1 1 1 1 1 1 1 1
## 36 1 1 0 0 1 0 0 0 1 1
## 37 1 1 1 1 1 1 0 0 1 1
## 38 1 0 1 1 1 1 1 1 1 1
## 39 1 1 1 1 1 1 1 1 1 1
## 40 1 1 1 1 1 1 1 1 0 1
## 41 0 0 1 1 1 1 0 0 1 1
## 42 1 1 1 1 1 0 0 0 1 1
## 43 1 1 1 1 1 1 1 1 1 1
## 44 1 1 1 1 1 0 1 1 1 1
## 45 1 0 1 1 1 0 1 1 1 1
## 46 1 1 1 1 1 1 1 1 1 1
## 47 1 1 1 1 0 1 0 1 1 1
## 48 1 1 1 1 1 1 1 1 1 1
## 49 1 1 0 0 1 1 1 1 1 1
## 50 1 1 1 1 0 0 1 1 0 1
## 51 0 0 1 1 1 1 1 1 1 1
## 52 1 1 1 1 1 1 1 1 1 1
## 53 0 0 1 1 1 1 1 1 1 1
## 54 1 1 1 1 1 1 1 1 1 1
## 55 0 0 1 1 1 1 1 1 1 1
## 56 1 1 1 1 1 1 1 0 1 1
## 57 1 1 1 1 0 1 1 1 1 1
## 58 1 1 1 1 1 1 1 1 1 1
## 59 1 1 0 0 1 1 1 1 1 1
## 60 0 0 1 0 1 1 1 1 1 0
## 61 1 1 1 1 1 1 1 0 1 1
## 62 1 1 0 0 1 1 1 0 1 1
## 63 1 1 1 1 1 1 1 1 1 1
## 64 0 0 0 0 0 1 0 0 1 1
## 65 1 0 0 0 0 1 1 0 1 1
## 66 1 1 1 0 1 1 1 1 1 1
## 67 0 0 1 0 0 1 0 0 1 1
## 68 0 1 0 0 0 1 1 1 1 1
## 69 1 1 1 1 1 1 1 1 1 1
## 70 1 1 1 1 1 1 1 1 1 1
## 71 1 1 1 1 1 1 1 1 1 1
## 72 1 1 1 1 1 1 1 1 1 1
## 73 1 1 1 0 1 1 1 1 1 1
## 74 1 1 1 0 1 1 1 1 1 1
## 75 1 0 1 1 1 1 1 1 1 1
## 76 0 0 1 1 1 1 1 1 1 1
## 77 0 0 1 1 1 1 0 0 1 1
## 78 1 1 1 1 1 1 1 1 1 1
## 79 1 1 1 1 1 1 1 1 1 1
## 80 1 0 1 1 1 1 1 1 1 1
## 81 1 1 1 1 1 1 1 1 1 1
## 82 1 1 1 1 1 1 1 1 1 1
## 83 1 1 1 1 1 1 0 0 1 1
## 84 1 1 1 1 1 1 1 1 1 1
## 85 1 1 1 1 1 1 1 1 1 1
## 86 1 1 1 1 1 1 1 1 0 0
## 87 0 0 1 1 1 1 1 1 1 1
## 88 1 1 1 1 1 1 0 0 0 0
## 89 0 0 0 0 0 1 1 1 1 1
## 90 1 1 1 1 1 1 0 0 0 0
## 91 0 0 1 1 1 1 1 1 1 1
## 92 1 1 1 1 1 1 1 1 1 1
## 93 1 1 1 1 0 1 0 0 1 1
## 94 1 1 1 1 1 1 1 1 1 1
## 95 1 1 1 1 1 1 1 1 1 1
## 96 0 0 1 0 1 0 0 0 1 1
## 97 1 1 1 1 1 1 1 1 1 1
## 98 1 1 0 0 1 0 0 0 1 1
## 99 1 1 1 1 1 1 0 0 1 1
## 100 1 0 1 1 1 1 1 1 1 1
## 101 1 1 1 1 1 1 1 1 1 1
## 102 1 1 1 1 1 1 1 1 1 1
## 103 0 0 1 1 1 1 0 0 1 1
## 104 1 1 1 1 1 0 1 1 1 1
## 105 1 1 1 1 1 1 1 1 1 1
## 106 1 1 1 1 1 0 1 1 1 1
## 107 1 0 1 1 1 0 1 1 1 1
## 108 1 1 1 1 1 1 1 1 1 1
## 109 1 1 1 1 0 1 0 1 1 1
## 110 1 1 1 1 1 1 1 1 1 1
## 111 1 1 0 0 1 1 1 1 1 1
## 112 1 1 1 1 0 0 1 1 0 1
## 