library(tidyverse)
package ă¤¼ă¸±tidyverseă¤¼ă¸² was built under R version 4.1.2Registered S3 methods overwritten by 'dbplyr':
method from
print.tbl_lazy
print.tbl_sql
-- Attaching packages -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- tidyverse 1.3.1 --
v ggplot2 3.3.5 v purrr 0.3.4
v tibble 3.1.5 v dplyr 1.0.7
v tidyr 1.1.4 v stringr 1.4.0
v readr 2.1.0 v forcats 0.5.1
package ă¤¼ă¸±ggplot2ă¤¼ă¸² was built under R version 4.1.2package ă¤¼ă¸±readră¤¼ă¸² was built under R version 4.1.2-- Conflicts ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
library(caret)
package ă¤¼ă¸±caretă¤¼ă¸² was built under R version 4.1.2Loading required package: lattice
package ă¤¼ă¸±latticeă¤¼ă¸² was built under R version 4.1.2Registered S3 method overwritten by 'data.table':
method from
print.data.table
Attaching package: ă¤¼ă¸±caretă¤¼ă¸²
The following object is masked from ă¤¼ă¸±package:purrră¤¼ă¸²:
lift
library(ggplot2)
library(dplyr)
library(mice)
package ă¤¼ă¸±miceă¤¼ă¸² was built under R version 4.1.2
Attaching package: ă¤¼ă¸±miceă¤¼ă¸²
The following object is masked from ă¤¼ă¸±package:statsă¤¼ă¸²:
filter
The following objects are masked from ă¤¼ă¸±package:baseă¤¼ă¸²:
cbind, rbind
library('randomForest')
package ă¤¼ă¸±randomForestă¤¼ă¸² was built under R version 4.1.2randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
Attaching package: ă¤¼ă¸±randomForestă¤¼ă¸²
The following object is masked from ă¤¼ă¸±package:dplyră¤¼ă¸²:
combine
The following object is masked from ă¤¼ă¸±package:ggplot2ă¤¼ă¸²:
margin
train <- read.csv("train.csv")
test <- read.csv("test.csv")
df <- bind_rows(train,test)
head(df)
| Variable Name | Description |
|---|---|
| Survived | Survived (1) or died (0) |
| Pclass | Passenger’s class |
| Name | Passenger’s name |
| Sex | Passenger’s sex |
| Age | Passenger’s age |
| SibSp | Number of siblings/spouses aboard |
| Parch | Number of parents/children aboard |
| Ticket | Ticket number |
| Fare | Fare |
| Cabin | Cabin |
| Embarked | Port of embarkation |
dim(df)
[1] 1309 12
str(df)
'data.frame': 1309 obs. of 12 variables:
$ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
$ Survived : int 0 1 1 1 0 0 0 0 1 1 ...
$ Pclass : int 3 1 3 1 3 3 1 3 3 2 ...
$ Name : chr "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)" "Heikkinen, Miss. Laina" "Futrelle, Mrs. Jacques Heath (Lily May Peel)" ...
$ Sex : chr "male" "female" "female" "female" ...
Error in gregexpr(calltext, singleline, fixed = TRUE) :
regular expression is invalid UTF-8
Error in gregexpr(calltext, singleline, fixed = TRUE) :
regular expression is invalid UTF-8
Error in gregexpr(calltext, singleline, fixed = TRUE) :
regular expression is invalid UTF-8
$ Age : num 22 38 26 35 35 NA 54 2 27 14 ...
$ SibSp : int 1 1 0 1 0 0 0 3 0 1 ...
$ Parch : int 0 0 0 0 0 0 0 1 2 0 ...
$ Ticket : chr "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" ...
$ Fare : num 7.25 71.28 7.92 53.1 8.05 ...
$ Cabin : chr "" "C85" "" "C123" ...
$ Embarked : chr "S" "C" "S" "S" ...
colSums(is.na(df))
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 418 0 0 0 263 0 0 0 1 0 0
colSums(df == "")
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 NA 0 0 0 NA 0 0 0 NA 1014 2
df_1 <- df[1:20,]
df_1
NA
df_2 <- df[df$Age > 50, ]
head(df_2)
df_3 <- subset(df, Sex == "male")
df_3
df_4 <- select(filter(df, Age < 20),c("Name","Sex","Fare"))
df_4
df <- df %>% mutate(Survived = factor(Survived),
Pclass = factor(Pclass),
Sex = factor(Sex),
Embarked = factor(Embarked))
df$Title <- gsub('(.*, )|(\\..*)', '', df$Name)
df %>% group_by(Title)%>%
summarize(count = n())
NA
df$Title[df$Title == 'Mlle'] <- 'Miss'
df$Title[df$Title == 'Ms'] <- 'Miss'
df$Title[df$Title == 'Mme'] <- 'Mrs'
other <- c('Capt','Col','Don','Dona','Jonkheer','Lady','Major','Rev','Sir','the Countess')
df$Title[df$Title %in% other] <- 'Other'
df$Title <- factor(df$Title)
df %>% group_by(Title)%>%
summarize(count = n())
NA
NA
df$Family_size <- df$SibSp + df$Parch + 1
df$Family_size <- factor(df$Family_size)
which(df$Embarked == "")
[1] 62 830
df[c(62,830),]
df$Embarked[c(62,830)] <- "C"
df[c(62,830),]
df_drop <- c("cabin")
df = df[,!(names(df) %in% df_drop)]
head(df)
which(is.na(df$Fare))
[1] 1044
df[1044,]
df <- df %>%
mutate(Fare = ifelse(is.na(Fare),median(Fare, na.rm = TRUE),Fare))
df[1044,]
temp <- df %>% select(Pclass,Sex,Age)
set.seed(1)
mice_input <- mice(temp, method = 'rf')
iter imp variable
1 1 Age
1 2 Age
1 3 Age
1 4 Age
1 5 Age
2 1 Age
2 2 Age
2 3 Age
2 4 Age
2 5 Age
3 1 Age
3 2 Age
3 3 Age
3 4 Age
3 5 Age
4 1 Age
4 2 Age
4 3 Age
4 4 Age
4 5 Age
5 1 Age
5 2 Age
5 3 Age
5 4 Age
5 5 Age
mice_output <- complete(mice_input)
hist(df$Age)
hist(mice_output$Age)
df$Age <- mice_output$Age
sum(is.na(df$Age))
[1] 0
colSums(is.na(df))
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked Title Family_size
0 418 0 0 0 0 0 0 0 0 0 0 0 0
write.csv(df, file = 'main.csv', row.names = FALSE)
round(mean(df$Sex == "male")*100,2)
[1] 64.4
round(mean(df$Sex == "female")*100,2)
[1] 35.6
round(mean(train$Survived == 1)*100,2)
[1] 38.38
round(mean(train$Survived == 0)*100,2)
[1] 61.62
train %>% ggplot(aes(factor(Survived))) +
facet_grid(.~Sex) +
geom_bar(aes(fill=factor(Survived))) +
ggtitle("Amount that Survived and Did Not Survived by Sex") +
scale_fill_discrete(name = "Survivial Status",
labels = c("Did Not Survive", "Survived"))
df %>% ggplot(aes(Age)) +
geom_histogram(fill = "pink") +
ggtitle("Age distribution")
train %>% ggplot(aes(factor(Survived),Fare)) +
geom_boxplot(color = "blue") +
ggtitle("Survival and ticket price (Survived = 1)")
df %>% ggplot(aes(Age,Fare)) +
geom_point(color = "blue") +
ggtitle("Scatter Plot with Age and Fare") +
xlab("Age") +
ylab("Fare")
train %>% ggplot(aes(factor(Survived))) +
facet_grid(.~Pclass) +
geom_bar(aes(fill=factor(Survived))) +
ggtitle("Amount Survived and Not Survived, Split by Pclass") +
scale_fill_discrete(name = "survival status",
labels = c("Did Not Survive","Survived"))
train <- df[1:891,]
test <- df[892:1309,]
set.seed(1, sample.kind = "Rounding")
non-uniform 'Rounding' sampler used
control <- trainControl(method = "cv", number = 10, p = .9)
tuning <- data.frame(size = seq(100), decay = seq(.01,1,.1))
train_x <- train %>% select(Pclass, Sex, Age, SibSp, Parch, Fare, Embarked,Title,Family_size)
train_y <- train$Survived
set.seed(1, sample.kind = "Rounding")
non-uniform 'Rounding' sampler used
train_nn <- train(train_x, train_y,method = "nnet",tuneGrid = tuning,trControl = control)
non-uniform 'Rounding' sampler used
# weights: 26
initial value 563.356146
iter 10 value 534.158866
iter 20 value 457.956583
iter 30 value 366.754245
iter 40 value 333.869718
iter 50 value 332.300033
iter 60 value 331.586753
iter 70 value 324.478468
iter 80 value 317.892422
iter 90 value 317.747708
iter 100 value 317.747123
final value 317.747123
stopped after 100 iterations
# weights: 51
initial value 552.058409
iter 10 value 490.106189
iter 20 value 409.807056
iter 30 value 356.445504
iter 40 value 327.502472
iter 50 value 323.728838
iter 60 value 321.792075
iter 70 value 321.507247
iter 80 value 321.323004
iter 90 value 321.318117
final value 321.318029
converged
# weights: 76
initial value 532.515087
iter 10 value 485.936776
iter 20 value 453.452084
iter 30 value 375.129588
iter 40 value 364.457125
iter 50 value 337.408644
iter 60 value 327.787108
iter 70 value 324.493599
iter 80 value 321.128576
iter 90 value 319.541479
iter 100 value 318.884459
final value 318.884459
stopped after 100 iterations
# weights: 101
initial value 729.023397
iter 10 value 485.874570
iter 20 value 462.729999
iter 30 value 380.662727
iter 40 value 344.516652
iter 50 value 334.549368
iter 60 value 332.562148
iter 70 value 331.543189
iter 80 value 329.830242
iter 90 value 329.762147
iter 100 value 329.756776
final value 329.756776
stopped after 100 iterations
# weights: 126
initial value 558.974501
iter 10 value 478.589283
iter 20 value 422.820709
iter 30 value 380.255975
iter 40 value 351.000935
iter 50 value 338.237564
iter 60 value 333.987001
iter 70 value 332.831143
iter 80 value 332.482662
iter 90 value 332.428947
iter 100 value 332.427478
final value 332.427478
stopped after 100 iterations
# weights: 151
initial value 717.353845
iter 10 value 494.522029
iter 20 value 438.714841
iter 30 value 375.671163
iter 40 value 356.821806
iter 50 value 351.797381
iter 60 value 349.608384
iter 70 value 348.079551
iter 80 value 344.889959
iter 90 value 340.910810
iter 100 value 339.839476
final value 339.839476
stopped after 100 iterations
# weights: 176
initial value 609.845324
iter 10 value 465.120811
iter 20 value 387.814609
iter 30 value 361.410496
iter 40 value 350.829108
iter 50 value 348.678118
iter 60 value 347.185736
iter 70 value 346.209825
iter 80 value 345.624929
iter 90 value 345.302940
iter 100 value 345.145625
final value 345.145625
stopped after 100 iterations
# weights: 201
initial value 548.822028
iter 10 value 481.359917
iter 20 value 432.175330
iter 30 value 370.924273
iter 40 value 357.686246
iter 50 value 353.607813
iter 60 value 351.087213
iter 70 value 350.053702
iter 80 value 349.532337
iter 90 value 349.370757
iter 100 value 349.227831
final value 349.227831
stopped after 100 iterations
# weights: 226
initial value 579.164439
iter 10 value 492.409784
iter 20 value 416.571051
iter 30 value 392.376603
iter 40 value 366.483648
iter 50 value 361.554756
iter 60 value 359.370760
iter 70 value 355.125686
iter 80 value 353.508812
iter 90 value 352.755612
iter 100 value 352.682825
final value 352.682825
stopped after 100 iterations
# weights: 251
initial value 641.129001
iter 10 value 509.382356
iter 20 value 447.474993
iter 30 value 416.633052
iter 40 value 381.047671
iter 50 value 365.263160
iter 60 value 362.635731
iter 70 value 359.438391
iter 80 value 357.751049
iter 90 value 356.889730
iter 100 value 356.399752
final value 356.399752
stopped after 100 iterations
# weights: 276
initial value 750.161861
iter 10 value 498.193200
iter 20 value 433.982928
iter 30 value 386.271945
iter 40 value 361.350985
iter 50 value 355.565248
iter 60 value 345.292986
iter 70 value 321.881750
iter 80 value 308.895510
iter 90 value 299.672806
iter 100 value 290.920322
final value 290.920322
stopped after 100 iterations
# weights: 301
initial value 659.056208
iter 10 value 466.833472
iter 20 value 420.929288
iter 30 value 392.362303
iter 40 value 350.721679
iter 50 value 328.924054
iter 60 value 317.948936
iter 70 value 313.073778
iter 80 value 309.589524
iter 90 value 304.288143
iter 100 value 298.336372
final value 298.336372
stopped after 100 iterations
# weights: 326
initial value 528.854344
iter 10 value 457.617692
iter 20 value 380.583449
iter 30 value 361.654655
iter 40 value 340.446429
iter 50 value 330.549463
iter 60 value 322.686015
iter 70 value 318.984403
iter 80 value 316.444027
iter 90 value 314.735277
iter 100 value 313.369351
final value 313.369351
stopped after 100 iterations
# weights: 351
initial value 786.040483
iter 10 value 484.148103
iter 20 value 401.502931
iter 30 value 361.406786
iter 40 value 348.326823
iter 50 value 344.498996
iter 60 value 334.276296
iter 70 value 329.989699
iter 80 value 326.509019
iter 90 value 323.762173
iter 100 value 322.851543
final value 322.851543
stopped after 100 iterations
# weights: 376
initial value 601.133984
iter 10 value 488.659955
iter 20 value 425.954082
iter 30 value 389.874699
iter 40 value 366.880249
iter 50 value 357.537625
iter 60 value 344.932531
iter 70 value 339.561379
iter 80 value 335.716182
iter 90 value 333.517931
iter 100 value 331.887555
final value 331.887555
stopped after 100 iterations
# weights: 401
initial value 750.295719
iter 10 value 521.978513
iter 20 value 456.985905
iter 30 value 382.778139
iter 40 value 363.015278
iter 50 value 343.092018
iter 60 value 340.738684
iter 70 value 339.863473
iter 80 value 338.988082
iter 90 value 338.568030
iter 100 value 338.210032
final value 338.210032
stopped after 100 iterations
# weights: 426
initial value 834.988626
iter 10 value 506.523323
iter 20 value 449.257315
iter 30 value 423.723676
iter 40 value 386.026873
iter 50 value 368.576865
iter 60 value 353.911330
iter 70 value 347.778934
iter 80 value 345.589468
iter 90 value 343.992730
iter 100 value 343.297450
final value 343.297450
stopped after 100 iterations
# weights: 451
initial value 598.853155
iter 10 value 511.305882
iter 20 value 441.981694
iter 30 value 405.371322
iter 40 value 388.608974
iter 50 value 358.957869
iter 60 value 354.081364
iter 70 value 352.089360
iter 80 value 350.802204
iter 90 value 349.835006
iter 100 value 349.147756
final value 349.147756
stopped after 100 iterations
# weights: 476
initial value 738.170127
iter 10 value 526.047908
iter 20 value 466.667549
iter 30 value 416.839158
iter 40 value 385.499599
iter 50 value 363.890555
iter 60 value 359.012694
iter 70 value 356.605008
iter 80 value 355.010346
iter 90 value 353.961134
iter 100 value 353.282174
final value 353.282174
stopped after 100 iterations
# weights: 501
initial value 767.358587
iter 10 value 536.547196
iter 20 value 461.603782
iter 30 value 401.546880
iter 40 value 377.445429
iter 50 value 364.045183
iter 60 value 360.361047
iter 70 value 358.539167
iter 80 value 357.734730
iter 90 value 356.788652
iter 100 value 355.894707
final value 355.894707
stopped after 100 iterations
# weights: 526
initial value 624.988359
iter 10 value 457.471647
iter 20 value 436.326742
iter 30 value 418.784787
iter 40 value 394.225662
iter 50 value 368.937729
iter 60 value 328.672290
iter 70 value 312.778270
iter 80 value 305.013216
iter 90 value 297.105216
iter 100 value 284.850532
final value 284.850532
stopped after 100 iterations
# weights: 551
initial value 725.057010
iter 10 value 472.911412
iter 20 value 383.773534
iter 30 value 357.794047
iter 40 value 328.270549
iter 50 value 319.223644
iter 60 value 312.515997
iter 70 value 305.869853
iter 80 value 301.413015
iter 90 value 297.059218
iter 100 value 294.517182
final value 294.517182
stopped after 100 iterations
# weights: 576
initial value 571.052944
iter 10 value 488.810998
iter 20 value 442.991025
iter 30 value 403.283286
iter 40 value 370.957611
iter 50 value 339.281661
iter 60 value 324.880841
iter 70 value 320.275978
iter 80 value 317.004454
iter 90 value 315.422393
iter 100 value 313.763495
final value 313.763495
stopped after 100 iterations
# weights: 601
initial value 943.312700
iter 10 value 507.586865
iter 20 value 470.492830
iter 30 value 407.819718
iter 40 value 380.121064
iter 50 value 361.201474
iter 60 value 345.034777
iter 70 value 336.633988
iter 80 value 331.543934
iter 90 value 328.289037
iter 100 value 325.902162
final value 325.902162
stopped after 100 iterations
# weights: 626
initial value 657.893776
iter 10 value 511.464265
iter 20 value 457.650144
iter 30 value 408.682472
iter 40 value 372.424006
iter 50 value 354.842219
iter 60 value 347.018291
iter 70 value 340.677472
iter 80 value 337.554115
iter 90 value 335.577154
iter 100 value 333.532884
final value 333.532884
stopped after 100 iterations
# weights: 651
initial value 696.554500
iter 10 value 518.245801
iter 20 value 495.767631
iter 30 value 399.751415
iter 40 value 373.909739
iter 50 value 356.171651
iter 60 value 348.430880
iter 70 value 344.671556
iter 80 value 343.191583
iter 90 value 341.823908
iter 100 value 339.739480
final value 339.739480
stopped after 100 iterations
# weights: 676
initial value 846.036948
iter 10 value 529.925036
iter 20 value 449.865582
iter 30 value 411.291235
iter 40 value 380.176825
iter 50 value 362.516076
iter 60 value 355.934910
iter 70 value 351.189809
iter 80 value 348.512801
iter 90 value 346.405045
iter 100 value 344.502301
final value 344.502301
stopped after 100 iterations
# weights: 701
initial value 745.948475
iter 10 value 535.334078
iter 20 value 476.454442
iter 30 value 411.049106
iter 40 value 387.668497
iter 50 value 369.716808
iter 60 value 360.302425
iter 70 value 354.954456
iter 80 value 351.714283
iter 90 value 350.197297
iter 100 value 349.113019
final value 349.113019
stopped after 100 iterations
# weights: 726
initial value 891.139677
iter 10 value 547.744133
iter 20 value 458.718607
iter 30 value 430.649277
iter 40 value 391.123248
iter 50 value 376.196028
iter 60 value 365.868540
iter 70 value 360.575965
iter 80 value 357.251689
iter 90 value 354.921900
iter 100 value 353.596938
final value 353.596938
stopped after 100 iterations
# weights: 751
initial value 757.604185
iter 10 value 569.070007
iter 20 value 505.622954
iter 30 value 461.273071
iter 40 value 397.440469
iter 50 value 381.576891
iter 60 value 369.622793
iter 70 value 362.879968
iter 80 value 360.609784
iter 90 value 358.927979
iter 100 value 357.644226
final value 357.644226
stopped after 100 iterations
# weights: 776
initial value 1047.075031
iter 10 value 477.221865
iter 20 value 441.777990
iter 30 value 411.940331
iter 40 value 368.085091
iter 50 value 305.866259
iter 60 value 279.172637
iter 70 value 260.012683
iter 80 value 248.769194
iter 90 value 240.304153
iter 100 value 235.225908
final value 235.225908
stopped after 100 iterations
# weights: 801
initial value 746.575748
iter 10 value 497.559812
iter 20 value 463.238778
iter 30 value 427.772973
iter 40 value 399.291294
iter 50 value 352.534213
iter 60 value 336.060016
iter 70 value 315.335481
iter 80 value 305.421703
iter 90 value 299.263297
iter 100 value 294.977477
final value 294.977477
stopped after 100 iterations
# weights: 826
initial value 546.594287
iter 10 value 493.819027
iter 20 value 418.441795
iter 30 value 378.705105
iter 40 value 352.863407
iter 50 value 338.140083
iter 60 value 330.147619
iter 70 value 325.224220
iter 80 value 320.980953
iter 90 value 316.256584
iter 100 value 312.902713
final value 312.902713
stopped after 100 iterations
# weights: 851
initial value 1640.832375
iter 10 value 525.143945
iter 20 value 458.044957
iter 30 value 440.743748
iter 40 value 419.256882
iter 50 value 391.155937
iter 60 value 366.661297
iter 70 value 347.464103
iter 80 value 336.830916
iter 90 value 327.999749
iter 100 value 324.360181
final value 324.360181
stopped after 100 iterations
# weights: 876
initial value 649.374638
iter 10 value 516.994531
iter 20 value 423.168816
iter 30 value 385.832146
iter 40 value 361.635459
iter 50 value 353.836356
iter 60 value 342.801404
iter 70 value 337.605878
iter 80 value 334.678060
iter 90 value 332.690756
iter 100 value 331.563852
final value 331.563852
stopped after 100 iterations
# weights: 901
initial value 973.496007
iter 10 value 539.825966
iter 20 value 446.313489
iter 30 value 397.522600
iter 40 value 372.553102
iter 50 value 358.194807
iter 60 value 348.131263
iter 70 value 344.117745
iter 80 value 340.248962
iter 90 value 338.590608
iter 100 value 337.876744
final value 337.876744
stopped after 100 iterations
# weights: 926
initial value 602.791558
iter 10 value 540.468735
iter 20 value 447.241249
iter 30 value 410.606832
iter 40 value 388.390166
iter 50 value 369.113073
iter 60 value 358.565799
iter 70 value 352.739754
iter 80 value 349.919899
iter 90 value 348.121852
iter 100 value 345.751403
final value 345.751403
stopped after 100 iterations
# weights: 951
initial value 1561.099069
iter 10 value 566.250621
iter 20 value 452.742718
iter 30 value 430.224074
iter 40 value 399.166985
iter 50 value 367.914463
iter 60 value 358.825498
iter 70 value 354.077631
iter 80 value 351.021308
iter 90 value 349.650146
iter 100 value 348.476823
final value 348.476823
stopped after 100 iterations
# weights: 976
initial value 767.159365
iter 10 value 569.806705
iter 20 value 515.932997
iter 30 value 483.608749
iter 40 value 405.436011
iter 50 value 371.723697
iter 60 value 363.032987
iter 70 value 358.355532
iter 80 value 355.545626
iter 90 value 354.065561
iter 100 value 353.058831
final value 353.058831
stopped after 100 iterations
model fit failed for Fold01: size= 40, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1001) weights
model fit failed for Fold01: size= 41, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1026) weights
model fit failed for Fold01: size= 42, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1051) weights
model fit failed for Fold01: size= 43, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1076) weights
model fit failed for Fold01: size= 44, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1101) weights
model fit failed for Fold01: size= 45, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1126) weights
model fit failed for Fold01: size= 46, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1151) weights
model fit failed for Fold01: size= 47, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1176) weights
model fit failed for Fold01: size= 48, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1201) weights
model fit failed for Fold01: size= 49, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1226) weights
model fit failed for Fold01: size= 50, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1251) weights
model fit failed for Fold01: size= 51, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1276) weights
model fit failed for Fold01: size= 52, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1301) weights
model fit failed for Fold01: size= 53, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1326) weights
model fit failed for Fold01: size= 54, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1351) weights
model fit failed for Fold01: size= 55, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1376) weights
model fit failed for Fold01: size= 56, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1401) weights
model fit failed for Fold01: size= 57, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1426) weights
model fit failed for Fold01: size= 58, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1451) weights
model fit failed for Fold01: size= 59, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1476) weights
model fit failed for Fold01: size= 60, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1501) weights
model fit failed for Fold01: size= 61, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1526) weights
model fit failed for Fold01: size= 62, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1551) weights
model fit failed for Fold01: size= 63, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1576) weights
model fit failed for Fold01: size= 64, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1601) weights
model fit failed for Fold01: size= 65, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1626) weights
model fit failed for Fold01: size= 66, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1651) weights
model fit failed for Fold01: size= 67, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1676) weights
model fit failed for Fold01: size= 68, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1701) weights
model fit failed for Fold01: size= 69, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1726) weights
model fit failed for Fold01: size= 70, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1751) weights
model fit failed for Fold01: size= 71, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1776) weights
model fit failed for Fold01: size= 72, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1801) weights
model fit failed for Fold01: size= 73, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1826) weights
model fit failed for Fold01: size= 74, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1851) weights
model fit failed for Fold01: size= 75, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1876) weights
model fit failed for Fold01: size= 76, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1901) weights
model fit failed for Fold01: size= 77, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1926) weights
model fit failed for Fold01: size= 78, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1951) weights
model fit failed for Fold01: size= 79, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1976) weights
model fit failed for Fold01: size= 80, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2001) weights
model fit failed for Fold01: size= 81, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2026) weights
model fit failed for Fold01: size= 82, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2051) weights
model fit failed for Fold01: size= 83, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2076) weights
model fit failed for Fold01: size= 84, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2101) weights
model fit failed for Fold01: size= 85, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2126) weights
model fit failed for Fold01: size= 86, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2151) weights
model fit failed for Fold01: size= 87, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2176) weights
model fit failed for Fold01: size= 88, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2201) weights
model fit failed for Fold01: size= 89, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2226) weights
model fit failed for Fold01: size= 90, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2251) weights
model fit failed for Fold01: size= 91, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2276) weights
model fit failed for Fold01: size= 92, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2301) weights
model fit failed for Fold01: size= 93, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2326) weights
model fit failed for Fold01: size= 94, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2351) weights
model fit failed for Fold01: size= 95, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2376) weights
model fit failed for Fold01: size= 96, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2401) weights
model fit failed for Fold01: size= 97, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2426) weights
model fit failed for Fold01: size= 98, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2451) weights
model fit failed for Fold01: size= 99, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2476) weights
model fit failed for Fold01: size=100, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2501) weights
# weights: 26
initial value 554.758857
iter 10 value 483.674541
iter 20 value 391.994220
iter 30 value 312.470134
iter 40 value 300.897541
iter 50 value 300.498324
iter 60 value 300.490147
final value 300.489681
converged
# weights: 51
initial value 554.153548
iter 10 value 451.441057
iter 20 value 415.015224
iter 30 value 357.918227
iter 40 value 318.970945
iter 50 value 311.003330
iter 60 value 309.566293
iter 70 value 309.541485
final value 309.541317
converged
# weights: 76
initial value 738.233270
iter 10 value 487.978369
iter 20 value 409.749635
iter 30 value 335.267368
iter 40 value 327.502160
iter 50 value 318.789582
iter 60 value 318.002268
iter 70 value 317.773352
iter 80 value 317.350132
final value 317.337024
converged
# weights: 101
initial value 602.779827
iter 10 value 451.729488
iter 20 value 379.070902
iter 30 value 341.236472
iter 40 value 325.085076
iter 50 value 318.303791
iter 60 value 312.494369
iter 70 value 310.404045
iter 80 value 309.803164
iter 90 value 309.620511
iter 100 value 309.468184
final value 309.468184
stopped after 100 iterations
# weights: 126
initial value 600.800527
iter 10 value 478.191176
iter 20 value 400.730067
iter 30 value 366.118698
iter 40 value 336.348542
iter 50 value 325.370330
iter 60 value 322.202005
iter 70 value 319.474884
iter 80 value 315.004213
iter 90 value 314.184592
iter 100 value 314.157253
final value 314.157253
stopped after 100 iterations
# weights: 151
initial value 615.827287
iter 10 value 456.573160
iter 20 value 364.976332
iter 30 value 335.513954
iter 40 value 325.951292
iter 50 value 324.829788
iter 60 value 323.634869
iter 70 value 322.294120
iter 80 value 321.328401
iter 90 value 320.741061
iter 100 value 319.760599
final value 319.760599
stopped after 100 iterations
# weights: 176
initial value 638.527241
iter 10 value 500.015886
iter 20 value 472.535451
iter 30 value 419.439017
iter 40 value 373.306166
iter 50 value 340.313711
iter 60 value 332.899946
iter 70 value 329.483047
iter 80 value 326.472077
iter 90 value 325.854527
iter 100 value 325.343309
final value 325.343309
stopped after 100 iterations
# weights: 201
initial value 582.662461
iter 10 value 485.628188
iter 20 value 416.714259
iter 30 value 366.179569
iter 40 value 346.544846
iter 50 value 336.663495
iter 60 value 332.583211
iter 70 value 330.837973
iter 80 value 330.508098
iter 90 value 330.379915
iter 100 value 330.125472
final value 330.125472
stopped after 100 iterations
# weights: 226
initial value 716.287316
iter 10 value 485.089169
iter 20 value 431.859305
iter 30 value 385.150802
iter 40 value 356.964061
iter 50 value 342.528591
iter 60 value 337.629646
iter 70 value 336.417262
iter 80 value 335.509758
iter 90 value 334.867902
iter 100 value 333.787539
final value 333.787539
stopped after 100 iterations
# weights: 251
initial value 691.928656
iter 10 value 471.714303
iter 20 value 402.352156
iter 30 value 365.493364
iter 40 value 350.239161
iter 50 value 342.450212
iter 60 value 340.315815
iter 70 value 339.205821
iter 80 value 338.454889
iter 90 value 337.338261
iter 100 value 336.497378
final value 336.497378
stopped after 100 iterations
# weights: 276
initial value 584.174795
iter 10 value 473.566685
iter 20 value 422.931282
iter 30 value 335.354395
iter 40 value 324.985634
iter 50 value 307.077665
iter 60 value 286.857448
iter 70 value 264.326105
iter 80 value 257.426420
iter 90 value 255.653179
iter 100 value 254.463938
final value 254.463938
stopped after 100 iterations
# weights: 301
initial value 858.362163
iter 10 value 479.637019
iter 20 value 367.302087
iter 30 value 329.370338
iter 40 value 322.584097
iter 50 value 307.456783
iter 60 value 294.903025
iter 70 value 287.929240
iter 80 value 283.944264
iter 90 value 279.711710
iter 100 value 272.765762
final value 272.765762
stopped after 100 iterations
# weights: 326
initial value 650.886283
iter 10 value 468.123796
iter 20 value 428.007374
iter 30 value 387.207633
iter 40 value 347.324965
iter 50 value 324.338870
iter 60 value 314.821609
iter 70 value 306.006265
iter 80 value 299.683743
iter 90 value 294.883407
iter 100 value 291.551769
final value 291.551769
stopped after 100 iterations
# weights: 351
initial value 855.645219
iter 10 value 489.971344
iter 20 value 420.829206
iter 30 value 368.216725
iter 40 value 330.140933
iter 50 value 321.966104
iter 60 value 316.334738
iter 70 value 312.236821
iter 80 value 311.252317
iter 90 value 307.115223
iter 100 value 303.598263
final value 303.598263
stopped after 100 iterations
# weights: 376
initial value 524.202159
iter 10 value 475.164568
iter 20 value 391.291380
iter 30 value 342.635073
iter 40 value 325.917664
iter 50 value 321.442427
iter 60 value 316.118809
iter 70 value 313.680085
iter 80 value 312.350553
iter 90 value 311.703928
iter 100 value 310.785216
final value 310.785216
stopped after 100 iterations
# weights: 401
initial value 595.293758
iter 10 value 494.748936
iter 20 value 449.577945
iter 30 value 417.321846
iter 40 value 388.951428
iter 50 value 350.547766
iter 60 value 335.526248
iter 70 value 328.859227
iter 80 value 321.854796
iter 90 value 320.293558
iter 100 value 319.553493
final value 319.553493
stopped after 100 iterations
# weights: 426
initial value 641.814870
iter 10 value 505.999710
iter 20 value 406.904298
iter 30 value 353.457933
iter 40 value 347.168856
iter 50 value 339.468259
iter 60 value 331.631440
iter 70 value 327.063179
iter 80 value 325.193883
iter 90 value 324.292803
iter 100 value 323.865646
final value 323.865646
stopped after 100 iterations
# weights: 451
initial value 1183.824277
iter 10 value 519.675360
iter 20 value 461.141557
iter 30 value 394.975213
iter 40 value 365.261126
iter 50 value 342.984309
iter 60 value 337.924943
iter 70 value 333.162580
iter 80 value 330.334954
iter 90 value 328.730653
iter 100 value 328.022020
final value 328.022020
stopped after 100 iterations
# weights: 476
initial value 594.938532
iter 10 value 514.682159
iter 20 value 445.295713
iter 30 value 383.399909
iter 40 value 357.754267
iter 50 value 344.516657
iter 60 value 338.784903
iter 70 value 335.723912
iter 80 value 333.846115
iter 90 value 333.193355
iter 100 value 332.368910
final value 332.368910
stopped after 100 iterations
# weights: 501
initial value 724.536430
iter 10 value 525.406626
iter 20 value 475.279163
iter 30 value 400.477237
iter 40 value 369.325863
iter 50 value 358.684215
iter 60 value 347.785444
iter 70 value 343.644940
iter 80 value 341.417494
iter 90 value 339.609842
iter 100 value 338.048864
final value 338.048864
stopped after 100 iterations
# weights: 526
initial value 896.843470
iter 10 value 454.000055
iter 20 value 396.183007
iter 30 value 343.957428
iter 40 value 314.758184
iter 50 value 300.775419
iter 60 value 293.533340
iter 70 value 283.378154
iter 80 value 265.424714
iter 90 value 256.767692
iter 100 value 250.211220
final value 250.211220
stopped after 100 iterations
# weights: 551
initial value 675.117327
iter 10 value 480.986192
iter 20 value 430.332645
iter 30 value 399.307319
iter 40 value 353.069660
iter 50 value 318.720214
iter 60 value 295.987232
iter 70 value 284.002786
iter 80 value 276.883817
iter 90 value 271.242148
iter 100 value 267.457855
final value 267.457855
stopped after 100 iterations
# weights: 576
initial value 972.336554
iter 10 value 491.281072
iter 20 value 399.002773
iter 30 value 356.483165
iter 40 value 329.629526
iter 50 value 318.302816
iter 60 value 306.528024
iter 70 value 300.818970
iter 80 value 297.425690
iter 90 value 293.823201
iter 100 value 290.933660
final value 290.933660
stopped after 100 iterations
# weights: 601
initial value 1212.810201
iter 10 value 485.811078
iter 20 value 417.585041
iter 30 value 378.204219
iter 40 value 346.219725
iter 50 value 325.588036
iter 60 value 316.605531
iter 70 value 310.420732
iter 80 value 306.007987
iter 90 value 302.729060
iter 100 value 299.956330
final value 299.956330
stopped after 100 iterations
# weights: 626
initial value 1207.270202
iter 10 value 490.232460
iter 20 value 403.006319
iter 30 value 375.829544
iter 40 value 348.442890
iter 50 value 327.668831
iter 60 value 322.224560
iter 70 value 317.377579
iter 80 value 314.378750
iter 90 value 312.891602
iter 100 value 311.639424
final value 311.639424
stopped after 100 iterations
# weights: 651
initial value 1112.508958
iter 10 value 521.484078
iter 20 value 471.215558
iter 30 value 447.699447
iter 40 value 382.883382
iter 50 value 355.356374
iter 60 value 339.899725
iter 70 value 329.648651
iter 80 value 322.571040
iter 90 value 320.763269
iter 100 value 319.265221
final value 319.265221
stopped after 100 iterations
# weights: 676
initial value 671.596662
iter 10 value 523.802182
iter 20 value 493.392710
iter 30 value 442.602626
iter 40 value 363.262855
iter 50 value 344.746578
iter 60 value 339.809119
iter 70 value 334.192297
iter 80 value 330.897215
iter 90 value 328.272788
iter 100 value 326.455839
final value 326.455839
stopped after 100 iterations
# weights: 701
initial value 652.118467
iter 10 value 510.861479
iter 20 value 451.690030
iter 30 value 392.183784
iter 40 value 352.047013
iter 50 value 344.079784
iter 60 value 338.291930
iter 70 value 334.725816
iter 80 value 333.103503
iter 90 value 330.809841
iter 100 value 329.247098
final value 329.247098
stopped after 100 iterations
# weights: 726
initial value 828.539681
iter 10 value 511.031512
iter 20 value 406.594667
iter 30 value 379.386673
iter 40 value 369.100524
iter 50 value 355.178831
iter 60 value 347.327426
iter 70 value 340.188748
iter 80 value 336.489860
iter 90 value 334.843326
iter 100 value 333.435433
final value 333.435433
stopped after 100 iterations
# weights: 751
initial value 1419.533302
iter 10 value 566.490673
iter 20 value 477.574573
iter 30 value 406.685464
iter 40 value 367.250623
iter 50 value 354.833893
iter 60 value 345.282852
iter 70 value 342.815688
iter 80 value 340.659733
iter 90 value 339.091414
iter 100 value 337.253804
final value 337.253804
stopped after 100 iterations
# weights: 776
initial value 1199.750971
iter 10 value 431.842693
iter 20 value 335.860988
iter 30 value 315.364928
iter 40 value 297.582793
iter 50 value 281.706035
iter 60 value 256.681838
iter 70 value 246.117910
iter 80 value 232.466931
iter 90 value 224.035294
iter 100 value 211.892366
final value 211.892366
stopped after 100 iterations
# weights: 801
initial value 539.818923
iter 10 value 474.823361
iter 20 value 420.324053
iter 30 value 349.311557
iter 40 value 323.194253
iter 50 value 316.302609
iter 60 value 303.738534
iter 70 value 292.608597
iter 80 value 286.076072
iter 90 value 280.140663
iter 100 value 276.057860
final value 276.057860
stopped after 100 iterations
# weights: 826
initial value 581.410204
iter 10 value 495.318543
iter 20 value 420.776964
iter 30 value 385.752638
iter 40 value 363.766294
iter 50 value 336.901355
iter 60 value 316.452288
iter 70 value 300.641169
iter 80 value 295.565059
iter 90 value 292.183497
iter 100 value 289.456057
final value 289.456057
stopped after 100 iterations
# weights: 851
initial value 701.677889
iter 10 value 511.431134
iter 20 value 463.181775
iter 30 value 413.708203
iter 40 value 353.598397
iter 50 value 334.264767
iter 60 value 323.808007
iter 70 value 316.978933
iter 80 value 312.920698
iter 90 value 308.668165
iter 100 value 305.369309
final value 305.369309
stopped after 100 iterations
# weights: 876
initial value 593.397095
iter 10 value 500.601722
iter 20 value 444.497888
iter 30 value 406.134888
iter 40 value 374.990161
iter 50 value 349.206503
iter 60 value 331.006093
iter 70 value 320.353679
iter 80 value 316.136771
iter 90 value 312.467577
iter 100 value 310.772858
final value 310.772858
stopped after 100 iterations
# weights: 901
initial value 620.387539
iter 10 value 519.264751
iter 20 value 430.543735
iter 30 value 395.307853
iter 40 value 366.201104
iter 50 value 339.859824
iter 60 value 330.246649
iter 70 value 324.166362
iter 80 value 321.103471
iter 90 value 319.463130
iter 100 value 318.222855
final value 318.222855
stopped after 100 iterations
# weights: 926
initial value 592.079550
iter 10 value 528.862590
iter 20 value 447.866204
iter 30 value 405.411429
iter 40 value 370.429794
iter 50 value 348.147834
iter 60 value 339.758699
iter 70 value 333.269054
iter 80 value 330.698376
iter 90 value 327.519220
iter 100 value 325.576476
final value 325.576476
stopped after 100 iterations
# weights: 951
initial value 888.949730
iter 10 value 542.247464
iter 20 value 489.273822
iter 30 value 412.267889
iter 40 value 385.665861
iter 50 value 361.991577
iter 60 value 344.218207
iter 70 value 338.247301
iter 80 value 333.996542
iter 90 value 332.109499
iter 100 value 330.830344
final value 330.830344
stopped after 100 iterations
# weights: 976
initial value 1427.349439
iter 10 value 549.624810
iter 20 value 453.816323
iter 30 value 419.975578
iter 40 value 377.094471
iter 50 value 357.710511
iter 60 value 346.005115
iter 70 value 341.258631
iter 80 value 339.174196
iter 90 value 337.591270
iter 100 value 335.638512
final value 335.638512
stopped after 100 iterations
model fit failed for Fold02: size= 40, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1001) weights
model fit failed for Fold02: size= 41, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1026) weights
model fit failed for Fold02: size= 42, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1051) weights
model fit failed for Fold02: size= 43, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1076) weights
model fit failed for Fold02: size= 44, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1101) weights
model fit failed for Fold02: size= 45, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1126) weights
model fit failed for Fold02: size= 46, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1151) weights
model fit failed for Fold02: size= 47, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1176) weights
model fit failed for Fold02: size= 48, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1201) weights
model fit failed for Fold02: size= 49, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1226) weights
model fit failed for Fold02: size= 50, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1251) weights
model fit failed for Fold02: size= 51, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1276) weights
model fit failed for Fold02: size= 52, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1301) weights
model fit failed for Fold02: size= 53, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1326) weights
model fit failed for Fold02: size= 54, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1351) weights
model fit failed for Fold02: size= 55, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1376) weights
model fit failed for Fold02: size= 56, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1401) weights
model fit failed for Fold02: size= 57, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1426) weights
model fit failed for Fold02: size= 58, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1451) weights
model fit failed for Fold02: size= 59, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1476) weights
model fit failed for Fold02: size= 60, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1501) weights
model fit failed for Fold02: size= 61, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1526) weights
model fit failed for Fold02: size= 62, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1551) weights
model fit failed for Fold02: size= 63, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1576) weights
model fit failed for Fold02: size= 64, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1601) weights
model fit failed for Fold02: size= 65, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1626) weights
model fit failed for Fold02: size= 66, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1651) weights
model fit failed for Fold02: size= 67, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1676) weights
model fit failed for Fold02: size= 68, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1701) weights
model fit failed for Fold02: size= 69, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1726) weights
model fit failed for Fold02: size= 70, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1751) weights
model fit failed for Fold02: size= 71, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1776) weights
model fit failed for Fold02: size= 72, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1801) weights
model fit failed for Fold02: size= 73, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1826) weights
model fit failed for Fold02: size= 74, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1851) weights
model fit failed for Fold02: size= 75, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1876) weights
model fit failed for Fold02: size= 76, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1901) weights
model fit failed for Fold02: size= 77, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1926) weights
model fit failed for Fold02: size= 78, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1951) weights
model fit failed for Fold02: size= 79, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1976) weights
model fit failed for Fold02: size= 80, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2001) weights
model fit failed for Fold02: size= 81, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2026) weights
model fit failed for Fold02: size= 82, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2051) weights
model fit failed for Fold02: size= 83, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2076) weights