113 0 0 1 1 1 1 1 1 1 1
## 114 1 1 1 1 1 1 1 1 1 1
## 115 0 0 1 1 1 1 1 1 1 1
## 116 1 1 1 1 1 1 1 1 1 1
## 117 0 0 1 1 1 1 1 1 1 1
## 118 1 1 1 1 1 1 1 0 1 1
## 119 1 1 1 1 0 1 1 1 1 1
## 120 1 1 1 1 1 1 1 1 1 1
## 121 1 1 0 0 1 1 1 1 1 1
## 122 0 0 1 0 1 1 1 1 1 0
## 123 1 1 1 1 1 1 1 0 1 1
## 124 1 1 0 0 1 1 1 0 1 1
## 125 1 1 1 1 1 1 1 1 1 1
## 126 1 1 1 1 0 1 1 1 1 1
## 127 1 0 0 0 1 1 1 0 1 1
## 128 1 1 1 0 1 1 1 1 1 1
## 129 0 0 1 0 0 1 0 0 1 1
## 130 0 1 0 0 0 1 1 1 1 1
## 131 1 1 1 1 1 1 1 1 1 1
## 132 1 1 1 1 1 1 1 1 1 1
## 133 1 1 1 1 1 1 1 1 1 1
## 134 1 1 1 1 1 1 1 1 1 1
## 135 1 1 1 0 1 1 1 1 1 1
## 136 1 1 1 0 1 1 1 1 1 1
## 137 1 0 1 1 1 1 1 1 1 1
## 138 1 1 1 1 1 1 1 1 1 1
## 139 0 0 1 1 1 1 1 1 1 1
## 140 1 1 1 1 1 1 1 1 1 1
## 141 1 1 1 1 1 1 1 1 1 1
## 142 1 1 1 1 1 1 1 1 1 1
## 143 1 1 1 1 1 1 1 1 1 1
## 144 1 1 1 1 1 1 1 1 1 1
## 145 1 1 1 1 1 1 0 0 1 1
## 146 1 1 1 1 1 1 1 1 1 1
## 147 1 1 1 1 1 1 1 1 1 1
## 148 1 1 1 1 1 1 1 1 0 1
## 149 1 1 1 1 1 1 1 1 1 1
## 150 1 1 1 1 1 1 0 0 0 0
## 151 1 0 1 1 1 1 1 1 1 1
## 152 1 1 1 1 1 1 0 0 0 0
## 153 0 0 1 1 1 1 1 1 1 1
## 154 1 1 1 1 1 1 1 0 1 1
## 155 1 1 1 1 0 1 1 1 1 1
## 156 1 1 1 1 1 1 1 1 1 1
## 157 1 0 0 0 1 1 0 1 0 1
## 158 0 0 1 0 1 0 0 1 1 1
## 159 1 1 1 1 1 1 1 1 1 1
## 160 1 1 0 0 1 0 0 0 1 0
## 161 1 1 1 1 1 1 0 0 1 1
## 162 1 0 1 1 1 1 1 1 1 1
## 163 1 1 1 1 1 1 1 1 1 1
## 164 1 0 1 0 1 0 1 1 0 1
## 165 0 0 1 1 1 1 0 0 1 1
## 166 1 1 1 1 1 0 1 1 0 0
## 167 1 1 1 1 1 1 1 1 1 1
## 168 1 1 1 1 1 0 1 0 0 0
## 169 1 0 1 0 1 0 1 0 1 0
## 170 1 0 1 0 1 1 0 0 1 0
## 171 1 1 1 1 0 1 0 1 1 0
## 172 1 1 1 1 1 1 1 1 1 1
## 173 1 1 0 0 1 1 1 1 1 1
## 174 1 1 1 1 0 0 1 0 0 1
## 175 0 0 1 1 1 1 1 1 1 1
## 176 1 1 1 1 1 1 1 1 1 1
## 177 0 0 1 1 1 1 1 1 1 1
## 178 1 1 1 0 1 1 0 1 1 0
## 179 0 0 1 1 1 1 1 1 1 1
## 180 1 1 1 1 0 1 1 0 1 0
## 181 1 1 1 1 0 1 1 1 1 1
## 182 1 1 1 1 1 1 1 1 1 1
## 183 1 1 0 0 1 1 1 1 1 1
## 184 0 0 1 0 1 1 1 1 1 1
## 185 1 1 1 1 1 1 1 0 1 1
## 186 1 0 0 0 1 0 1 0 1 0
## MMSE20_2 MMSE20_3 MMSE21 MMSE22 MMSE_Total