model fit failed for Fold02: size= 84, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2101) weights
model fit failed for Fold02: size= 85, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2126) weights
model fit failed for Fold02: size= 86, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2151) weights
model fit failed for Fold02: size= 87, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2176) weights
model fit failed for Fold02: size= 88, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2201) weights
model fit failed for Fold02: size= 89, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2226) weights
model fit failed for Fold02: size= 90, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2251) weights
model fit failed for Fold02: size= 91, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2276) weights
model fit failed for Fold02: size= 92, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2301) weights
model fit failed for Fold02: size= 93, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2326) weights
model fit failed for Fold02: size= 94, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2351) weights
model fit failed for Fold02: size= 95, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2376) weights
model fit failed for Fold02: size= 96, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2401) weights
model fit failed for Fold02: size= 97, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2426) weights
model fit failed for Fold02: size= 98, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2451) weights
model fit failed for Fold02: size= 99, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2476) weights
model fit failed for Fold02: size=100, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2501) weights
# weights: 26
initial value 536.317689
iter 10 value 487.069207
iter 20 value 473.217510
iter 30 value 406.353977
iter 40 value 335.436001
iter 50 value 319.997213
iter 60 value 318.890403
iter 70 value 310.132500
iter 80 value 301.686971
iter 90 value 301.223076
iter 100 value 300.992280
final value 300.992280
stopped after 100 iterations
# weights: 51
initial value 538.894660
iter 10 value 472.474193
iter 20 value 358.715881
iter 30 value 318.606526
iter 40 value 305.512515
iter 50 value 302.901311
iter 60 value 302.193764
iter 70 value 302.164616
iter 80 value 302.157984
iter 80 value 302.157983
iter 80 value 302.157983
final value 302.157983
converged
# weights: 76
initial value 585.749925
iter 10 value 482.677003
iter 20 value 357.048314
iter 30 value 333.074227
iter 40 value 321.352343
iter 50 value 310.427938
iter 60 value 308.269796
iter 70 value 305.199723
iter 80 value 304.668618
iter 90 value 304.039676
iter 100 value 303.948481
final value 303.948481
stopped after 100 iterations
# weights: 101
initial value 771.638005
iter 10 value 497.196399
iter 20 value 456.105443
iter 30 value 405.787710
iter 40 value 345.841422
iter 50 value 328.068494
iter 60 value 324.392013
iter 70 value 323.377778
iter 80 value 319.987326
iter 90 value 312.433894
iter 100 value 310.598869
final value 310.598869
stopped after 100 iterations
# weights: 126
initial value 888.934757
iter 10 value 480.908490
iter 20 value 400.722937
iter 30 value 352.169149
iter 40 value 333.543533
iter 50 value 326.752567
iter 60 value 323.794741
iter 70 value 322.372623
iter 80 value 321.641895
iter 90 value 319.608957
iter 100 value 317.020334
final value 317.020334
stopped after 100 iterations
# weights: 151
initial value 514.491621
iter 10 value 466.293531
iter 20 value 366.723563
iter 30 value 338.942341
iter 40 value 328.979332
iter 50 value 323.468352
iter 60 value 321.938235
iter 70 value 321.524468
iter 80 value 321.373225
iter 90 value 321.287054
iter 100 value 321.189232
final value 321.189232
stopped after 100 iterations
# weights: 176
initial value 596.664931
iter 10 value 490.574918
iter 20 value 435.345004
iter 30 value 375.497665
iter 40 value 343.619431
iter 50 value 336.847312
iter 60 value 333.240353
iter 70 value 331.930311
iter 80 value 330.730028
iter 90 value 328.364543
iter 100 value 327.597521
final value 327.597521
stopped after 100 iterations
# weights: 201
initial value 644.366927
iter 10 value 496.506579
iter 20 value 471.978317
iter 30 value 450.130200
iter 40 value 387.147160
iter 50 value 357.535712
iter 60 value 345.259631
iter 70 value 342.027774
iter 80 value 339.597276
iter 90 value 336.633632
iter 100 value 333.369900
final value 333.369900
stopped after 100 iterations
# weights: 226
initial value 698.655450
iter 10 value 515.533422
iter 20 value 446.795511
iter 30 value 392.471250
iter 40 value 356.464430
iter 50 value 347.235246
iter 60 value 343.193322
iter 70 value 341.681128
iter 80 value 340.847663
iter 90 value 339.601829
iter 100 value 338.047822
final value 338.047822
stopped after 100 iterations
# weights: 251
initial value 688.413856
iter 10 value 492.136771
iter 20 value 451.093765
iter 30 value 397.920224
iter 40 value 375.331176
iter 50 value 358.134741
iter 60 value 349.946491
iter 70 value 345.938187
iter 80 value 344.515143
iter 90 value 343.706485
iter 100 value 341.733460
final value 341.733460
stopped after 100 iterations
# weights: 276
initial value 710.012195
iter 10 value 482.996486
iter 20 value 419.174636
iter 30 value 322.987650
iter 40 value 312.311372
iter 50 value 301.803781
iter 60 value 294.022508
iter 70 value 280.700796
iter 80 value 270.865773
iter 90 value 269.287246
iter 100 value 262.355705
final value 262.355705
stopped after 100 iterations
# weights: 301
initial value 619.689895
iter 10 value 468.153148
iter 20 value 382.560114
iter 30 value 335.635407
iter 40 value 310.393684
iter 50 value 301.504313
iter 60 value 296.518890
iter 70 value 290.467383
iter 80 value 286.015765
iter 90 value 281.869116
iter 100 value 278.427575
final value 278.427575
stopped after 100 iterations
# weights: 326
initial value 697.675423
iter 10 value 486.980680
iter 20 value 388.212355
iter 30 value 348.177718
iter 40 value 323.666966
iter 50 value 314.527235
iter 60 value 306.071484
iter 70 value 302.847232
iter 80 value 300.023901
iter 90 value 297.227858
iter 100 value 295.469982
final value 295.469982
stopped after 100 iterations
# weights: 351
initial value 605.102414
iter 10 value 457.011918
iter 20 value 433.836748
iter 30 value 397.190106
iter 40 value 357.377637
iter 50 value 331.125857
iter 60 value 323.271672
iter 70 value 318.888000
iter 80 value 313.327871
iter 90 value 308.213760
iter 100 value 305.996247
final value 305.996247
stopped after 100 iterations
# weights: 376
initial value 753.400372
iter 10 value 492.840676
iter 20 value 408.743993
iter 30 value 354.600506
iter 40 value 335.628472
iter 50 value 327.141166
iter 60 value 322.106484
iter 70 value 318.514845
iter 80 value 316.161547
iter 90 value 314.493104
iter 100 value 313.438480
final value 313.438480
stopped after 100 iterations
# weights: 401
initial value 710.739663
iter 10 value 495.799598
iter 20 value 426.851047
iter 30 value 368.524269
iter 40 value 347.484297
iter 50 value 337.784892
iter 60 value 327.887876
iter 70 value 324.147535
iter 80 value 322.044084
iter 90 value 321.363683
iter 100 value 320.606942
final value 320.606942
stopped after 100 iterations
# weights: 426
initial value 571.154282
iter 10 value 494.958176
iter 20 value 458.255609
iter 30 value 382.928040
iter 40 value 356.032912
iter 50 value 338.698897
iter 60 value 332.369961
iter 70 value 330.414755
iter 80 value 329.139740
iter 90 value 327.749066
iter 100 value 326.470486
final value 326.470486
stopped after 100 iterations
# weights: 451
initial value 595.365068
iter 10 value 493.643166
iter 20 value 445.432399
iter 30 value 404.828123
iter 40 value 383.073778
iter 50 value 354.862664
iter 60 value 342.767194
iter 70 value 338.157370
iter 80 value 334.227850
iter 90 value 332.017220
iter 100 value 330.786458
final value 330.786458
stopped after 100 iterations
# weights: 476
initial value 565.653268
iter 10 value 493.550320
iter 20 value 454.367767
iter 30 value 398.612728
iter 40 value 368.608142
iter 50 value 356.950448
iter 60 value 344.708888
iter 70 value 339.404192
iter 80 value 336.734351
iter 90 value 335.502218
iter 100 value 335.031397
final value 335.031397
stopped after 100 iterations
# weights: 501
initial value 900.828508
iter 10 value 513.833460
iter 20 value 437.269043
iter 30 value 402.294938
iter 40 value 370.837273
iter 50 value 351.538632
iter 60 value 345.379215
iter 70 value 343.585106
iter 80 value 341.482668
iter 90 value 340.063577
iter 100 value 339.143250
final value 339.143250
stopped after 100 iterations
# weights: 526
initial value 601.584031
iter 10 value 454.196594
iter 20 value 360.929025
iter 30 value 311.593092
iter 40 value 286.621965
iter 50 value 271.235440
iter 60 value 261.525215
iter 70 value 253.165428
iter 80 value 246.128744
iter 90 value 237.052733
iter 100 value 227.296418
final value 227.296418
stopped after 100 iterations
# weights: 551
initial value 752.290603
iter 10 value 488.433778
iter 20 value 393.752595
iter 30 value 350.949551
iter 40 value 316.619266
iter 50 value 303.374305
iter 60 value 294.574621
iter 70 value 286.104602
iter 80 value 281.467456
iter 90 value 277.090922
iter 100 value 273.262903
final value 273.262903
stopped after 100 iterations
# weights: 576
initial value 1082.213903
iter 10 value 484.434621
iter 20 value 395.444255
iter 30 value 360.660389
iter 40 value 342.579971
iter 50 value 322.608024
iter 60 value 315.213125
iter 70 value 307.857571
iter 80 value 304.272225
iter 90 value 301.121334
iter 100 value 296.677311
final value 296.677311
stopped after 100 iterations
# weights: 601
initial value 644.308341
iter 10 value 480.757371
iter 20 value 411.922093
iter 30 value 381.302090
iter 40 value 345.194658
iter 50 value 328.400749
iter 60 value 318.021172
iter 70 value 309.577768
iter 80 value 306.441417
iter 90 value 304.743978
iter 100 value 303.234460
final value 303.234460
stopped after 100 iterations
# weights: 626
initial value 1386.851104
iter 10 value 494.517851
iter 20 value 412.485816
iter 30 value 380.010931
iter 40 value 344.590085
iter 50 value 329.591674
iter 60 value 323.230175
iter 70 value 319.357210
iter 80 value 315.256390
iter 90 value 314.270523
iter 100 value 313.093678
final value 313.093678
stopped after 100 iterations
# weights: 651
initial value 543.465251
iter 10 value 466.539159
iter 20 value 422.729440
iter 30 value 380.209767
iter 40 value 345.643863
iter 50 value 329.941328
iter 60 value 323.559386
iter 70 value 320.564682
iter 80 value 319.029090
iter 90 value 318.156479
iter 100 value 317.703808
final value 317.703808
stopped after 100 iterations
# weights: 676
initial value 565.742137
iter 10 value 513.554433
iter 20 value 420.854586
iter 30 value 365.754321
iter 40 value 349.956087
iter 50 value 338.727485
iter 60 value 332.476462
iter 70 value 330.234308
iter 80 value 328.124929
iter 90 value 325.905788
iter 100 value 324.939391
final value 324.939391
stopped after 100 iterations
# weights: 701
initial value 729.085877
iter 10 value 506.028981
iter 20 value 435.018037
iter 30 value 405.287295
iter 40 value 362.316500
iter 50 value 346.149543
iter 60 value 341.368297
iter 70 value 337.917991
iter 80 value 335.721591
iter 90 value 333.698467
iter 100 value 332.190134
final value 332.190134
stopped after 100 iterations
# weights: 726
initial value 774.941095
iter 10 value 514.324104
iter 20 value 452.126407
iter 30 value 370.293220
iter 40 value 355.176705
iter 50 value 349.005240
iter 60 value 342.671747
iter 70 value 339.121555
iter 80 value 337.718179
iter 90 value 336.430479
iter 100 value 335.403953
final value 335.403953
stopped after 100 iterations
# weights: 751
initial value 1016.466446
iter 10 value 545.576834
iter 20 value 475.477064
iter 30 value 424.435349
iter 40 value 394.436001
iter 50 value 367.667146
iter 60 value 357.053060
iter 70 value 350.234134
iter 80 value 346.193085
iter 90 value 343.720945
iter 100 value 341.532468
final value 341.532468
stopped after 100 iterations
# weights: 776
initial value 555.613219
iter 10 value 471.575218
iter 20 value 373.557982
iter 30 value 341.841386
iter 40 value 315.855445
iter 50 value 297.377623
iter 60 value 279.112212
iter 70 value 273.615456
iter 80 value 269.656963
iter 90 value 261.462792
iter 100 value 241.227557
final value 241.227557
stopped after 100 iterations
# weights: 801
initial value 526.076835
iter 10 value 473.593904
iter 20 value 396.266479
iter 30 value 337.183420
iter 40 value 318.783055
iter 50 value 306.335908
iter 60 value 294.161774
iter 70 value 288.631419
iter 80 value 283.037293
iter 90 value 279.638944
iter 100 value 276.241747
final value 276.241747
stopped after 100 iterations
# weights: 826
initial value 957.395916
iter 10 value 517.937411
iter 20 value 480.601245
iter 30 value 446.927221
iter 40 value 406.461950
iter 50 value 365.792049
iter 60 value 332.031287
iter 70 value 321.412047
iter 80 value 310.570467
iter 90 value 306.224960
iter 100 value 302.489532
final value 302.489532
stopped after 100 iterations
# weights: 851
initial value 664.088777
iter 10 value 518.554307
iter 20 value 447.577462
iter 30 value 399.980108
iter 40 value 365.496625
iter 50 value 350.918161
iter 60 value 340.123767
iter 70 value 327.384406
iter 80 value 317.692911
iter 90 value 311.996477
iter 100 value 307.265393
final value 307.265393
stopped after 100 iterations
# weights: 876
initial value 615.712282
iter 10 value 507.032113
iter 20 value 440.967424
iter 30 value 409.361897
iter 40 value 372.402587
iter 50 value 347.521443
iter 60 value 337.049675
iter 70 value 329.512271
iter 80 value 323.431745
iter 90 value 320.390273
iter 100 value 316.821445
final value 316.821445
stopped after 100 iterations
# weights: 901
initial value 897.994963
iter 10 value 503.387047
iter 20 value 457.401837
iter 30 value 414.762845
iter 40 value 375.990991
iter 50 value 353.238003
iter 60 value 339.982100
iter 70 value 333.130221
iter 80 value 328.213181
iter 90 value 325.198405
iter 100 value 323.209604
final value 323.209604
stopped after 100 iterations
# weights: 926
initial value 577.043023
iter 10 value 516.377335
iter 20 value 443.977102
iter 30 value 403.236433
iter 40 value 374.802782
iter 50 value 350.889160
iter 60 value 339.032767
iter 70 value 333.963549
iter 80 value 329.698004
iter 90 value 327.634362
iter 100 value 326.060076
final value 326.060076
stopped after 100 iterations
# weights: 951
initial value 837.605803
iter 10 value 556.239968
iter 20 value 458.511459
iter 30 value 419.281269
iter 40 value 381.063045
iter 50 value 358.792322
iter 60 value 348.755400
iter 70 value 341.562722
iter 80 value 338.997830
iter 90 value 335.864669
iter 100 value 333.031667
final value 333.031667
stopped after 100 iterations
# weights: 976
initial value 1035.219894
iter 10 value 524.938664
iter 20 value 467.522178
iter 30 value 386.715121
iter 40 value 367.320745
iter 50 value 352.974134
iter 60 value 346.419272
iter 70 value 342.248020
iter 80 value 339.282778
iter 90 value 337.833560
iter 100 value 336.567287
final value 336.567287
stopped after 100 iterations
model fit failed for Fold03: size= 40, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1001) weights
model fit failed for Fold03: size= 41, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1026) weights
model fit failed for Fold03: size= 42, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1051) weights
model fit failed for Fold03: size= 43, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1076) weights
model fit failed for Fold03: size= 44, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1101) weights
model fit failed for Fold03: size= 45, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1126) weights
model fit failed for Fold03: size= 46, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1151) weights
model fit failed for Fold03: size= 47, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1176) weights
model fit failed for Fold03: size= 48, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1201) weights
model fit failed for Fold03: size= 49, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1226) weights
model fit failed for Fold03: size= 50, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1251) weights
model fit failed for Fold03: size= 51, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1276) weights
model fit failed for Fold03: size= 52, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1301) weights
model fit failed for Fold03: size= 53, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1326) weights
model fit failed for Fold03: size= 54, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1351) weights
model fit failed for Fold03: size= 55, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1376) weights
model fit failed for Fold03: size= 56, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1401) weights
model fit failed for Fold03: size= 57, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1426) weights
model fit failed for Fold03: size= 58, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1451) weights
model fit failed for Fold03: size= 59, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1476) weights
model fit failed for Fold03: size= 60, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1501) weights
model fit failed for Fold03: size= 61, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1526) weights
model fit failed for Fold03: size= 62, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1551) weights
model fit failed for Fold03: size= 63, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1576) weights
model fit failed for Fold03: size= 64, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1601) weights
model fit failed for Fold03: size= 65, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1626) weights
model fit failed for Fold03: size= 66, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1651) weights
model fit failed for Fold03: size= 67, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1676) weights
model fit failed for Fold03: size= 68, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1701) weights
model fit failed for Fold03: size= 69, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1726) weights
model fit failed for Fold03: size= 70, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1751) weights
model fit failed for Fold03: size= 71, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1776) weights
model fit failed for Fold03: size= 72, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1801) weights
model fit failed for Fold03: size= 73, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1826) weights
model fit failed for Fold03: size= 74, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1851) weights
model fit failed for Fold03: size= 75, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1876) weights
model fit failed for Fold03: size= 76, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1901) weights
model fit failed for Fold03: size= 77, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1926) weights
model fit failed for Fold03: size= 78, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1951) weights
model fit failed for Fold03: size= 79, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1976) weights
model fit failed for Fold03: size= 80, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2001) weights
model fit failed for Fold03: size= 81, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2026) weights
model fit failed for Fold03: size= 82, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2051) weights
model fit failed for Fold03: size= 83, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2076) weights
model fit failed for Fold03: size= 84, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2101) weights
model fit failed for Fold03: size= 85, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2126) weights
model fit failed for Fold03: size= 86, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2151) weights
model fit failed for Fold03: size= 87, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2176) weights
model fit failed for Fold03: size= 88, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2201) weights
model fit failed for Fold03: size= 89, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2226) weights
model fit failed for Fold03: size= 90, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2251) weights
model fit failed for Fold03: size= 91, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2276) weights
model fit failed for Fold03: size= 92, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2301) weights
model fit failed for Fold03: size= 93, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2326) weights
model fit failed for Fold03: size= 94, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2351) weights
model fit failed for Fold03: size= 95, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2376) weights
model fit failed for Fold03: size= 96, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2401) weights
model fit failed for Fold03: size= 97, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2426) weights
model fit failed for Fold03: size= 98, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2451) weights
model fit failed for Fold03: size= 99, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2476) weights
model fit failed for Fold03: size=100, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2501) weights
# weights: 26
initial value 532.495098
iter 10 value 420.681514
iter 20 value 358.184575
iter 30 value 319.055907
iter 40 value 312.894571
iter 50 value 310.620445
iter 60 value 309.448657
iter 70 value 306.062964
iter 80 value 298.036379
iter 90 value 297.491796
iter 100 value 297.490226
final value 297.490226
stopped after 100 iterations
# weights: 51
initial value 624.022740
iter 10 value 458.460515
iter 20 value 383.689470
iter 30 value 327.502509
iter 40 value 312.469105
iter 50 value 308.686562
iter 60 value 307.370416
iter 70 value 307.302658
iter 80 value 307.300734
iter 90 value 307.299548
final value 307.299432
converged
# weights: 76
initial value 578.043946
iter 10 value 480.993647
iter 20 value 422.176553
iter 30 value 351.820298
iter 40 value 318.911539
iter 50 value 310.534861
iter 60 value 309.275304
iter 70 value 308.907760
iter 80 value 308.881276
iter 90 value 308.429080
iter 100 value 305.848466
final value 305.848466
stopped after 100 iterations
# weights: 101
initial value 556.528768
iter 10 value 471.459793
iter 20 value 409.243558
iter 30 value 327.133381
iter 40 value 315.622911
iter 50 value 314.156220
iter 60 value 313.393117
iter 70 value 313.170292
iter 80 value 313.071940
final value 313.071317
converged
# weights: 126
initial value 603.861748
iter 10 value 481.010176
iter 20 value 416.092643
iter 30 value 363.964590
iter 40 value 332.211917
iter 50 value 320.898931
iter 60 value 317.601518
iter 70 value 316.812657
iter 80 value 313.444634
iter 90 value 312.347273
iter 100 value 311.932607
final value 311.932607
stopped after 100 iterations
# weights: 151
initial value 567.757935
iter 10 value 466.083960
iter 20 value 433.147770
iter 30 value 395.284034
iter 40 value 355.259625
iter 50 value 331.150990
iter 60 value 325.325733
iter 70 value 320.804575
iter 80 value 320.214780
iter 90 value 319.906452
iter 100 value 319.445594
final value 319.445594
stopped after 100 iterations
# weights: 176
initial value 553.805582
iter 10 value 440.627683
iter 20 value 389.016563
iter 30 value 353.503508
iter 40 value 339.367897
iter 50 value 332.235465
iter 60 value 328.829859
iter 70 value 326.829222
iter 80 value 324.803549
iter 90 value 324.175897
iter 100 value 324.074818
final value 324.074818
stopped after 100 iterations
# weights: 201
initial value 749.974830
iter 10 value 494.827058
iter 20 value 428.140682
iter 30 value 359.300263
iter 40 value 342.174237
iter 50 value 333.499755
iter 60 value 330.443411
iter 70 value 328.916706
iter 80 value 328.050967
iter 90 value 327.678046
iter 100 value 327.178407
final value 327.178407
stopped after 100 iterations
# weights: 226
initial value 796.349692
iter 10 value 492.485680
iter 20 value 393.660328
iter 30 value 355.187523
iter 40 value 339.705892
iter 50 value 335.171723
iter 60 value 333.638810
iter 70 value 332.833808
iter 80 value 332.509173
iter 90 value 331.784945
iter 100 value 331.161350
final value 331.161350
stopped after 100 iterations
# weights: 251
initial value 767.675732
iter 10 value 503.552901
iter 20 value 455.461493
iter 30 value 414.863586
iter 40 value 368.512746
iter 50 value 346.740304
iter 60 value 343.191395
iter 70 value 341.369999
iter 80 value 340.402487
iter 90 value 339.824647
iter 100 value 338.593426
final value 338.593426
stopped after 100 iterations
# weights: 276
initial value 735.310563
iter 10 value 467.683518
iter 20 value 391.852934
iter 30 value 336.510309
iter 40 value 309.180564
iter 50 value 299.610652
iter 60 value 293.371838
iter 70 value 279.280215
iter 80 value 271.540989
iter 90 value 268.208664
iter 100 value 260.149714
final value 260.149714
stopped after 100 iterations
# weights: 301
initial value 598.677505
iter 10 value 466.301115
iter 20 value 395.730090
iter 30 value 354.360193
iter 40 value 317.116055
iter 50 value 306.115908
iter 60 value 298.048831
iter 70 value 288.445783
iter 80 value 280.747698
iter 90 value 275.811653
iter 100 value 273.510793
final value 273.510793
stopped after 100 iterations
# weights: 326
initial value 502.734031
iter 10 value 477.527004
iter 20 value 403.785978
iter 30 value 354.043550
iter 40 value 327.869711
iter 50 value 315.880476
iter 60 value 309.131586
iter 70 value 299.656755
iter 80 value 295.187530
iter 90 value 293.551074
iter 100 value 292.705233
final value 292.705233
stopped after 100 iterations
# weights: 351
initial value 562.503729
iter 10 value 471.978209
iter 20 value 386.217007
iter 30 value 361.628447
iter 40 value 344.053599
iter 50 value 321.345733
iter 60 value 309.491076
iter 70 value 305.376863
iter 80 value 303.465992
iter 90 value 302.382154
iter 100 value 301.820967
final value 301.820967
stopped after 100 iterations
# weights: 376
initial value 701.128777
iter 10 value 493.881542
iter 20 value 433.934183
iter 30 value 376.919123
iter 40 value 342.282048
iter 50 value 328.768598
iter 60 value 320.280116
iter 70 value 314.047909
iter 80 value 311.750974
iter 90 value 310.196731
iter 100 value 309.857632
final value 309.857632
stopped after 100 iterations
# weights: 401
initial value 607.924697
iter 10 value 492.320163
iter 20 value 455.087217
iter 30 value 410.016383
iter 40 value 360.675550
iter 50 value 344.918066
iter 60 value 329.943435
iter 70 value 322.337482
iter 80 value 319.875276
iter 90 value 318.209816
iter 100 value 316.959702
final value 316.959702
stopped after 100 iterations
# weights: 426
initial value 756.933760
iter 10 value 523.774083
iter 20 value 458.607892
iter 30 value 389.938697
iter 40 value 353.905815
iter 50 value 338.046886
iter 60 value 329.605146
iter 70 value 325.789134
iter 80 value 324.512458
iter 90 value 323.177369
iter 100 value 322.445607
final value 322.445607
stopped after 100 iterations
# weights: 451
initial value 1323.707018
iter 10 value 530.877494
iter 20 value 458.028258
iter 30 value 378.221142
iter 40 value 355.890179
iter 50 value 346.660107
iter 60 value 338.138301
iter 70 value 331.822804
iter 80 value 329.266613
iter 90 value 327.491000
iter 100 value 326.950147
final value 326.950147
stopped after 100 iterations
# weights: 476
initial value 704.688510
iter 10 value 523.562311
iter 20 value 425.453959
iter 30 value 374.001919
iter 40 value 353.273206
iter 50 value 345.052102
iter 60 value 339.545519
iter 70 value 335.310726
iter 80 value 332.625609
iter 90 value 331.651916
iter 100 value 330.949234
final value 330.949234
stopped after 100 iterations
# weights: 501
initial value 730.481524
iter 10 value 527.099235
iter 20 value 446.510030
iter 30 value 386.057413
iter 40 value 363.354357
iter 50 value 350.203307
iter 60 value 346.241288
iter 70 value 342.692351
iter 80 value 339.947363
iter 90 value 337.367090
iter 100 value 335.877981
final value 335.877981
stopped after 100 iterations
# weights: 526
initial value 806.866843
iter 10 value 454.140353
iter 20 value 401.334256
iter 30 value 355.214860
iter 40 value 300.650849
iter 50 value 293.622661
iter 60 value 278.941245
iter 70 value 252.317270
iter 80 value 235.228989
iter 90 value 221.506506
iter 100 value 207.227469
final value 207.227469
stopped after 100 iterations
# weights: 551
initial value 636.188003
iter 10 value 485.410606
iter 20 value 385.313290
iter 30 value 347.962924
iter 40 value 327.161863
iter 50 value 312.802710
iter 60 value 306.027520
iter 70 value 302.851814
iter 80 value 295.780437
iter 90 value 288.695301
iter 100 value 284.689956
final value 284.689956
stopped after 100 iterations
# weights: 576
initial value 766.154555
iter 10 value 473.704081
iter 20 value 378.243807
iter 30 value 343.875287
iter 40 value 323.491561
iter 50 value 311.944898
iter 60 value 303.792896
iter 70 value 298.565748
iter 80 value 295.526843
iter 90 value 291.614460
iter 100 value 287.670593
final value 287.670593
stopped after 100 iterations
# weights: 601
initial value 767.150792
iter 10 value 499.638845
iter 20 value 447.955706
iter 30 value 382.886745
iter 40 value 345.678266
iter 50 value 323.004508
iter 60 value 314.199384
iter 70 value 309.446116
iter 80 value 306.151077
iter 90 value 302.454311
iter 100 value 300.658376
final value 300.658376
stopped after 100 iterations
# weights: 626
initial value 635.204270
iter 10 value 512.304337
iter 20 value 424.799275
iter 30 value 401.260477
iter 40 value 376.823921
iter 50 value 342.618227
iter 60 value 330.247350
iter 70 value 323.674631
iter 80 value 318.143049
iter 90 value 314.918914
iter 100 value 312.411099
final value 312.411099
stopped after 100 iterations
# weights: 651
initial value 907.273735
iter 10 value 504.797318
iter 20 value 426.415305
iter 30 value 377.386220
iter 40 value 352.139235
iter 50 value 344.106584
iter 60 value 332.151844
iter 70 value 325.685703
iter 80 value 322.821901
iter 90 value 320.536894
iter 100 value 318.758691
final value 318.758691
stopped after 100 iterations
# weights: 676
initial value 731.672257
iter 10 value 528.718728
iter 20 value 469.324178
iter 30 value 428.248810
iter 40 value 368.270889
iter 50 value 352.896708
iter 60 value 337.153130
iter 70 value 328.515477
iter 80 value 325.264219
iter 90 value 323.534237
iter 100 value 322.623551
final value 322.623551
stopped after 100 iterations
# weights: 701
initial value 1113.919276
iter 10 value 497.449804
iter 20 value 437.798674
iter 30 value 387.978201
iter 40 value 359.054415
iter 50 value 343.157704
iter 60 value 336.590456
iter 70 value 331.282040
iter 80 value 329.788822
iter 90 value 328.015093
iter 100 value 327.037166
final value 327.037166
stopped after 100 iterations
# weights: 726
initial value 630.841522
iter 10 value 535.026890
iter 20 value 463.399137
iter 30 value 409.282921
iter 40 value 373.206141
iter 50 value 358.626228
iter 60 value 349.289221
iter 70 value 344.305973
iter 80 value 341.058341
iter 90 value 337.912249
iter 100 value 336.200288
final value 336.200288
stopped after 100 iterations
# weights: 751
initial value 675.916046
iter 10 value 575.325611
iter 20 value 468.452380
iter 30 value 388.931081
iter 40 value 357.487293
iter 50 value 347.966226
iter 60 value 342.884782
iter 70 value 339.493353
iter 80 value 337.451973
iter 90 value 335.936774
iter 100 value 334.419477
final value 334.419477
stopped after 100 iterations
# weights: 776
initial value 613.044036
iter 10 value 457.080455
iter 20 value 386.728875
iter 30 value 331.240212
iter 40 value 307.097404
iter 50 value 287.745621
iter 60 value 276.624245
iter 70 value 259.613461
iter 80 value 250.330030
iter 90 value 241.500225
iter 100 value 232.742272
final value 232.742272
stopped after 100 iterations
# weights: 801
initial value 774.437764
iter 10 value 476.826967
iter 20 value 429.844411
iter 30 value 372.523096
iter 40 value 348.491896
iter 50 value 324.639529
iter 60 value 313.127162
iter 70 value 303.067654
iter 80 value 291.834549
iter 90 value 281.055805
iter 100 value 276.462697
final value 276.462697
stopped after 100 iterations
# weights: 826
initial value 578.491072
iter 10 value 499.888410
iter 20 value 441.811121
iter 30 value 406.100540
iter 40 value 359.341231
iter 50 value 318.626558
iter 60 value 305.622685
iter 70 value 299.660280
iter 80 value 295.766984
iter 90 value 293.216843
iter 100 value 291.082080
final value 291.082080
stopped after 100 iterations
# weights: 851
initial value 579.975837
iter 10 value 503.088860
iter 20 value 435.597370
iter 30 value 381.619889
iter 40 value 335.685596
iter 50 value 321.245388
iter 60 value 312.416673
iter 70 value 306.945403
iter 80 value 304.480517
iter 90 value 302.749570
iter 100 value 301.612309
final value 301.612309
stopped after 100 iterations
# weights: 876
initial value 1021.501778
iter 10 value 512.766245
iter 20 value 451.228309
iter 30 value 380.682960
iter 40 value 357.389427
iter 50 value 342.958133
iter 60 value 330.525901
iter 70 value 321.099812
iter 80 value 316.770846
iter 90 value 312.575678
iter 100 value 310.140707
final value 310.140707
stopped after 100 iterations
# weights: 901
initial value 662.910337
iter 10 value 498.041084
iter 20 value 407.643583
iter 30 value 368.353355
iter 40 value 348.329018
iter 50 value 337.028712
iter 60 value 330.821619
iter 70 value 322.919334
iter 80 value 318.589439
iter 90 value 317.013171
iter 100 value 315.943208
final value 315.943208
stopped after 100 iterations
# weights: 926
initial value 599.217526
iter 10 value 531.225471
iter 20 value 489.770401
iter 30 value 417.524258
iter 40 value 389.849925
iter 50 value 361.938311
iter 60 value 354.583265
iter 70 value 338.488064
iter 80 value 328.790265
iter 90 value 325.324385
iter 100 value 323.631742
final value 323.631742
stopped after 100 iterations
# weights: 951
initial value 639.281594
iter 10 value 543.671588
iter 20 value 418.303181
iter 30 value 364.110506
iter 40 value 348.059247
iter 50 value 338.525585
iter 60 value 334.393027
iter 70 value 331.530652
iter 80 value 329.850159
iter 90 value 328.518946
iter 100 value 327.345473
final value 327.345473
stopped after 100 iterations
# weights: 976
initial value 817.646828
iter 10 value 566.748969
iter 20 value 473.380356
iter 30 value 393.314022
iter 40 value 366.200897
iter 50 value 354.115797
iter 60 value 342.323509
iter 70 value 338.803431
iter 80 value 335.770781
iter 90 value 333.539818
iter 100 value 331.631064
final value 331.631064
stopped after 100 iterations
model fit failed for Fold04: size= 40, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1001) weights
model fit failed for Fold04: size= 41, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1026) weights
model fit failed for Fold04: size= 42, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1051) weights
model fit failed for Fold04: size= 43, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1076) weights
model fit failed for Fold04: size= 44, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1101) weights
model fit failed for Fold04: size= 45, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1126) weights
model fit failed for Fold04: size= 46, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1151) weights
model fit failed for Fold04: size= 47, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1176) weights
model fit failed for Fold04: size= 48, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1201) weights
model fit failed for Fold04: size= 49, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1226) weights
model fit failed for Fold04: size= 50, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1251) weights
model fit failed for Fold04: size= 51, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1276) weights
model fit failed for Fold04: size= 52, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1301) weights
model fit failed for Fold04: size= 53, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1326) weights
model fit failed for Fold04: size= 54, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1351) weights
model fit failed for Fold04: size= 55, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1376) weights
model fit failed for Fold04: size= 56, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1401) weights
model fit failed for Fold04: size= 57, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1426) weights
model fit failed for Fold04: size= 58, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1451) weights
model fit failed for Fold04: size= 59, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1476) weights
model fit failed for Fold04: size= 60, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1501) weights
model fit failed for Fold04: size= 61, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1526) weights
model fit failed for Fold04: size= 62, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1551) weights
model fit failed for Fold04: size= 63, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1576) weights
model fit failed for Fold04: size= 64, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1601) weights
model fit failed for Fold04: size= 65, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1626) weights
model fit failed for Fold04: size= 66, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1651) weights
model fit failed for Fold04: size= 67, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1676) weights
model fit failed for Fold04: size= 68, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1701) weights
model fit failed for Fold04: size= 69, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1726) weights
model fit failed for Fold04: size= 70, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1751) weights
model fit failed for Fold04: size= 71, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1776) weights
model fit failed for Fold04: size= 72, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1801) weights
model fit failed for Fold04: size= 73, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1826) weights
model fit failed for Fold04: size= 74, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1851) weights
model fit failed for Fold04: size= 75, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1876) weights
model fit failed for Fold04: size= 76, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1901) weights
model fit failed for Fold04: size= 77, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1926) weights
model fit failed for Fold04: size= 78, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1951) weights
model fit failed for Fold04: size= 79, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1976) weights
model fit failed for Fold04: size= 80, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2001) weights
model fit failed for Fold04: size= 81, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2026) weights
model fit failed for Fold04: size= 82, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2051) weights
model fit failed for Fold04: size= 83, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2076) weights
model fit failed for Fold04: size= 84, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2101) weights
model fit failed for Fold04: size= 85, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2126) weights
model fit failed for Fold04: size= 86, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2151) weights
model fit failed for Fold04: size= 87, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2176) weights
model fit failed for Fold04: size= 88, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2201) weights
model fit failed for Fold04: size= 89, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2226) weights
model fit failed for Fold04: size= 90, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2251) weights
model fit failed for Fold04: size= 91, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2276) weights
model fit failed for Fold04: size= 92, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2301) weights
model fit failed for Fold04: size= 93, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2326) weights
model fit failed for Fold04: size= 94, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2351) weights
model fit failed for Fold04: size= 95, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2376) weights
model fit failed for Fold04: size= 96, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2401) weights
model fit failed for Fold04: size= 97, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2426) weights
model fit failed for Fold04: size= 98, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2451) weights
model fit failed for Fold04: size= 99, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2476) weights
model fit failed for Fold04: size=100, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2501) weights
# weights: 26
initial value 585.360737
iter 10 value 422.504914
iter 20 value 368.682505
iter 30 value 319.467550
iter 40 value 315.083175
iter 50 value 313.439822
iter 60 value 306.759015
iter 70 value 304.502385
iter 80 value 304.478879
final value 304.478873
converged
# weights: 51
initial value 520.456495
iter 10 value 430.035424
iter 20 value 340.400982
iter 30 value 315.755125
iter 40 value 308.578630
iter 50 value 307.217127
iter 60 value 306.013049
iter 70 value 305.338747
iter 80 value 305.315426
final value 305.315415
converged
# weights: 76
initial value 556.717031
iter 10 value 474.458853
iter 20 value 425.100714
iter 30 value 345.553929
iter 40 value 325.765975
iter 50 value 320.313977
iter 60 value 314.554249
iter 70 value 313.359162
iter 80 value 312.297091
iter 90 value 311.664363
iter 100 value 311.182461
final value 311.182461
stopped after 100 iterations
# weights: 101
initial value 540.588563
iter 10 value 481.850475
iter 20 value 443.181747
iter 30 value 367.154487
iter 40 value 343.874481
iter 50 value 327.508635
iter 60 value 323.688987
iter 70 value 319.491033
iter 80 value 316.349934
iter 90 value 315.241678
iter 100 value 315.104894
final value 315.104894
stopped after 100 iterations
# weights: 126
initial value 608.764531
iter 10 value 482.042052
iter 20 value 423.627218
iter 30 value 350.184924
iter 40 value 334.895501
iter 50 value 330.301128
iter 60 value 329.095812
iter 70 value 328.065579
iter 80 value 327.728612
iter 90 value 327.064364
iter 100 value 325.592628
final value 325.592628
stopped after 100 iterations
# weights: 151
initial value 620.442513
iter 10 value 484.977592
iter 20 value 450.628008
iter 30 value 407.531850
iter 40 value 361.398045
iter 50 value 346.070905
iter 60 value 338.867799
iter 70 value 334.467447
iter 80 value 332.340054
iter 90 value 328.711145
iter 100 value 327.075318
final value 327.075318
stopped after 100 iterations
# weights: 176
initial value 623.151456
iter 10 value 489.160493
iter 20 value 444.534760
iter 30 value 383.820639
iter 40 value 357.951466
iter 50 value 343.047091
iter 60 value 337.848582
iter 70 value 334.080183
iter 80 value 332.305644
iter 90 value 331.710934
iter 100 value 331.369485
final value 331.369485
stopped after 100 iterations
# weights: 201
initial value 688.450413
iter 10 value 488.019695
iter 20 value 443.052859
iter 30 value 400.023149
iter 40 value 362.826767
iter 50 value 341.674381
iter 60 value 336.750168
iter 70 value 335.569422
iter 80 value 334.733170
iter 90 value 334.310326
iter 100 value 333.934912
final value 333.934912
stopped after 100 iterations
# weights: 226
initial value 617.667550
iter 10 value 476.645606
iter 20 value 403.496197
iter 30 value 376.423788
iter 40 value 354.983354
iter 50 value 348.580577
iter 60 value 344.330546
iter 70 value 342.044689