## 1 1 1 1 1 27
## 2 1 1 0 0 15
## 3 1 1 1 0 21
## 4 1 1 1 0 28
## 5 1 1 0 1 21
## 6 1 1 0 1 22
## 7 1 1 1 1 29
## 8 1 1 0 0 28
## 9 1 1 1 0 29
## 10 1 1 1 1 27
## 11 1 1 0 1 26
## 12 1 1 1 1 28
## 13 1 1 1 1 29
## 14 0 0 0 0 15
## 15 1 1 0 0 22
## 16 1 1 1 1 30
## 17 1 1 1 1 30
## 18 1 1 0 0 26
## 19 1 1 1 1 24
## 20 1 1 1 1 30
## 21 1 1 0 1 27
## 22 1 1 1 0 28
## 23 1 1 1 1 30
## 24 0 0 0 0 24
## 25 1 1 0 0 18
## 26 0 0 0 1 23
## 27 1 1 1 1 23
## 28 0 0 0 0 22
## 29 0 0 1 1 19
## 30 0 0 0 0 20
## 31 1 0 0 0 20
## 32 1 1 1 1 28
## 33 1 1 0 1 28
## 34 1 1 0 0 19
## 35 1 1 0 1 29
## 36 1 1 1 1 25
## 37 1 1 1 1 28
## 38 1 1 1 1 29
## 39 1 1 1 1 29
## 40 0 1 1 1 28
## 41 1 1 1 0 21
## 42 0 0 1 1 25
## 43 1 1 1 1 29
## 44 1 1 1 1 29
## 45 1 1 1 1 26
## 46 1 1 1 1 29
## 47 1 1 1 1 24
## 48 1 1 1 1 28
## 49 1 1 1 1 27
## 50 0 1 1 1 26
## 51 1 1 1 1 24
## 52 1 0 1 1 29
## 53 1 1 1 1 26
## 54 1 1 1 0 29
## 55 1 1 1 1 26
## 56 1 1 1 1 28
## 57 1 1 1 1 25
## 58 1 1 1 1 28
## 59 1 1 1 1 27
## 60 0 1 1 0 21
## 61 1 1 1 1 29
## 62 1 1 1 1 27
## 63 1 1 1 1 27
## 64 1 1 0 0 15
## 65 1 1 1 0 21
## 66 1 1 1 0 28
## 67 1 1 0 1 21
## 68 1 1 0 1 22
## 69 1 1 1 1 30
## 70 1 1 0 0 28
## 71 1 1 1 1 30
## 72 1 1 1 1 27
## 73 1 1 0 1 26
## 74 1 1 1 1 28
## 75 1 1 1 1 29
## 76 1 1 1 1 23
## 77 1 1 0 0 22
## 78 1 1 1 1 30
## 79 1 1 1 1 30
## 80 1 1 0 0 26
## 81 1 1 1 1 28
## 82 1 1 1 1 30
## 83 1 1 0 1 27
## 84 1 1 1 0 28
## 85 1 1 1 1 30
## 86 0 0 0 0 24
## 87 1 1 0 0 20
## 88 0 0 0 1 23
## 89 1 1 1 1 23
## 90 0 0 0 0 22
## 91 1 1 1 1 24
## 92 1 1 1 1 29
## 93 1 0 0 0 20
## 94 1 1 1 1 28
## 95 1 1 0 1 28
## 96 1 1 1 1 21
## 97 1 1 0 1 29
## 98 1 1 1 1 25
## 99 1 1 1 1 28
## 100 1 1 1 1 29
## 101 1 1 1 1 29
## 102 1 1 1 1 30
## 103 1 1 1 0 21
## 104 0 0 1 1 27
## 105 1 1 1 1 29
## 106 1 1 1 1 29
## 107 1 1 1 1 26
## 108 1 1 1 1 29
## 109 1 1 1 1 24
## 110 1 1 1 1 28
## 111 1 1 1 1 27
## 112 0 1 1 1 26
## 113 1 1 1 1 24
## 114 1 0 1 1 29
## 115 1 1 1 1 26
## 116 1 1 1 0 29
## 117 1 1 1 1 26
## 118 1 1 1 1 28
## 119 1 1 1 1 