iter 80 value 339.863227
iter 90 value 339.316254
iter 100 value 338.822233
final value 338.822233
stopped after 100 iterations
# weights: 251
initial value 615.973034
iter 10 value 502.426241
iter 20 value 449.152237
iter 30 value 372.924513
iter 40 value 356.856133
iter 50 value 348.695916
iter 60 value 344.918494
iter 70 value 343.702042
iter 80 value 342.796532
iter 90 value 341.651341
iter 100 value 341.409363
final value 341.409363
stopped after 100 iterations
# weights: 276
initial value 541.222674
iter 10 value 455.045638
iter 20 value 421.610950
iter 30 value 322.914813
iter 40 value 298.815988
iter 50 value 294.844635
iter 60 value 280.302589
iter 70 value 265.252979
iter 80 value 254.031261
iter 90 value 244.736554
iter 100 value 237.766385
final value 237.766385
stopped after 100 iterations
# weights: 301
initial value 488.428671
iter 10 value 457.658997
iter 20 value 416.710667
iter 30 value 363.726270
iter 40 value 321.742352
iter 50 value 308.581723
iter 60 value 305.189207
iter 70 value 301.736912
iter 80 value 293.671073
iter 90 value 289.323001
iter 100 value 283.689980
final value 283.689980
stopped after 100 iterations
# weights: 326
initial value 663.153619
iter 10 value 486.304947
iter 20 value 430.845897
iter 30 value 382.661176
iter 40 value 353.847924
iter 50 value 319.197549
iter 60 value 310.997012
iter 70 value 306.667085
iter 80 value 302.408701
iter 90 value 298.173541
iter 100 value 295.271128
final value 295.271128
stopped after 100 iterations
# weights: 351
initial value 692.940407
iter 10 value 461.590356
iter 20 value 407.055844
iter 30 value 357.481389
iter 40 value 350.781506
iter 50 value 336.175307
iter 60 value 320.361375
iter 70 value 312.823274
iter 80 value 309.795468
iter 90 value 307.912910
iter 100 value 307.143057
final value 307.143057
stopped after 100 iterations
# weights: 376
initial value 636.215174
iter 10 value 505.311139
iter 20 value 469.166148
iter 30 value 392.946718
iter 40 value 354.811959
iter 50 value 340.340324
iter 60 value 326.919564
iter 70 value 320.557087
iter 80 value 317.882700
iter 90 value 316.141924
iter 100 value 314.997302
final value 314.997302
stopped after 100 iterations
# weights: 401
initial value 625.427343
iter 10 value 488.569758
iter 20 value 385.568449
iter 30 value 353.173850
iter 40 value 342.997793
iter 50 value 337.162782
iter 60 value 333.325331
iter 70 value 329.578697
iter 80 value 327.148781
iter 90 value 324.536953
iter 100 value 322.748263
final value 322.748263
stopped after 100 iterations
# weights: 426
initial value 752.638094
iter 10 value 499.077660
iter 20 value 431.837583
iter 30 value 359.046118
iter 40 value 343.310883
iter 50 value 335.531828
iter 60 value 331.363430
iter 70 value 329.890364
iter 80 value 329.008492
iter 90 value 328.481949
iter 100 value 327.949487
final value 327.949487
stopped after 100 iterations
# weights: 451
initial value 645.059280
iter 10 value 471.225561
iter 20 value 395.371308
iter 30 value 367.620460
iter 40 value 355.569445
iter 50 value 344.498378
iter 60 value 338.926945
iter 70 value 336.383222
iter 80 value 335.285218
iter 90 value 333.728917
iter 100 value 332.701656
final value 332.701656
stopped after 100 iterations
# weights: 476
initial value 676.719078
iter 10 value 509.578376
iter 20 value 419.619422
iter 30 value 373.503222
iter 40 value 356.443146
iter 50 value 348.531341
iter 60 value 341.853830
iter 70 value 339.701247
iter 80 value 338.878613
iter 90 value 338.226287
iter 100 value 337.727201
final value 337.727201
stopped after 100 iterations
# weights: 501
initial value 682.639376
iter 10 value 530.242359
iter 20 value 490.481165
iter 30 value 425.277103
iter 40 value 376.397335
iter 50 value 361.379384
iter 60 value 354.494873
iter 70 value 348.058932
iter 80 value 345.487874
iter 90 value 343.883140
iter 100 value 342.559731
final value 342.559731
stopped after 100 iterations
# weights: 526
initial value 664.068088
iter 10 value 433.082788
iter 20 value 335.338097
iter 30 value 293.518712
iter 40 value 283.047718
iter 50 value 269.651972
iter 60 value 266.798045
iter 70 value 264.441273
iter 80 value 263.489158
iter 90 value 261.942645
iter 100 value 255.509067
final value 255.509067
stopped after 100 iterations
# weights: 551
initial value 556.154067
iter 10 value 465.745538
iter 20 value 389.310648
iter 30 value 334.762620
iter 40 value 314.454158
iter 50 value 305.784067
iter 60 value 300.670358
iter 70 value 292.965511
iter 80 value 286.753627
iter 90 value 284.172430
iter 100 value 281.719218
final value 281.719218
stopped after 100 iterations
# weights: 576
initial value 857.261854
iter 10 value 489.709272
iter 20 value 438.082790
iter 30 value 376.565992
iter 40 value 361.939830
iter 50 value 330.507623
iter 60 value 312.520372
iter 70 value 306.738946
iter 80 value 303.935080
iter 90 value 301.392464
iter 100 value 298.920870
final value 298.920870
stopped after 100 iterations
# weights: 601
initial value 660.301148
iter 10 value 486.622808
iter 20 value 426.739180
iter 30 value 371.201846
iter 40 value 332.871591
iter 50 value 318.122216
iter 60 value 314.423457
iter 70 value 311.760433
iter 80 value 310.424053
iter 90 value 308.395244
iter 100 value 307.072756
final value 307.072756
stopped after 100 iterations
# weights: 626
initial value 755.567780
iter 10 value 494.387994
iter 20 value 433.790368
iter 30 value 398.288148
iter 40 value 354.857226
iter 50 value 334.959461
iter 60 value 323.509071
iter 70 value 320.251235
iter 80 value 318.131129
iter 90 value 316.728500
iter 100 value 315.915784
final value 315.915784
stopped after 100 iterations
# weights: 651
initial value 639.804362
iter 10 value 492.243070
iter 20 value 405.798222
iter 30 value 389.099282
iter 40 value 376.316187
iter 50 value 353.397980
iter 60 value 336.552608
iter 70 value 328.431111
iter 80 value 325.385219
iter 90 value 324.644083
iter 100 value 323.803211
final value 323.803211
stopped after 100 iterations
# weights: 676
initial value 812.518015
iter 10 value 527.753641
iter 20 value 436.234344
iter 30 value 387.838378
iter 40 value 364.416585
iter 50 value 348.134710
iter 60 value 339.747676
iter 70 value 336.930307
iter 80 value 333.920958
iter 90 value 331.014167
iter 100 value 329.625743
final value 329.625743
stopped after 100 iterations
# weights: 701
initial value 747.047902
iter 10 value 524.246278
iter 20 value 464.838985
iter 30 value 407.283045
iter 40 value 377.670631
iter 50 value 359.094019
iter 60 value 350.426328
iter 70 value 343.363732
iter 80 value 339.218437
iter 90 value 336.830442
iter 100 value 334.521625
final value 334.521625
stopped after 100 iterations
# weights: 726
initial value 793.670366
iter 10 value 554.874231
iter 20 value 459.680123
iter 30 value 395.841425
iter 40 value 374.944413
iter 50 value 353.424107
iter 60 value 344.022693
iter 70 value 340.278914
iter 80 value 339.365680
iter 90 value 338.135185
iter 100 value 337.234533
final value 337.234533
stopped after 100 iterations
# weights: 751
initial value 886.865770
iter 10 value 541.518689
iter 20 value 453.576468
iter 30 value 418.214174
iter 40 value 383.881283
iter 50 value 358.250011
iter 60 value 347.692757
iter 70 value 344.953179
iter 80 value 343.171908
iter 90 value 342.064174
iter 100 value 341.160227
final value 341.160227
stopped after 100 iterations
# weights: 776
initial value 809.622659
iter 10 value 456.881330
iter 20 value 381.430245
iter 30 value 327.476915
iter 40 value 298.605745
iter 50 value 283.116719
iter 60 value 267.839863
iter 70 value 252.142491
iter 80 value 243.237963
iter 90 value 233.446008
iter 100 value 224.354248
final value 224.354248
stopped after 100 iterations
# weights: 801
initial value 579.033729
iter 10 value 468.678742
iter 20 value 394.022414
iter 30 value 352.635936
iter 40 value 332.283886
iter 50 value 302.382867
iter 60 value 290.608729
iter 70 value 282.260897
iter 80 value 277.754826
iter 90 value 273.685786
iter 100 value 270.384627
final value 270.384627
stopped after 100 iterations
# weights: 826
initial value 718.266532
iter 10 value 504.158489
iter 20 value 456.715521
iter 30 value 399.240902
iter 40 value 361.840467
iter 50 value 329.126311
iter 60 value 313.298875
iter 70 value 309.298302
iter 80 value 304.464640
iter 90 value 301.640524
iter 100 value 298.587872
final value 298.587872
stopped after 100 iterations
# weights: 851
initial value 542.488053
iter 10 value 501.219697
iter 20 value 415.791177
iter 30 value 376.848566
iter 40 value 348.422901
iter 50 value 327.279813
iter 60 value 315.675985
iter 70 value 311.468841
iter 80 value 308.648417
iter 90 value 306.888228
iter 100 value 305.210712
final value 305.210712
stopped after 100 iterations
# weights: 876
initial value 753.354029
iter 10 value 503.828152
iter 20 value 452.322555
iter 30 value 418.634665
iter 40 value 363.673748
iter 50 value 336.272683
iter 60 value 324.966953
iter 70 value 320.804602
iter 80 value 319.417003
iter 90 value 317.923709
iter 100 value 316.780640
final value 316.780640
stopped after 100 iterations
# weights: 901
initial value 633.321421
iter 10 value 511.683726
iter 20 value 446.983189
iter 30 value 400.744378
iter 40 value 359.135502
iter 50 value 346.304715
iter 60 value 338.224021
iter 70 value 332.367392
iter 80 value 328.880845
iter 90 value 325.778861
iter 100 value 323.840865
final value 323.840865
stopped after 100 iterations
# weights: 926
initial value 593.056844
iter 10 value 529.196059
iter 20 value 480.493474
iter 30 value 442.226795
iter 40 value 392.477245
iter 50 value 352.830806
iter 60 value 342.793100
iter 70 value 336.199054
iter 80 value 332.535663
iter 90 value 330.764349
iter 100 value 329.109436
final value 329.109436
stopped after 100 iterations
# weights: 951
initial value 1176.702337
iter 10 value 547.907890
iter 20 value 465.246116
iter 30 value 394.129017
iter 40 value 365.575232
iter 50 value 359.283963
iter 60 value 352.529755
iter 70 value 347.532562
iter 80 value 342.110063
iter 90 value 338.333386
iter 100 value 336.272667
final value 336.272667
stopped after 100 iterations
# weights: 976
initial value 1364.042007
iter 10 value 563.696689
iter 20 value 445.513945
iter 30 value 401.496651
iter 40 value 384.381150
iter 50 value 365.053250
iter 60 value 353.817768
iter 70 value 347.576205
iter 80 value 344.361572
iter 90 value 342.318733
iter 100 value 339.950402
final value 339.950402
stopped after 100 iterations
model fit failed for Fold05: size= 40, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1001) weights
model fit failed for Fold05: size= 41, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1026) weights
model fit failed for Fold05: size= 42, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1051) weights
model fit failed for Fold05: size= 43, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1076) weights
model fit failed for Fold05: size= 44, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1101) weights
model fit failed for Fold05: size= 45, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1126) weights
model fit failed for Fold05: size= 46, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1151) weights
model fit failed for Fold05: size= 47, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1176) weights
model fit failed for Fold05: size= 48, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1201) weights
model fit failed for Fold05: size= 49, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1226) weights
model fit failed for Fold05: size= 50, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1251) weights
model fit failed for Fold05: size= 51, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1276) weights
model fit failed for Fold05: size= 52, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1301) weights
model fit failed for Fold05: size= 53, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1326) weights
model fit failed for Fold05: size= 54, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1351) weights
model fit failed for Fold05: size= 55, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1376) weights
model fit failed for Fold05: size= 56, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1401) weights
model fit failed for Fold05: size= 57, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1426) weights
model fit failed for Fold05: size= 58, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1451) weights
model fit failed for Fold05: size= 59, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1476) weights
model fit failed for Fold05: size= 60, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1501) weights
model fit failed for Fold05: size= 61, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1526) weights
model fit failed for Fold05: size= 62, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1551) weights
model fit failed for Fold05: size= 63, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1576) weights
model fit failed for Fold05: size= 64, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1601) weights
model fit failed for Fold05: size= 65, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1626) weights
model fit failed for Fold05: size= 66, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1651) weights
model fit failed for Fold05: size= 67, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1676) weights
model fit failed for Fold05: size= 68, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1701) weights
model fit failed for Fold05: size= 69, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1726) weights
model fit failed for Fold05: size= 70, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1751) weights
model fit failed for Fold05: size= 71, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1776) weights
model fit failed for Fold05: size= 72, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1801) weights
model fit failed for Fold05: size= 73, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1826) weights
model fit failed for Fold05: size= 74, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1851) weights
model fit failed for Fold05: size= 75, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1876) weights
model fit failed for Fold05: size= 76, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1901) weights
model fit failed for Fold05: size= 77, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1926) weights
model fit failed for Fold05: size= 78, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1951) weights
model fit failed for Fold05: size= 79, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1976) weights
model fit failed for Fold05: size= 80, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2001) weights
model fit failed for Fold05: size= 81, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2026) weights
model fit failed for Fold05: size= 82, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2051) weights
model fit failed for Fold05: size= 83, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2076) weights
model fit failed for Fold05: size= 84, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2101) weights
model fit failed for Fold05: size= 85, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2126) weights
model fit failed for Fold05: size= 86, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2151) weights
model fit failed for Fold05: size= 87, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2176) weights
model fit failed for Fold05: size= 88, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2201) weights
model fit failed for Fold05: size= 89, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2226) weights
model fit failed for Fold05: size= 90, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2251) weights
model fit failed for Fold05: size= 91, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2276) weights
model fit failed for Fold05: size= 92, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2301) weights
model fit failed for Fold05: size= 93, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2326) weights
model fit failed for Fold05: size= 94, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2351) weights
model fit failed for Fold05: size= 95, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2376) weights
model fit failed for Fold05: size= 96, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2401) weights
model fit failed for Fold05: size= 97, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2426) weights
model fit failed for Fold05: size= 98, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2451) weights
model fit failed for Fold05: size= 99, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2476) weights
model fit failed for Fold05: size=100, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2501) weights
# weights: 26
initial value 550.105725
iter 10 value 533.860500
iter 20 value 430.783385
iter 30 value 367.452527
iter 40 value 350.714592
iter 50 value 317.050904
iter 60 value 311.694374
iter 70 value 310.652792
iter 80 value 309.425590
iter 90 value 308.336274
iter 100 value 307.986063
final value 307.986063
stopped after 100 iterations
# weights: 51
initial value 604.815208
iter 10 value 487.937115
iter 20 value 414.471593
iter 30 value 350.892508
iter 40 value 327.715328
iter 50 value 312.408620
iter 60 value 311.123253
iter 70 value 311.056507
iter 80 value 310.642713
iter 90 value 310.573677
final value 310.571969
converged
# weights: 76
initial value 551.946263
iter 10 value 495.415544
iter 20 value 428.048487
iter 30 value 346.449792
iter 40 value 327.161108
iter 50 value 320.680086
iter 60 value 319.329562
iter 70 value 316.778877
iter 80 value 315.565603
iter 90 value 314.179911
iter 100 value 312.963416
final value 312.963416
stopped after 100 iterations
# weights: 101
initial value 553.139621
iter 10 value 484.837527
iter 20 value 433.891518
iter 30 value 357.195759
iter 40 value 340.578957
iter 50 value 327.505524
iter 60 value 323.384825
iter 70 value 321.771265
iter 80 value 320.834621
iter 90 value 319.436779
iter 100 value 317.905918
final value 317.905918
stopped after 100 iterations
# weights: 126
initial value 576.680435
iter 10 value 488.180398
iter 20 value 440.818519
iter 30 value 383.244958
iter 40 value 355.621110
iter 50 value 336.267772
iter 60 value 332.783274
iter 70 value 327.225220
iter 80 value 324.611503
iter 90 value 323.685342
iter 100 value 323.663813
final value 323.663813
stopped after 100 iterations
# weights: 151
initial value 562.734216
iter 10 value 484.031484
iter 20 value 407.986880
iter 30 value 368.066663
iter 40 value 343.060859
iter 50 value 335.485188
iter 60 value 334.108359
iter 70 value 330.549882
iter 80 value 330.164115
iter 90 value 330.056084
iter 100 value 329.904364
final value 329.904364
stopped after 100 iterations
# weights: 176
initial value 550.974306
iter 10 value 486.560040
iter 20 value 449.034183
iter 30 value 382.599129
iter 40 value 356.372805
iter 50 value 344.945343
iter 60 value 339.811394
iter 70 value 337.937677
iter 80 value 336.495592
iter 90 value 336.017258
iter 100 value 335.517109
final value 335.517109
stopped after 100 iterations
# weights: 201
initial value 559.583061
iter 10 value 494.089832
iter 20 value 441.855639
iter 30 value 377.797319
iter 40 value 353.600624
iter 50 value 348.082991
iter 60 value 344.806070
iter 70 value 343.023124
iter 80 value 341.547712
iter 90 value 340.976947
iter 100 value 340.297722
final value 340.297722
stopped after 100 iterations
# weights: 226
initial value 627.796905
iter 10 value 522.219066
iter 20 value 464.690306
iter 30 value 429.670562
iter 40 value 399.407693
iter 50 value 367.903115
iter 60 value 351.058472
iter 70 value 348.157764
iter 80 value 345.768736
iter 90 value 344.705572
iter 100 value 344.468422
final value 344.468422
stopped after 100 iterations
# weights: 251
initial value 605.102254
iter 10 value 517.430214
iter 20 value 419.852012
iter 30 value 373.435113
iter 40 value 362.645602
iter 50 value 350.959753
iter 60 value 349.418615
iter 70 value 348.972898
iter 80 value 348.760206
iter 90 value 348.649406
iter 100 value 348.382908
final value 348.382908
stopped after 100 iterations
# weights: 276
initial value 601.695489
iter 10 value 454.907647
iter 20 value 384.381586
iter 30 value 337.715094
iter 40 value 324.369197
iter 50 value 310.012950
iter 60 value 292.625482
iter 70 value 284.761580
iter 80 value 279.132683
iter 90 value 270.272674
iter 100 value 262.437968
final value 262.437968
stopped after 100 iterations
# weights: 301
initial value 523.850916
iter 10 value 479.024228
iter 20 value 433.134447
iter 30 value 373.150907
iter 40 value 322.997277
iter 50 value 308.267981
iter 60 value 303.241155
iter 70 value 298.325374
iter 80 value 295.082809
iter 90 value 293.613277
iter 100 value 292.130024
final value 292.130024
stopped after 100 iterations
# weights: 326
initial value 596.695404
iter 10 value 490.212431
iter 20 value 392.386510
iter 30 value 356.081635
iter 40 value 332.892734
iter 50 value 324.163319
iter 60 value 314.206091
iter 70 value 310.320655
iter 80 value 308.082038
iter 90 value 306.425565
iter 100 value 303.277325
final value 303.277325
stopped after 100 iterations
# weights: 351
initial value 576.310097
iter 10 value 480.859468
iter 20 value 430.862216
iter 30 value 403.685071
iter 40 value 354.259681
iter 50 value 335.562709
iter 60 value 323.600806
iter 70 value 316.817188
iter 80 value 314.151634
iter 90 value 313.156932
iter 100 value 312.186121
final value 312.186121
stopped after 100 iterations
# weights: 376
initial value 691.798119
iter 10 value 494.007060
iter 20 value 435.289161
iter 30 value 402.949182
iter 40 value 368.848916
iter 50 value 348.044254
iter 60 value 337.613221
iter 70 value 330.186451
iter 80 value 326.975506
iter 90 value 324.205326
iter 100 value 322.258839
final value 322.258839
stopped after 100 iterations
# weights: 401
initial value 582.716363
iter 10 value 457.915871
iter 20 value 397.548808
iter 30 value 358.634550
iter 40 value 348.179009
iter 50 value 340.062862
iter 60 value 337.044079
iter 70 value 333.954205
iter 80 value 331.746867
iter 90 value 329.806336
iter 100 value 328.806622
final value 328.806622
stopped after 100 iterations
# weights: 426
initial value 630.746953
iter 10 value 513.659421
iter 20 value 413.739688
iter 30 value 394.906586
iter 40 value 360.959044
iter 50 value 346.683675
iter 60 value 340.414505
iter 70 value 336.532450
iter 80 value 335.327924
iter 90 value 334.673672
iter 100 value 333.959065
final value 333.959065
stopped after 100 iterations
# weights: 451
initial value 698.373627
iter 10 value 496.041809
iter 20 value 454.769890
iter 30 value 412.417819
iter 40 value 365.126946
iter 50 value 348.085558
iter 60 value 345.410497
iter 70 value 342.011886
iter 80 value 340.636687
iter 90 value 339.737114
iter 100 value 338.921190
final value 338.921190
stopped after 100 iterations
# weights: 476
initial value 564.968668
iter 10 value 456.967126
iter 20 value 394.826003
iter 30 value 376.165461
iter 40 value 365.529601
iter 50 value 358.500335
iter 60 value 352.034633
iter 70 value 347.176392
iter 80 value 345.488431
iter 90 value 344.636499
iter 100 value 343.649815
final value 343.649815
stopped after 100 iterations
# weights: 501
initial value 617.420131
iter 10 value 510.894581
iter 20 value 434.831110
iter 30 value 388.219327
iter 40 value 365.471635
iter 50 value 352.068799
iter 60 value 349.536773
iter 70 value 348.255112
iter 80 value 347.491548
iter 90 value 347.085183
iter 100 value 346.705487
final value 346.705487
stopped after 100 iterations
# weights: 526
initial value 735.424903
iter 10 value 476.795559
iter 20 value 406.717166
iter 30 value 355.386102
iter 40 value 328.345062
iter 50 value 296.744715
iter 60 value 277.812443
iter 70 value 262.532765
iter 80 value 254.409318
iter 90 value 253.830234
iter 100 value 251.856421
final value 251.856421
stopped after 100 iterations
# weights: 551
initial value 1734.734629
iter 10 value 498.584834
iter 20 value 429.509306
iter 30 value 371.720606
iter 40 value 341.225705
iter 50 value 317.548652
iter 60 value 313.819311
iter 70 value 309.633672
iter 80 value 303.162948
iter 90 value 294.200205
iter 100 value 288.630828
final value 288.630828
stopped after 100 iterations
# weights: 576
initial value 555.128974
iter 10 value 483.961065
iter 20 value 414.226506
iter 30 value 371.488613
iter 40 value 352.357859
iter 50 value 342.330683
iter 60 value 327.634047
iter 70 value 314.391024
iter 80 value 309.081358
iter 90 value 304.568252
iter 100 value 301.315933
final value 301.315933
stopped after 100 iterations
# weights: 601
initial value 802.034465
iter 10 value 501.549669
iter 20 value 410.736666
iter 30 value 371.807384
iter 40 value 347.621240
iter 50 value 337.107695
iter 60 value 328.640580
iter 70 value 324.302635
iter 80 value 320.531854
iter 90 value 317.725875
iter 100 value 316.419432
final value 316.419432
stopped after 100 iterations
# weights: 626
initial value 603.486335
iter 10 value 513.301728
iter 20 value 437.294730
iter 30 value 373.922982
iter 40 value 346.998182
iter 50 value 338.725928
iter 60 value 330.302116
iter 70 value 329.202044
iter 80 value 325.983789
iter 90 value 323.519242
iter 100 value 321.744273
final value 321.744273
stopped after 100 iterations
# weights: 651
initial value 905.811311
iter 10 value 488.490946
iter 20 value 435.083756
iter 30 value 389.549684
iter 40 value 359.276459
iter 50 value 345.602935
iter 60 value 336.246899
iter 70 value 332.473805
iter 80 value 330.529825
iter 90 value 329.529378
iter 100 value 328.923016
final value 328.923016
stopped after 100 iterations
# weights: 676
initial value 602.380969
iter 10 value 525.034409
iter 20 value 449.071499
iter 30 value 394.583136
iter 40 value 363.280635
iter 50 value 349.276640
iter 60 value 343.434668
iter 70 value 340.103124
iter 80 value 338.644687
iter 90 value 336.818422
iter 100 value 335.580720
final value 335.580720
stopped after 100 iterations
# weights: 701
initial value 690.235125
iter 10 value 542.627835
iter 20 value 485.244372
iter 30 value 436.813324
iter 40 value 411.183701
iter 50 value 390.656783
iter 60 value 366.949826
iter 70 value 356.178104
iter 80 value 349.494411
iter 90 value 345.730766
iter 100 value 343.874228
final value 343.874228
stopped after 100 iterations
# weights: 726
initial value 1497.615018
iter 10 value 581.526786
iter 20 value 468.828222
iter 30 value 410.162670
iter 40 value 388.286227
iter 50 value 371.242758
iter 60 value 357.576414
iter 70 value 352.454468
iter 80 value 350.584924
iter 90 value 348.808573
iter 100 value 345.525326
final value 345.525326
stopped after 100 iterations
# weights: 751
initial value 842.107758
iter 10 value 519.512694
iter 20 value 443.439444
iter 30 value 387.488440
iter 40 value 362.390360
iter 50 value 355.158711
iter 60 value 352.493048
iter 70 value 350.764007
iter 80 value 349.588587
iter 90 value 348.662283
iter 100 value 347.311405
final value 347.311405
stopped after 100 iterations
# weights: 776
initial value 647.341282
iter 10 value 460.434740
iter 20 value 393.975858
iter 30 value 349.755512
iter 40 value 327.503750
iter 50 value 302.015091
iter 60 value 284.620019
iter 70 value 270.801403
iter 80 value 257.171773
iter 90 value 244.794640
iter 100 value 239.495586
final value 239.495586
stopped after 100 iterations
# weights: 801
initial value 963.861577
iter 10 value 503.148367
iter 20 value 431.966769
iter 30 value 380.006948
iter 40 value 336.431063
iter 50 value 325.739460
iter 60 value 317.579561
iter 70 value 311.579196
iter 80 value 305.606208
iter 90 value 297.766238
iter 100 value 292.441209
final value 292.441209
stopped after 100 iterations
# weights: 826
initial value 692.969619
iter 10 value 494.948821
iter 20 value 435.872752
iter 30 value 393.146309
iter 40 value 355.633239
iter 50 value 350.225841
iter 60 value 333.948679
iter 70 value 316.161248
iter 80 value 306.816826
iter 90 value 304.703801
iter 100 value 304.281448
final value 304.281448
stopped after 100 iterations
# weights: 851
initial value 681.163191
iter 10 value 515.498930
iter 20 value 449.291071
iter 30 value 410.965061
iter 40 value 374.277787
iter 50 value 351.490368
iter 60 value 331.186981
iter 70 value 320.105647
iter 80 value 316.182195
iter 90 value 313.981077
iter 100 value 312.929910
final value 312.929910
stopped after 100 iterations
# weights: 876
initial value 707.135952
iter 10 value 511.204538
iter 20 value 443.270131
iter 30 value 390.491300
iter 40 value 350.831278
iter 50 value 337.783814
iter 60 value 330.653813
iter 70 value 326.998996
iter 80 value 325.089698
iter 90 value 323.432900
iter 100 value 322.076788
final value 322.076788
stopped after 100 iterations
# weights: 901
initial value 637.822674
iter 10 value 531.373072
iter 20 value 452.148709
iter 30 value 413.226866
iter 40 value 367.228851
iter 50 value 346.648894
iter 60 value 341.040656
iter 70 value 336.460977
iter 80 value 333.078849
iter 90 value 331.726943
iter 100 value 330.847622
final value 330.847622
stopped after 100 iterations
# weights: 926
initial value 865.108552
iter 10 value 535.249303
iter 20 value 444.572993
iter 30 value 412.011246
iter 40 value 391.539201
iter 50 value 367.514687
iter 60 value 355.534169
iter 70 value 349.638881
iter 80 value 344.381441
iter 90 value 340.510576
iter 100 value 336.870786
final value 336.870786
stopped after 100 iterations
# weights: 951
initial value 621.568796
iter 10 value 572.045411
iter 20 value 460.339671
iter 30 value 418.375293
iter 40 value 375.806509
iter 50 value 358.150835
iter 60 value 351.196791
iter 70 value 346.518129
iter 80 value 343.619621
iter 90 value 341.536241
iter 100 value 340.084416
final value 340.084416
stopped after 100 iterations
# weights: 976
initial value 890.755685
iter 10 value 545.649338
iter 20 value 461.585397
iter 30 value 400.714625
iter 40 value 368.588907
iter 50 value 359.008781
iter 60 value 351.492549
iter 70 value 348.304446
iter 80 value 346.230861
iter 90 value 344.739969
iter 100 value 343.727415
final value 343.727415
stopped after 100 iterations
model fit failed for Fold06: size= 40, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1001) weights
model fit failed for Fold06: size= 41, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1026) weights
model fit failed for Fold06: size= 42, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1051) weights
model fit failed for Fold06: size= 43, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1076) weights
model fit failed for Fold06: size= 44, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1101) weights
model fit failed for Fold06: size= 45, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1126) weights
model fit failed for Fold06: size= 46, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1151) weights
model fit failed for Fold06: size= 47, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1176) weights
model fit failed for Fold06: size= 48, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1201) weights
model fit failed for Fold06: size= 49, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1226) weights
model fit failed for Fold06: size= 50, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1251) weights
model fit failed for Fold06: size= 51, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1276) weights
model fit failed for Fold06: size= 52, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1301) weights
model fit failed for Fold06: size= 53, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1326) weights
model fit failed for Fold06: size= 54, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1351) weights
model fit failed for Fold06: size= 55, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1376) weights
model fit failed for Fold06: size= 56, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1401) weights
model fit failed for Fold06: size= 57, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1426) weights
model fit failed for Fold06: size= 58, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1451) weights
model fit failed for Fold06: size= 59, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1476) weights
model fit failed for Fold06: size= 60, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1501) weights
model fit failed for Fold06: size= 61, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1526) weights
model fit failed for Fold06: size= 62, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1551) weights
model fit failed for Fold06: size= 63, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1576) weights
model fit failed for Fold06: size= 64, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1601) weights
model fit failed for Fold06: size= 65, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1626) weights
model fit failed for Fold06: size= 66, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1651) weights
model fit failed for Fold06: size= 67, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1676) weights
model fit failed for Fold06: size= 68, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1701) weights
model fit failed for Fold06: size= 69, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1726) weights
model fit failed for Fold06: size= 70, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1751) weights
model fit failed for Fold06: size= 71, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1776) weights
model fit failed for Fold06: size= 72, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1801) weights
model fit failed for Fold06: size= 73, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1826) weights
model fit failed for Fold06: size= 74, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1851) weights
model fit failed for Fold06: size= 75, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1876) weights
model fit failed for Fold06: size= 76, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1901) weights
model fit failed for Fold06: size= 77, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1926) weights
model fit failed for Fold06: size= 78, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1951) weights
model fit failed for Fold06: size= 79, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1976) weights
model fit failed for Fold06: size= 80, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2001) weights
model fit failed for Fold06: size= 81, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2026) weights
model fit failed for Fold06: size= 82, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2051) weights
model fit failed for Fold06: size= 83, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2076) weights
model fit failed for Fold06: size= 84, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2101) weights
model fit failed for Fold06: size= 85, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2126) weights
model fit failed for Fold06: size= 86, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2151) weights
model fit failed for Fold06: size= 87, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2176) weights
model fit failed for Fold06: size= 88, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2201) weights
model fit failed for Fold06: size= 89, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2226) weights
model fit failed for Fold06: size= 90, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2251) weights
model fit failed for Fold06: size= 91, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2276) weights
model fit failed for Fold06: size= 92, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2301) weights
model fit failed for Fold06: size= 93, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2326) weights
model fit failed for Fold06: size= 94, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2351) weights
model fit failed for Fold06: size= 95, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2376) weights
model fit failed for Fold06: size= 96, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2401) weights
model fit failed for Fold06: size= 97, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2426) weights
model fit failed for Fold06: size= 98, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2451) weights
model fit failed for Fold06: size= 99, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2476) weights
model fit failed for Fold06: size=100, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2501) weights
# weights: 26
initial value 653.763409
iter 10 value 476.421606
iter 20 value 360.422047
iter 30 value 353.811731
iter 40 value 344.720813
iter 50 value 333.804467
iter 60 value 314.640679
iter 70 value 304.768987
iter 80 value 302.642361
iter 90 value 302.426768
final value 302.424886
converged
# weights: 51
initial value 551.803276
iter 10 value 458.825722
iter 20 value 384.841853
iter 30 value 336.124208
iter 40 value 315.289272
iter 50 value 313.667022
iter 60 value 313.633868
iter 70 value 313.610159
final value 313.610145
converged
# weights: 76
initial value 624.068322
iter 10 value 482.104984
iter 20 value 437.813409
iter 30 value 360.105425
iter 40 value 322.891597
iter 50 value 312.954172
iter 60 value 308.555630
iter 70 value 307.185542
iter 80 value 306.238266
iter 90 value 305.931299
iter 100 value 305.205268
final value 305.205268
stopped after 100 iterations
# weights: 101
initial value 616.206291
iter 10 value 482.141090
iter 20 value 385.976961
iter 30 value 345.461427
iter 40 value 328.989337
iter 50 value 326.567228
iter 60 value 326.261059
iter 70 value 325.701644
iter 80 value 323.891844
iter 90 value 320.579963
iter 100 value 317.067735
final value 317.067735
stopped after 100 iterations
# weights: 126
initial value 629.650148
iter 10 value 476.281992
iter 20 value 406.423197
iter 30 value 359.166424
iter 40 value 340.514422
iter 50 value 332.924440
iter 60 value 330.675561
iter 70 value 326.896420
iter 80 value 324.265364
iter 90 value 320.422007
iter 100 value 319.348135
final value 319.348135
stopped after 100 iterations
# weights: 151
initial value 555.235755
iter 10 value 482.715007
iter 20 value 410.463534
iter 30 value 373.595602
iter 40 value 346.998049
iter 50 value 333.108756
iter 60 value 330.267681
iter 70 value 328.483462
iter 80 value 325.576093
iter 90 value 325.124601
iter 100 value 325.006495
final value 325.006495
stopped after 100 iterations
# weights: 176
initial value 541.774307
iter 10 value 489.306023
iter 20 value 454.017865
iter 30 value 401.463943
iter 40 value 363.614857
iter 50 value 341.463824
iter 60 value 336.154196
iter 70 value 333.392396
iter 80 value 330.641261
iter 90 value 330.170856
iter 100 value 329.898362
final value 329.898362
stopped after 100 iterations
# weights: 201
initial value 689.455941
iter 10 value 499.179114
iter 20 value 432.111087
iter 30 value 389.288215
iter 40 value 353.885403
iter 50 value 344.243161
iter 60 value 341.195998
iter 70 value 339.353050
iter 80 value 336.443255
iter 90 value 335.765395
iter 100 value 335.336874
final value 335.336874
stopped after 100 iterations
# weights: 226
initial value 753.615062
iter 10 value 498.932450
iter 20 value 427.094499
iter 30 value 376.440479
iter 40 value 361.898055
iter 50 value 350.216166
iter 60 value 345.530218
iter 70 value 342.473517
iter 80 value 340.610484
iter 90 value 339.914858
iter 100 value 339.640360
final value 339.640360
stopped after 100 iterations
# weights: 251
initial value 655.024055
iter 10 value 484.814718
iter 20 value 399.052316
iter 30 value 373.136304
iter 40 value 359.482141
iter 50 value 348.130033
iter 60 value 345.365068
iter 70 value 343.394079
iter 80 value 343.114303
iter 90 value 342.900147
iter 100 value 342.573798
final value 342.573798
stopped after 100 iterations
# weights: 276
initial value 544.971395
iter 10 value 476.512747
iter 20 value 383.326488
iter 30 value 331.741882
iter 40 value 303.262368
iter 50 value 287.316890
iter 60 value 286.030115
iter 70 value 284.054495
iter 80 value 276.875811
iter 90 value 264.799142
iter 100 value 248.232380
final value 248.232380
stopped after 100 iterations
# weights: 301
initial value 690.837254
iter 10 value 490.683654
iter 20 value 436.986557
iter 30 value 389.081572
iter 40 value 352.062480
iter 50 value 327.480277
iter 60 value 307.936913
iter 70 value 297.015691
iter 80 value 288.283590
iter 90 value 281.080013
iter 100 value 276.652214
final value 276.652214
stopped after 100 iterations
# weights: 326
initial value 641.262384
iter 10 value 468.587218
iter 20 value 382.678898
iter 30 value 360.407123
iter 40 value 336.681280
iter 50 value 318.513751
iter 60 value 313.570720
iter 70 value 311.296169
iter 80 value 306.886339
iter 90 value 301.646880
iter 100 value 296.783023
final value 296.783023
stopped after 100 iterations
# weights: 351
initial value 524.287497
iter 10 value 487.481853
iter 20 value 408.231256
iter 30 value 361.083511
iter 40 value 320.605585
iter 50 value 316.938314
iter 60 value 313.930304
iter 70 value 312.065256
iter 80 value 310.366596
iter 90 value 309.793524
iter 100 value 309.558333
final value 309.558333
stopped after 100 iterations
# weights: 376
initial value 629.473323
iter 10 value 505.133368
iter 20 value 476.958334
iter 30 value 447.579474
iter 40 value 415.189815
iter 50 value 361.862141
iter 60 value 342.204210
iter 70 value 331.529993
iter 80 value 325.633749
iter 90 value 321.827578
iter 100 value 319.417137
final value 319.417137
stopped after 100 iterations
# weights: 401
initial value 968.006469
iter 10 value 487.627478
iter 20 value 430.985081
iter 30 value 374.385605
iter 40 value 356.780297
iter 50 value 345.825536
iter 60 value 335.602253
iter 70 value 331.456735
iter 80 value 329.115211
iter 90 value 327.507530
iter 100 value 325.170966
final value 325.170966
stopped after 100 iterations
# weights: 426
initial value 884.023563
iter 10 value 504.202929
iter 20 value 467.183527
iter 30 value 386.073302
iter 40 value 363.414008
iter 50 value 348.217252
iter 60 value 339.863332
iter 70 value 336.351262
iter 80 value 333.773865
iter 90 value 331.816281
iter 100 value 331.003718
final value 331.003718
stopped after 100 iterations
# weights: 451
initial value 759.161032
iter 10 value 512.361307
iter 20 value 489.319163
iter 30 value 403.159382
iter 40 value 365.221562
iter 50 value 352.475744
iter 60 value 344.657650
iter 70 value 340.865271
iter 80 value 339.167026
iter 90 value 337.846115
iter 100 value 334.628515
final value 334.628515
stopped after 100 iterations
# weights: 476
initial value 614.502435
iter 10 value 498.497270
iter 20 value 426.115079
iter 30 value 379.927083
iter 40 value 359.351231
iter 50 value 349.087557
iter 60 value 344.246349
iter 70 value 341.887461
iter 80 value 340.072340
iter 90 value 339.083762
iter 100 value 338.289504
final value 338.289504
stopped after 100 iterations
# weights: 501
initial value 581.721242
iter 10 value 512.614171
iter 20 value 428.692595
iter 30 value 381.757148
iter 40 value 360.184369
iter 50 value 352.611429
iter 60 value 347.604416
iter 70 value 344.879797
iter 80 value 343.788067
iter 90 value 343.429402
iter 100 value 342.944931
final value 342.944931
stopped after 100 iterations
# weights: 526
initial value 572.881111
iter 10 value 475.352279
iter 20 value 399.148057
iter 30 value 326.120901
iter 40 value 296.304535
iter 50 value 277.853757
iter 60 value 268.281771
iter 70 value 257.576764
iter 80 value 250.059560
iter 90 value 238.271487
iter 100 value 229.134593
final value 229.134593
stopped after 100 iterations
# weights: 551
initial value 773.060800
iter 10 value 489.892960
iter 20 value 447.148717
iter 30 value 379.957128
iter 40 value 348.721705
iter 50 value 323.398047
iter 60 value 308.772040
iter 70 value 298.520462
iter 80 value 292.804303
iter 90 value 291.597846
iter 100 value 289.541416
final value 289.541416
stopped after 100 iterations
# weights: 576
initial value 542.121521