25
## 120 1 1 1 1 28
## 121 1 1 1 1 27
## 122 0 1 1 0 21
## 123 1 1 1 1 29
## 124 1 1 1 1 27
## 125 1 1 1 1 27
## 126 1 1 1 1 23
## 127 1 1 1 0 22
## 128 1 1 1 0 28
## 129 1 1 0 1 21
## 130 1 1 0 1 22
## 131 1 1 1 1 30
## 132 1 1 0 0 28
## 133 1 1 1 1 30
## 134 1 1 1 1 27
## 135 1 1 1 1 27
## 136 1 1 1 1 28
## 137 1 1 1 1 29
## 138 1 1 1 1 25
## 139 1 1 1 0 25
## 140 1 1 1 1 30
## 141 1 1 1 1 30
## 142 1 1 1 1 29
## 143 1 1 1 1 28
## 144 1 1 1 1 30
## 145 1 1 0 1 27
## 146 1 1 1 0 28
## 147 1 1 1 1 30
## 148 1 1 0 0 27
## 149 1 1 0 0 23
## 150 0 0 0 1 23
## 151 1 1 1 1 28
## 152 0 0 0 0 22
## 153 1 1 1 1 24
## 154 0 1 0 1 26
## 155 1 1 1 1 25
## 156 1 1 1 1 28
## 157 1 0 0 1 22
## 158 1 1 1 1 22
## 159 1 1 0 1 29
## 160 1 0 0 1 22
## 161 1 1 1 1 28
## 162 1 1 1 1 29
## 163 1 1 1 1 29
## 164 1 0 0 1 24
## 165 1 1 1 1 22
## 166 0 0 1 1 25
## 167 1 1 1 1 29
## 168 0 0 1 1 24
## 169 0 1 1 1 22
## 170 1 0 1 1 23
## 171 0 0 1 1 21
## 172 1 1 1 1 28
## 173 1 1 1 1 27
## 174 0 1 0 0 23
## 175 1 1 1 1 24
## 176 1 0 1 1 29
## 177 1 1 1 1 26
## 178 1 0 0 0 24
## 179 1 1 1 1 26
## 180 1 0 1 1 25
## 181 1 1 1 1 25
## 182 0 0 0 1 25
## 183 1 1 1 1 27
## 184 1 1 1 1 24
## 185 1 1 1 1 29
## 186 1 0 1 0 22
<-filter(raw, Intervention==`Intervention`) inter1
<- inter1 %>%
t21select(MOAS_Total,
Risk_total,
AQ_Total,
BIS_Total,
MMSE_Total,%>%
time) tbl_summary(by = time ) %>%
add_p()%>%
add_stat_label() %>%
bold_labels() %>%
modify_header(list(label ~ "**Variable**", all_stat_cols() ~ "**{level}**")) %>%
modify_spanning_header(all_stat_cols() ~ "**Time**") %>%
as_gt() %>%
::tab_header(
gttitle = gt::md("**Table 2. Intervention group**"))
t21
Table 2. Intervention group | ||||
---|---|---|---|---|
Variable | Time | p-value1 | ||
1 | 2 | 3 | ||
MOAS_Total, Median (IQR) | 10.5 (6.0, 16.8) | 8.0 (4.0, 10.0) | 4.0 (3.0, 8.0) | <0.001 |
Risk_total, Median (IQR) | 18.00 (17.00, 19.00) | 17.00 (14.00, 18.00) | 15.50 (12.00, 17.00) | <0.001 |
AQ_Total, Median (IQR) | 88 (79, 98) | 81 (74, 92) | 79 (68, 88) | <0.001 |