iter 10 value 479.792840
iter 20 value 427.682753
iter 30 value 368.958417
iter 40 value 347.679868
iter 50 value 323.002771
iter 60 value 312.390719
iter 70 value 305.728249
iter 80 value 303.229503
iter 90 value 299.752952
iter 100 value 296.126353
final value 296.126353
stopped after 100 iterations
# weights: 601
initial value 574.936380
iter 10 value 502.031195
iter 20 value 433.380684
iter 30 value 404.996696
iter 40 value 364.515003
iter 50 value 341.468110
iter 60 value 325.887078
iter 70 value 317.902096
iter 80 value 312.846425
iter 90 value 308.460388
iter 100 value 306.145060
final value 306.145060
stopped after 100 iterations
# weights: 626
initial value 672.831092
iter 10 value 507.505385
iter 20 value 482.253491
iter 30 value 410.612760
iter 40 value 386.399005
iter 50 value 361.495865
iter 60 value 337.036648
iter 70 value 325.795408
iter 80 value 321.843308
iter 90 value 319.331427
iter 100 value 317.926517
final value 317.926517
stopped after 100 iterations
# weights: 651
initial value 1599.353213
iter 10 value 513.862567
iter 20 value 442.246111
iter 30 value 403.777856
iter 40 value 375.507645
iter 50 value 357.141464
iter 60 value 343.389003
iter 70 value 334.517341
iter 80 value 328.751788
iter 90 value 325.778066
iter 100 value 324.283954
final value 324.283954
stopped after 100 iterations
# weights: 676
initial value 600.526265
iter 10 value 529.921677
iter 20 value 429.709462
iter 30 value 406.548965
iter 40 value 366.566025
iter 50 value 349.244651
iter 60 value 339.469340
iter 70 value 336.352450
iter 80 value 332.975110
iter 90 value 330.694895
iter 100 value 328.922546
final value 328.922546
stopped after 100 iterations
# weights: 701
initial value 705.865157
iter 10 value 509.010029
iter 20 value 422.961195
iter 30 value 380.289032
iter 40 value 358.186299
iter 50 value 344.829441
iter 60 value 338.297058
iter 70 value 336.592709
iter 80 value 335.282168
iter 90 value 334.207706
iter 100 value 333.676770
final value 333.676770
stopped after 100 iterations
# weights: 726
initial value 800.806426
iter 10 value 516.115207
iter 20 value 471.136126
iter 30 value 424.064812
iter 40 value 397.563529
iter 50 value 372.745374
iter 60 value 349.817049
iter 70 value 342.510598
iter 80 value 340.214976
iter 90 value 339.190405
iter 100 value 338.516360
final value 338.516360
stopped after 100 iterations
# weights: 751
initial value 702.327933
iter 10 value 531.015851
iter 20 value 452.068829
iter 30 value 398.167141
iter 40 value 370.834050
iter 50 value 360.293001
iter 60 value 349.162961
iter 70 value 345.950250
iter 80 value 344.206050
iter 90 value 343.569917
iter 100 value 342.781455
final value 342.781455
stopped after 100 iterations
# weights: 776
initial value 1202.163869
iter 10 value 479.562991
iter 20 value 448.520214
iter 30 value 380.854324
iter 40 value 347.907163
iter 50 value 304.866565
iter 60 value 284.250199
iter 70 value 265.520087
iter 80 value 254.066743
iter 90 value 250.027767
iter 100 value 247.244374
final value 247.244374
stopped after 100 iterations
# weights: 801
initial value 722.637598
iter 10 value 485.750726
iter 20 value 408.444237
iter 30 value 379.603851
iter 40 value 348.797490
iter 50 value 310.085970
iter 60 value 295.532787
iter 70 value 282.677589
iter 80 value 275.668717
iter 90 value 270.835782
iter 100 value 266.907961
final value 266.907961
stopped after 100 iterations
# weights: 826
initial value 543.997405
iter 10 value 462.050899
iter 20 value 385.482445
iter 30 value 359.361621
iter 40 value 344.085210
iter 50 value 337.927035
iter 60 value 325.245568
iter 70 value 313.426226
iter 80 value 308.515809
iter 90 value 304.776251
iter 100 value 301.102538
final value 301.102538
stopped after 100 iterations
# weights: 851
initial value 617.543711
iter 10 value 502.104331
iter 20 value 434.737277
iter 30 value 403.084603
iter 40 value 376.539976
iter 50 value 347.592954
iter 60 value 332.941416
iter 70 value 321.135062
iter 80 value 316.465396
iter 90 value 314.923790
iter 100 value 311.834711
final value 311.834711
stopped after 100 iterations
# weights: 876
initial value 598.615135
iter 10 value 514.118613
iter 20 value 455.732570
iter 30 value 397.531681
iter 40 value 369.115877
iter 50 value 345.129650
iter 60 value 332.684591
iter 70 value 326.502952
iter 80 value 322.006043
iter 90 value 319.430126
iter 100 value 317.403292
final value 317.403292
stopped after 100 iterations
# weights: 901
initial value 754.804540
iter 10 value 502.224115
iter 20 value 438.736768
iter 30 value 404.290000
iter 40 value 374.073507
iter 50 value 355.957141
iter 60 value 342.097959
iter 70 value 334.623027
iter 80 value 330.228539
iter 90 value 326.507740
iter 100 value 323.794364
final value 323.794364
stopped after 100 iterations
# weights: 926
initial value 1154.902332
iter 10 value 538.417940
iter 20 value 481.550039
iter 30 value 429.596461
iter 40 value 398.138736
iter 50 value 365.768544
iter 60 value 348.415911
iter 70 value 338.684758
iter 80 value 333.439401
iter 90 value 331.581044
iter 100 value 330.313645
final value 330.313645
stopped after 100 iterations
# weights: 951
initial value 1317.650733
iter 10 value 572.932413
iter 20 value 483.680723
iter 30 value 442.649355
iter 40 value 399.195236
iter 50 value 366.494983
iter 60 value 352.708811
iter 70 value 345.324921
iter 80 value 340.909892
iter 90 value 337.476672
iter 100 value 335.852708
final value 335.852708
stopped after 100 iterations
# weights: 976
initial value 808.634708
iter 10 value 578.105862
iter 20 value 507.710537
iter 30 value 437.668102
iter 40 value 402.932806
iter 50 value 364.403304
iter 60 value 356.236978
iter 70 value 349.870087
iter 80 value 344.932320
iter 90 value 342.392067
iter 100 value 340.406929
final value 340.406929
stopped after 100 iterations
model fit failed for Fold07: size= 40, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1001) weights
model fit failed for Fold07: size= 41, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1026) weights
model fit failed for Fold07: size= 42, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1051) weights
model fit failed for Fold07: size= 43, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1076) weights
model fit failed for Fold07: size= 44, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1101) weights
model fit failed for Fold07: size= 45, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1126) weights
model fit failed for Fold07: size= 46, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1151) weights
model fit failed for Fold07: size= 47, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1176) weights
model fit failed for Fold07: size= 48, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1201) weights
model fit failed for Fold07: size= 49, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1226) weights
model fit failed for Fold07: size= 50, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1251) weights
model fit failed for Fold07: size= 51, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1276) weights
model fit failed for Fold07: size= 52, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1301) weights
model fit failed for Fold07: size= 53, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1326) weights
model fit failed for Fold07: size= 54, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1351) weights
model fit failed for Fold07: size= 55, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1376) weights
model fit failed for Fold07: size= 56, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1401) weights
model fit failed for Fold07: size= 57, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1426) weights
model fit failed for Fold07: size= 58, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1451) weights
model fit failed for Fold07: size= 59, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1476) weights
model fit failed for Fold07: size= 60, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1501) weights
model fit failed for Fold07: size= 61, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1526) weights
model fit failed for Fold07: size= 62, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1551) weights
model fit failed for Fold07: size= 63, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1576) weights
model fit failed for Fold07: size= 64, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1601) weights
model fit failed for Fold07: size= 65, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1626) weights
model fit failed for Fold07: size= 66, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1651) weights
model fit failed for Fold07: size= 67, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1676) weights
model fit failed for Fold07: size= 68, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1701) weights
model fit failed for Fold07: size= 69, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1726) weights
model fit failed for Fold07: size= 70, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1751) weights
model fit failed for Fold07: size= 71, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1776) weights
model fit failed for Fold07: size= 72, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1801) weights
model fit failed for Fold07: size= 73, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1826) weights
model fit failed for Fold07: size= 74, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1851) weights
model fit failed for Fold07: size= 75, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1876) weights
model fit failed for Fold07: size= 76, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1901) weights
model fit failed for Fold07: size= 77, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1926) weights
model fit failed for Fold07: size= 78, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1951) weights
model fit failed for Fold07: size= 79, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1976) weights
model fit failed for Fold07: size= 80, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2001) weights
model fit failed for Fold07: size= 81, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2026) weights
model fit failed for Fold07: size= 82, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2051) weights
model fit failed for Fold07: size= 83, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2076) weights
model fit failed for Fold07: size= 84, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2101) weights
model fit failed for Fold07: size= 85, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2126) weights
model fit failed for Fold07: size= 86, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2151) weights
model fit failed for Fold07: size= 87, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2176) weights
model fit failed for Fold07: size= 88, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2201) weights
model fit failed for Fold07: size= 89, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2226) weights
model fit failed for Fold07: size= 90, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2251) weights
model fit failed for Fold07: size= 91, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2276) weights
model fit failed for Fold07: size= 92, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2301) weights
model fit failed for Fold07: size= 93, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2326) weights
model fit failed for Fold07: size= 94, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2351) weights
model fit failed for Fold07: size= 95, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2376) weights
model fit failed for Fold07: size= 96, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2401) weights
model fit failed for Fold07: size= 97, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2426) weights
model fit failed for Fold07: size= 98, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2451) weights
model fit failed for Fold07: size= 99, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2476) weights
model fit failed for Fold07: size=100, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2501) weights
# weights: 26
initial value 539.061013
iter 10 value 494.107966
iter 20 value 458.342475
iter 30 value 412.072773
iter 40 value 382.112142
iter 50 value 330.400092
iter 60 value 320.640360
iter 70 value 319.320622
iter 80 value 318.983473
final value 318.978642
converged
# weights: 51
initial value 673.538243
iter 10 value 476.253134
iter 20 value 371.335397
iter 30 value 339.385339
iter 40 value 330.240909
iter 50 value 329.139113
iter 60 value 328.969240
iter 70 value 328.751586
iter 80 value 324.943639
iter 90 value 323.631122
iter 100 value 322.620084
final value 322.620084
stopped after 100 iterations
# weights: 76
initial value 542.312488
iter 10 value 462.224326
iter 20 value 385.066936
iter 30 value 352.566139
iter 40 value 332.850841
iter 50 value 329.677480
iter 60 value 328.831048
iter 70 value 327.474031
iter 80 value 326.402264
iter 90 value 324.182115
iter 100 value 322.632991
final value 322.632991
stopped after 100 iterations
# weights: 101
initial value 526.848010
iter 10 value 478.411283
iter 20 value 440.819431
iter 30 value 395.113835
iter 40 value 355.231602
iter 50 value 337.335204
iter 60 value 329.081163
iter 70 value 327.535775
iter 80 value 327.105708
iter 90 value 326.991620
iter 100 value 326.971021
final value 326.971021
stopped after 100 iterations
# weights: 126
initial value 546.752675
iter 10 value 491.986286
iter 20 value 429.397454
iter 30 value 377.109726
iter 40 value 353.624490
iter 50 value 341.246950
iter 60 value 338.364685
iter 70 value 337.790791
iter 80 value 337.547537
iter 90 value 335.496364
iter 100 value 333.551911
final value 333.551911
stopped after 100 iterations
# weights: 151
initial value 859.428631
iter 10 value 464.959762
iter 20 value 438.371260
iter 30 value 373.632965
iter 40 value 354.846161
iter 50 value 345.878294
iter 60 value 342.721471
iter 70 value 342.227850
iter 80 value 342.015891
iter 90 value 341.626853
iter 100 value 341.295734
final value 341.295734
stopped after 100 iterations
# weights: 176
initial value 802.142680
iter 10 value 489.376206
iter 20 value 437.506636
iter 30 value 390.583270
iter 40 value 357.829343
iter 50 value 351.375902
iter 60 value 350.725999
iter 70 value 349.023960
iter 80 value 346.486201
iter 90 value 344.960166
iter 100 value 344.480030
final value 344.480030
stopped after 100 iterations
# weights: 201
initial value 595.477392
iter 10 value 468.049066
iter 20 value 409.036794
iter 30 value 365.646824
iter 40 value 355.189840
iter 50 value 352.594550
iter 60 value 351.766661
iter 70 value 351.362666
iter 80 value 350.973917
iter 90 value 350.413558
iter 100 value 348.673905
final value 348.673905
stopped after 100 iterations
# weights: 226
initial value 665.327094
iter 10 value 493.986458
iter 20 value 433.127563
iter 30 value 387.784261
iter 40 value 365.963041
iter 50 value 360.692524
iter 60 value 355.894873
iter 70 value 353.686556
iter 80 value 352.735450
iter 90 value 351.951157
iter 100 value 351.570667
final value 351.570667
stopped after 100 iterations
# weights: 251
initial value 605.643451
iter 10 value 467.475782
iter 20 value 439.644567
iter 30 value 386.678204
iter 40 value 369.966109
iter 50 value 360.698908
iter 60 value 357.379183
iter 70 value 356.598084
iter 80 value 356.217217
iter 90 value 356.071845
iter 100 value 355.833276
final value 355.833276
stopped after 100 iterations
# weights: 276
initial value 563.225225
iter 10 value 448.287431
iter 20 value 379.769929
iter 30 value 353.391746
iter 40 value 326.435541
iter 50 value 311.157475
iter 60 value 309.198371
iter 70 value 295.981124
iter 80 value 286.689579
iter 90 value 279.829566
iter 100 value 277.004218
final value 277.004218
stopped after 100 iterations
# weights: 301
initial value 593.151016
iter 10 value 466.310774
iter 20 value 417.079030
iter 30 value 361.457638
iter 40 value 346.250309
iter 50 value 334.931550
iter 60 value 326.862580
iter 70 value 311.148077
iter 80 value 302.490848
iter 90 value 295.973794
iter 100 value 292.260820
final value 292.260820
stopped after 100 iterations
# weights: 326
initial value 565.846070
iter 10 value 491.048361
iter 20 value 437.563152
iter 30 value 409.640394
iter 40 value 363.184751
iter 50 value 331.025767
iter 60 value 321.674998
iter 70 value 316.649227
iter 80 value 313.427632
iter 90 value 310.904849
iter 100 value 307.692688
final value 307.692688
stopped after 100 iterations
# weights: 351
initial value 862.195846
iter 10 value 509.162673
iter 20 value 485.978733
iter 30 value 416.423511
iter 40 value 367.005784
iter 50 value 354.619263
iter 60 value 340.487925
iter 70 value 334.495215
iter 80 value 331.428122
iter 90 value 328.607856
iter 100 value 324.986612
final value 324.986612
stopped after 100 iterations
# weights: 376
initial value 707.257250
iter 10 value 501.581609
iter 20 value 456.641392
iter 30 value 411.205393
iter 40 value 367.635889
iter 50 value 351.382203
iter 60 value 339.130238
iter 70 value 334.911732
iter 80 value 333.602943
iter 90 value 332.380469
iter 100 value 331.332212
final value 331.332212
stopped after 100 iterations
# weights: 401
initial value 544.182909
iter 10 value 472.629606
iter 20 value 448.596799
iter 30 value 427.229496
iter 40 value 378.561954
iter 50 value 355.459967
iter 60 value 350.574021
iter 70 value 346.257791
iter 80 value 343.929535
iter 90 value 341.416326
iter 100 value 338.900997
final value 338.900997
stopped after 100 iterations
# weights: 426
initial value 788.633055
iter 10 value 515.136672
iter 20 value 439.255586
iter 30 value 391.857096
iter 40 value 373.565233
iter 50 value 356.601969
iter 60 value 349.845517
iter 70 value 347.421635
iter 80 value 345.489750
iter 90 value 343.932241
iter 100 value 343.031264
final value 343.031264
stopped after 100 iterations
# weights: 451
initial value 586.939785
iter 10 value 517.484246
iter 20 value 451.453663
iter 30 value 407.392019
iter 40 value 376.906357
iter 50 value 360.167790
iter 60 value 354.181343
iter 70 value 351.007476
iter 80 value 349.116353
iter 90 value 348.584572
iter 100 value 347.983667
final value 347.983667
stopped after 100 iterations
# weights: 476
initial value 794.331600
iter 10 value 542.660852
iter 20 value 481.967177
iter 30 value 434.813666
iter 40 value 379.142492
iter 50 value 363.579187
iter 60 value 358.379578
iter 70 value 355.950559
iter 80 value 353.757684
iter 90 value 352.610760
iter 100 value 351.714189
final value 351.714189
stopped after 100 iterations
# weights: 501
initial value 612.558864
iter 10 value 518.275192
iter 20 value 437.862728
iter 30 value 404.868647
iter 40 value 377.695310
iter 50 value 365.350970
iter 60 value 361.851529
iter 70 value 359.422733
iter 80 value 357.976204
iter 90 value 356.400865
iter 100 value 354.800631
final value 354.800631
stopped after 100 iterations
# weights: 526
initial value 682.105509
iter 10 value 446.713919
iter 20 value 361.343163
iter 30 value 350.847544
iter 40 value 335.085362
iter 50 value 316.915254
iter 60 value 303.047326
iter 70 value 285.799041
iter 80 value 274.868450
iter 90 value 264.546951
iter 100 value 262.893235
final value 262.893235
stopped after 100 iterations
# weights: 551
initial value 551.728399
iter 10 value 479.895166
iter 20 value 454.883888
iter 30 value 370.533573
iter 40 value 334.740434
iter 50 value 317.762362
iter 60 value 312.135617
iter 70 value 305.757195
iter 80 value 299.303967
iter 90 value 292.865604
iter 100 value 289.254872
final value 289.254872
stopped after 100 iterations
# weights: 576
initial value 651.897976
iter 10 value 488.159535
iter 20 value 413.792809
iter 30 value 379.050628
iter 40 value 348.679730
iter 50 value 335.116055
iter 60 value 328.058032
iter 70 value 321.084706
iter 80 value 314.637870
iter 90 value 309.036265
iter 100 value 306.203540
final value 306.203540
stopped after 100 iterations
# weights: 601
initial value 732.700274
iter 10 value 506.860251
iter 20 value 431.682515
iter 30 value 393.208111
iter 40 value 379.941927
iter 50 value 360.079631
iter 60 value 333.972340
iter 70 value 329.894309
iter 80 value 328.432962
iter 90 value 325.995287
iter 100 value 323.969950
final value 323.969950
stopped after 100 iterations
# weights: 626
initial value 1009.029361
iter 10 value 505.179778
iter 20 value 416.951073
iter 30 value 385.657723
iter 40 value 366.682659
iter 50 value 350.532783
iter 60 value 341.440388
iter 70 value 336.984687
iter 80 value 334.641679
iter 90 value 332.907270
iter 100 value 331.503132
final value 331.503132
stopped after 100 iterations
# weights: 651
initial value 567.037375
iter 10 value 498.565527
iter 20 value 455.734609
iter 30 value 407.039584
iter 40 value 378.176360
iter 50 value 355.995742
iter 60 value 345.087433
iter 70 value 343.222007
iter 80 value 341.073120
iter 90 value 339.147162
iter 100 value 338.053632
final value 338.053632
stopped after 100 iterations
# weights: 676
initial value 585.048172
iter 10 value 519.546811
iter 20 value 445.911920
iter 30 value 412.433685
iter 40 value 394.241666
iter 50 value 374.959256
iter 60 value 359.052918
iter 70 value 348.920215
iter 80 value 345.746619
iter 90 value 344.115106
iter 100 value 343.188513
final value 343.188513
stopped after 100 iterations
# weights: 701
initial value 723.569088
iter 10 value 506.649285
iter 20 value 426.759645
iter 30 value 395.719084
iter 40 value 370.782761
iter 50 value 360.858179
iter 60 value 354.045197
iter 70 value 352.045063
iter 80 value 349.887955
iter 90 value 348.557933
iter 100 value 347.291549
final value 347.291549
stopped after 100 iterations
# weights: 726
initial value 758.690266
iter 10 value 565.965748
iter 20 value 485.060869
iter 30 value 444.090857
iter 40 value 395.753719
iter 50 value 371.047079
iter 60 value 364.038069
iter 70 value 357.753122
iter 80 value 354.158754