BIS_Total, Median (IQR) | 72 (62, 76) | 67 (58, 75) | 64 (54, 73) | 0.002 |
MMSE_Total, Median (IQR) | 27.00 (23.25, 28.75) | 27.00 (24.00, 29.00) | 26.00 (23.25, 28.00) | 0.7 |
1
Kruskal-Wallis rank sum test
|
<-filter(dta, Intervention==2) control
<- control %>%
t22select(MOAS_Total,
Risk_total,
AQ_Total,
BIS_Total,
MMSE_Total,%>%
time) tbl_summary(by = time ) %>%
add_p()%>%
add_stat_label() %>%
bold_labels() %>%
modify_header(list(label ~ "**Variable**", all_stat_cols() ~ "**{level}**")) %>%
modify_spanning_header(all_stat_cols() ~ "**Time**") %>%
as_gt() %>%
::tab_header(
gttitle = gt::md("**Table 2. Control group**"))
t22
Table 2. Control group | ||||
---|---|---|---|---|
Variable | Time | p-value1 | ||
1 | 2 | 3 | ||
MOAS_Total, Median (IQR) | 7.5 (4.0, 11.8) | 6.0 (4.0, 10.0) | 6.0 (4.0, 8.0) | 0.4 |
Risk_total, Median (IQR) | 18.00 (12.00, 18.00) | 17.00 (12.00, 18.00) | 17.00 (13.25, 18.00) | 0.7 |
AQ_Total, Median (IQR) | 82 (79, 94) | 80 (74, 89) | 81 (72, 89) | 0.2 |
BIS_Total, Median (IQR) | 66 (61, 73) | 64 (58, 72) | 63 (57, 70) | 0.3 |
MMSE_Total, Median (IQR) | 27.50 (25.25, 29.00) | 27.50 (26.00, 29.00) | 25.00 (23.00, 27.75) | 0.035 |
1
Kruskal-Wallis rank sum test
|
#處理矩形資料
::p_load(dplyr)
pacman<-raw13 %>% group_by(Intervention,time)%>%
gsummarize(
count=n(),
MOAS_Total=mean(MOAS_Total,na.rm=T),
Risk_total=mean(Risk_total,na.rm=T),
AQ_Total=mean(AQ_Total,na.rm=T),
BIS_Total=mean(MOAS_Total,na.rm=T))
## `summarise()` has grouped output by 'Intervention'. You can override using the `.groups` argument.
g
## # A tibble: 4 x 7
## # Groups: Intervention [2]
## Intervention time count MOAS_Total Risk_total AQ_Total BIS_Total
## <fct> <fct> <int> <dbl> <dbl> <dbl> <dbl>
## 1 Intervention 1 32 15.0 17.9 92.2 15.0
## 2 Intervention 3 32 4.44 14.6 73.2 4.44
## 3 Control 1 30 8.33 16.2 84.8 8.33
## 4 Control 3 30 6.07 15.9 80.9 6.07
回顧以下研究問題, 1.總膽固醇濃度是否提升,由圖可得知介入組提升較對照組明顯。 2.其暴力行為是否下降,暴力行為包含頻率及危險性,隨時間介入後可看出分數皆有下降。 3.總膽固醇與暴力關係,總膽固醇越低報力量表分數越高,存有正相關。
本研究的介入策略,以以上圖形而言是有成效,並隨時間推移更明顯,透過介入能降低暴力行為產生,也能提升總膽固醇濃度。