iter 90 value 352.680908
iter 100 value 351.922416
final value 351.922416
stopped after 100 iterations
# weights: 751
initial value 808.741847
iter 10 value 533.757589
iter 20 value 463.162580
iter 30 value 416.840181
iter 40 value 391.031909
iter 50 value 378.879229
iter 60 value 371.275656
iter 70 value 365.694957
iter 80 value 362.520852
iter 90 value 360.081630
iter 100 value 357.927564
final value 357.927564
stopped after 100 iterations
# weights: 776
initial value 1272.875971
iter 10 value 469.849683
iter 20 value 442.832532
iter 30 value 373.507193
iter 40 value 334.988083
iter 50 value 316.901185
iter 60 value 307.255395
iter 70 value 305.265480
iter 80 value 302.711772
iter 90 value 293.693684
iter 100 value 292.191267
final value 292.191267
stopped after 100 iterations
# weights: 801
initial value 613.384325
iter 10 value 488.452530
iter 20 value 463.034052
iter 30 value 375.435080
iter 40 value 349.683468
iter 50 value 336.850450
iter 60 value 324.265387
iter 70 value 316.078993
iter 80 value 310.603067
iter 90 value 305.522986
iter 100 value 300.889081
final value 300.889081
stopped after 100 iterations
# weights: 826
initial value 875.309981
iter 10 value 484.561153
iter 20 value 400.768562
iter 30 value 379.847076
iter 40 value 362.740780
iter 50 value 334.841250
iter 60 value 323.303236
iter 70 value 319.227647
iter 80 value 314.724102
iter 90 value 310.834114
iter 100 value 306.245049
final value 306.245049
stopped after 100 iterations
# weights: 851
initial value 1132.041691
iter 10 value 509.935452
iter 20 value 433.392830
iter 30 value 383.561263
iter 40 value 362.369075
iter 50 value 345.123092
iter 60 value 333.595795
iter 70 value 329.536054
iter 80 value 327.135083
iter 90 value 324.047740
iter 100 value 321.430304
final value 321.430304
stopped after 100 iterations
# weights: 876
initial value 762.121800
iter 10 value 499.808219
iter 20 value 483.369632
iter 30 value 411.742314
iter 40 value 385.188100
iter 50 value 362.726773
iter 60 value 354.348655
iter 70 value 344.392313
iter 80 value 339.071828
iter 90 value 334.723294
iter 100 value 332.415702
final value 332.415702
stopped after 100 iterations
# weights: 901
initial value 955.485962
iter 10 value 533.065209
iter 20 value 431.280646
iter 30 value 386.027790
iter 40 value 362.062509
iter 50 value 350.843009
iter 60 value 344.769196
iter 70 value 341.254156
iter 80 value 339.401660
iter 90 value 337.671675
iter 100 value 336.672572
final value 336.672572
stopped after 100 iterations
# weights: 926
initial value 1112.433183
iter 10 value 559.201529
iter 20 value 473.036519
iter 30 value 422.819614
iter 40 value 403.856960
iter 50 value 375.073167
iter 60 value 357.948524
iter 70 value 349.501705
iter 80 value 346.423136
iter 90 value 344.709845
iter 100 value 343.650633
final value 343.650633
stopped after 100 iterations
# weights: 951
initial value 745.424553
iter 10 value 573.527208
iter 20 value 519.242329
iter 30 value 481.618906
iter 40 value 412.776479
iter 50 value 368.812662
iter 60 value 359.553968
iter 70 value 353.563385
iter 80 value 350.578815
iter 90 value 349.510589
iter 100 value 348.591070
final value 348.591070
stopped after 100 iterations
# weights: 976
initial value 883.770368
iter 10 value 570.325935
iter 20 value 502.470503
iter 30 value 452.629507
iter 40 value 395.854977
iter 50 value 377.105968
iter 60 value 367.444127
iter 70 value 361.420954
iter 80 value 357.641213
iter 90 value 354.594867
iter 100 value 353.221132
final value 353.221132
stopped after 100 iterations
model fit failed for Fold08: size= 40, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1001) weights
model fit failed for Fold08: size= 41, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1026) weights
model fit failed for Fold08: size= 42, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1051) weights
model fit failed for Fold08: size= 43, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1076) weights
model fit failed for Fold08: size= 44, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1101) weights
model fit failed for Fold08: size= 45, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1126) weights
model fit failed for Fold08: size= 46, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1151) weights
model fit failed for Fold08: size= 47, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1176) weights
model fit failed for Fold08: size= 48, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1201) weights
model fit failed for Fold08: size= 49, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1226) weights
model fit failed for Fold08: size= 50, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1251) weights
model fit failed for Fold08: size= 51, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1276) weights
model fit failed for Fold08: size= 52, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1301) weights
model fit failed for Fold08: size= 53, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1326) weights
model fit failed for Fold08: size= 54, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1351) weights
model fit failed for Fold08: size= 55, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1376) weights
model fit failed for Fold08: size= 56, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1401) weights
model fit failed for Fold08: size= 57, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1426) weights
model fit failed for Fold08: size= 58, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1451) weights
model fit failed for Fold08: size= 59, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1476) weights
model fit failed for Fold08: size= 60, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1501) weights
model fit failed for Fold08: size= 61, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1526) weights
model fit failed for Fold08: size= 62, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1551) weights
model fit failed for Fold08: size= 63, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1576) weights
model fit failed for Fold08: size= 64, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1601) weights
model fit failed for Fold08: size= 65, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1626) weights
model fit failed for Fold08: size= 66, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1651) weights
model fit failed for Fold08: size= 67, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1676) weights
model fit failed for Fold08: size= 68, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1701) weights
model fit failed for Fold08: size= 69, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1726) weights
model fit failed for Fold08: size= 70, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1751) weights
model fit failed for Fold08: size= 71, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1776) weights
model fit failed for Fold08: size= 72, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1801) weights
model fit failed for Fold08: size= 73, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1826) weights
model fit failed for Fold08: size= 74, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1851) weights
model fit failed for Fold08: size= 75, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1876) weights
model fit failed for Fold08: size= 76, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1901) weights
model fit failed for Fold08: size= 77, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1926) weights
model fit failed for Fold08: size= 78, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1951) weights
model fit failed for Fold08: size= 79, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1976) weights
model fit failed for Fold08: size= 80, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2001) weights
model fit failed for Fold08: size= 81, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2026) weights
model fit failed for Fold08: size= 82, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2051) weights
model fit failed for Fold08: size= 83, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2076) weights
model fit failed for Fold08: size= 84, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2101) weights
model fit failed for Fold08: size= 85, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2126) weights
model fit failed for Fold08: size= 86, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2151) weights
model fit failed for Fold08: size= 87, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2176) weights
model fit failed for Fold08: size= 88, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2201) weights
model fit failed for Fold08: size= 89, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2226) weights
model fit failed for Fold08: size= 90, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2251) weights
model fit failed for Fold08: size= 91, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2276) weights
model fit failed for Fold08: size= 92, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2301) weights
model fit failed for Fold08: size= 93, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2326) weights
model fit failed for Fold08: size= 94, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2351) weights
model fit failed for Fold08: size= 95, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2376) weights
model fit failed for Fold08: size= 96, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2401) weights
model fit failed for Fold08: size= 97, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2426) weights
model fit failed for Fold08: size= 98, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2451) weights
model fit failed for Fold08: size= 99, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2476) weights
model fit failed for Fold08: size=100, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2501) weights
# weights: 26
initial value 555.055709
iter 10 value 508.160706
iter 20 value 430.955230
iter 30 value 350.764249
iter 40 value 316.818808
iter 50 value 312.396546
iter 60 value 312.029269
iter 70 value 311.357105
iter 80 value 309.972206
iter 90 value 309.203645
iter 100 value 299.648778
final value 299.648778
stopped after 100 iterations
# weights: 51
initial value 640.488323
iter 10 value 480.515165
iter 20 value 425.762429
iter 30 value 400.279649
iter 40 value 367.211805
iter 50 value 315.027487
iter 60 value 306.655135
iter 70 value 305.299893
iter 80 value 302.244345
iter 90 value 301.453922
iter 100 value 301.376544
final value 301.376544
stopped after 100 iterations
# weights: 76
initial value 560.532908
iter 10 value 486.020119
iter 20 value 405.544686
iter 30 value 336.058957
iter 40 value 317.053657
iter 50 value 312.909632
iter 60 value 310.804322
iter 70 value 308.879645
iter 80 value 306.884643
iter 90 value 303.674051
iter 100 value 301.009227
final value 301.009227
stopped after 100 iterations
# weights: 101
initial value 556.771150
iter 10 value 486.898415
iter 20 value 451.891205
iter 30 value 397.105237
iter 40 value 339.015277
iter 50 value 317.856413
iter 60 value 314.082905
iter 70 value 311.935357
iter 80 value 309.749496
iter 90 value 308.464232
iter 100 value 308.073967
final value 308.073967
stopped after 100 iterations
# weights: 126
initial value 542.115106
iter 10 value 487.550037
iter 20 value 428.755840
iter 30 value 394.164643
iter 40 value 337.590869
iter 50 value 321.813038
iter 60 value 320.935819
iter 70 value 320.755446
iter 80 value 320.669740
iter 90 value 320.570210
final value 320.570119
converged
# weights: 151
initial value 532.041713
iter 10 value 463.183214
iter 20 value 399.313434
iter 30 value 341.166476
iter 40 value 326.984920
iter 50 value 324.387006
iter 60 value 322.923446
iter 70 value 322.116284
iter 80 value 320.048929
iter 90 value 318.989809
iter 100 value 318.878847
final value 318.878847
stopped after 100 iterations
# weights: 176
initial value 745.517290
iter 10 value 489.789336
iter 20 value 431.373429
iter 30 value 370.363623
iter 40 value 335.924735
iter 50 value 329.409919
iter 60 value 327.835192
iter 70 value 326.633165
iter 80 value 325.234680
iter 90 value 324.737124
iter 100 value 324.324603
final value 324.324603
stopped after 100 iterations
# weights: 201
initial value 696.828392
iter 10 value 494.134658
iter 20 value 430.377798
iter 30 value 368.458047
iter 40 value 343.615843
iter 50 value 334.462575
iter 60 value 331.709265
iter 70 value 330.434716
iter 80 value 330.000683
iter 90 value 329.895428
iter 100 value 329.867318
final value 329.867318
stopped after 100 iterations
# weights: 226
initial value 611.613896
iter 10 value 483.120090
iter 20 value 416.986480
iter 30 value 393.659302
iter 40 value 358.745525
iter 50 value 344.450192
iter 60 value 341.322088
iter 70 value 339.908527
iter 80 value 337.451271
iter 90 value 335.045806
iter 100 value 333.235045
final value 333.235045
stopped after 100 iterations
# weights: 251
initial value 591.449535
iter 10 value 532.952720
iter 20 value 454.823558
iter 30 value 384.620706
iter 40 value 355.380769
iter 50 value 347.059160
iter 60 value 343.462782
iter 70 value 341.225603
iter 80 value 339.799724
iter 90 value 338.529492
iter 100 value 337.473551
final value 337.473551
stopped after 100 iterations
# weights: 276
initial value 643.666276
iter 10 value 469.475534
iter 20 value 447.971800
iter 30 value 373.227865
iter 40 value 313.784674
iter 50 value 290.085929
iter 60 value 275.744401
iter 70 value 268.490307
iter 80 value 266.202662
iter 90 value 265.272745
iter 100 value 260.634333
final value 260.634333
stopped after 100 iterations
# weights: 301
initial value 597.101397
iter 10 value 457.170933
iter 20 value 374.565076
iter 30 value 329.666274
iter 40 value 303.594973
iter 50 value 292.093087
iter 60 value 287.651834
iter 70 value 285.342060
iter 80 value 282.517799
iter 90 value 279.194323
iter 100 value 276.290125
final value 276.290125
stopped after 100 iterations
# weights: 326
initial value 692.053222
iter 10 value 452.646089
iter 20 value 365.681957
iter 30 value 332.268977
iter 40 value 315.814459
iter 50 value 304.848963
iter 60 value 300.600384
iter 70 value 297.233394
iter 80 value 295.180260
iter 90 value 294.024517
iter 100 value 292.455367
final value 292.455367
stopped after 100 iterations
# weights: 351
initial value 653.918883
iter 10 value 454.353608
iter 20 value 388.889023
iter 30 value 356.190182
iter 40 value 325.639076
iter 50 value 314.616700
iter 60 value 309.567607
iter 70 value 306.225106
iter 80 value 302.952130
iter 90 value 301.237251
iter 100 value 300.592835
final value 300.592835
stopped after 100 iterations
# weights: 376
initial value 794.783546
iter 10 value 462.250421
iter 20 value 406.257980
iter 30 value 360.992887
iter 40 value 329.996882
iter 50 value 318.533989
iter 60 value 315.617952
iter 70 value 313.739421
iter 80 value 312.338786
iter 90 value 311.923415
iter 100 value 311.672874
final value 311.672874
stopped after 100 iterations
# weights: 401
initial value 623.612949
iter 10 value 497.804146
iter 20 value 428.385462
iter 30 value 384.129267
iter 40 value 344.724218
iter 50 value 329.980756
iter 60 value 325.156461
iter 70 value 323.023663
iter 80 value 321.899989
iter 90 value 321.091756
iter 100 value 320.407343
final value 320.407343
stopped after 100 iterations
# weights: 426
initial value 663.884182
iter 10 value 512.884865
iter 20 value 428.523079
iter 30 value 373.708412
iter 40 value 352.892765
iter 50 value 338.826447
iter 60 value 331.868806
iter 70 value 328.627492
iter 80 value 326.396877
iter 90 value 324.874548
iter 100 value 323.969066
final value 323.969066
stopped after 100 iterations
# weights: 451
initial value 608.688198
iter 10 value 532.088414
iter 20 value 486.170137
iter 30 value 437.280910
iter 40 value 411.750641
iter 50 value 375.310243
iter 60 value 355.688139
iter 70 value 339.411632
iter 80 value 333.289401
iter 90 value 332.083322
iter 100 value 330.854060
final value 330.854060
stopped after 100 iterations
# weights: 476
initial value 1170.279479
iter 10 value 503.067546
iter 20 value 455.406796
iter 30 value 407.232832
iter 40 value 366.985247
iter 50 value 348.868477
iter 60 value 340.599759
iter 70 value 336.107754
iter 80 value 334.192061
iter 90 value 333.169028
iter 100 value 332.466879
final value 332.466879
stopped after 100 iterations
# weights: 501
initial value 807.979611
iter 10 value 501.243276
iter 20 value 403.023656
iter 30 value 372.293251
iter 40 value 358.099720
iter 50 value 348.495518
iter 60 value 346.024399
iter 70 value 342.990979
iter 80 value 340.692708
iter 90 value 338.961335
iter 100 value 337.131673
final value 337.131673
stopped after 100 iterations
# weights: 526
initial value 934.340275
iter 10 value 467.999267
iter 20 value 382.287108
iter 30 value 339.046591
iter 40 value 313.118100
iter 50 value 296.143135
iter 60 value 269.960794
iter 70 value 256.811762
iter 80 value 247.905345
iter 90 value 244.439791
iter 100 value 238.399172
final value 238.399172
stopped after 100 iterations
# weights: 551
initial value 997.631596
iter 10 value 482.313535
iter 20 value 428.598956
iter 30 value 399.572068
iter 40 value 362.309743
iter 50 value 331.510897
iter 60 value 312.745051
iter 70 value 298.046075
iter 80 value 287.158358
iter 90 value 280.942653
iter 100 value 275.379015
final value 275.379015
stopped after 100 iterations
# weights: 576
initial value 1071.487142
iter 10 value 483.028604
iter 20 value 444.243876
iter 30 value 368.743702
iter 40 value 341.199013
iter 50 value 321.849446
iter 60 value 312.856070
iter 70 value 308.998091
iter 80 value 302.961703
iter 90 value 296.573718
iter 100 value 292.822092
final value 292.822092
stopped after 100 iterations
# weights: 601
initial value 915.841251
iter 10 value 502.741492
iter 20 value 456.635228
iter 30 value 429.606017
iter 40 value 398.291831
iter 50 value 357.314351
iter 60 value 326.261530
iter 70 value 314.605152
iter 80 value 309.479692
iter 90 value 306.609799
iter 100 value 304.914308
final value 304.914308
stopped after 100 iterations
# weights: 626
initial value 688.233194
iter 10 value 515.202008
iter 20 value 462.850728
iter 30 value 432.193179
iter 40 value 373.445574
iter 50 value 337.111957
iter 60 value 332.817198
iter 70 value 325.020501
iter 80 value 319.654701
iter 90 value 315.535091
iter 100 value 311.939628
final value 311.939628
stopped after 100 iterations
# weights: 651
initial value 727.018847
iter 10 value 515.126609
iter 20 value 412.881954
iter 30 value 373.435215
iter 40 value 348.359519
iter 50 value 336.160571
iter 60 value 328.693041
iter 70 value 324.591698
iter 80 value 321.734638
iter 90 value 319.924644
iter 100 value 318.333836
final value 318.333836
stopped after 100 iterations
# weights: 676
initial value 842.073833
iter 10 value 498.692838
iter 20 value 469.251313
iter 30 value 422.026274
iter 40 value 398.799493
iter 50 value 352.080837
iter 60 value 339.873977
iter 70 value 332.650399
iter 80 value 330.496712
iter 90 value 326.471652
iter 100 value 324.061259
final value 324.061259
stopped after 100 iterations
# weights: 701
initial value 1068.879240
iter 10 value 518.423185
iter 20 value 465.836783
iter 30 value 419.566794
iter 40 value 369.017143
iter 50 value 350.011307
iter 60 value 338.689309
iter 70 value 334.370047
iter 80 value 332.679999
iter 90 value 331.504019
iter 100 value 330.558014
final value 330.558014
stopped after 100 iterations
# weights: 726
initial value 1437.035590
iter 10 value 503.261414
iter 20 value 446.934579
iter 30 value 388.799214
iter 40 value 351.141696
iter 50 value 343.206707
iter 60 value 339.468807
iter 70 value 336.351895
iter 80 value 335.053008
iter 90 value 334.048984
iter 100 value 332.955656
final value 332.955656
stopped after 100 iterations
# weights: 751
initial value 1002.568297
iter 10 value 544.867643
iter 20 value 451.929725
iter 30 value 386.224584
iter 40 value 360.858364
iter 50 value 347.321190
iter 60 value 341.621162
iter 70 value 339.483270
iter 80 value 338.064588
iter 90 value 336.841914
iter 100 value 336.068643
final value 336.068643
stopped after 100 iterations
# weights: 776
initial value 506.490479
iter 10 value 459.350112
iter 20 value 373.359764
iter 30 value 328.812796
iter 40 value 297.747353
iter 50 value 274.453130
iter 60 value 258.963672
iter 70 value 237.491084
iter 80 value 230.953605
iter 90 value 223.071539
iter 100 value 216.079535
final value 216.079535
stopped after 100 iterations
# weights: 801
initial value 664.166388
iter 10 value 490.180095
iter 20 value 420.380165
iter 30 value 388.869632
iter 40 value 354.116358
iter 50 value 327.707328
iter 60 value 301.844441
iter 70 value 290.432853
iter 80 value 283.234706
iter 90 value 277.100005
iter 100 value 271.853606
final value 271.853606
stopped after 100 iterations
# weights: 826
initial value 562.450179
iter 10 value 493.209125
iter 20 value 426.065483
iter 30 value 415.329907
iter 40 value 399.398383
iter 50 value 380.901100
iter 60 value 361.815997
iter 70 value 328.856279
iter 80 value 311.038933
iter 90 value 297.776303
iter 100 value 292.559999
final value 292.559999
stopped after 100 iterations
# weights: 851
initial value 651.065037
iter 10 value 509.756652
iter 20 value 444.725079
iter 30 value 377.769843
iter 40 value 348.126630
iter 50 value 328.857962
iter 60 value 315.434030
iter 70 value 310.872738
iter 80 value 308.440070
iter 90 value 306.789819
iter 100 value 304.806405
final value 304.806405
stopped after 100 iterations
# weights: 876
initial value 763.432938
iter 10 value 507.428583
iter 20 value 410.947048
iter 30 value 346.709267
iter 40 value 329.161998
iter 50 value 325.148892
iter 60 value 321.843288
iter 70 value 319.097653
iter 80 value 315.410825
iter 90 value 313.897163
iter 100 value 312.071216
final value 312.071216
stopped after 100 iterations
# weights: 901
initial value 799.679181
iter 10 value 526.482127
iter 20 value 464.256874
iter 30 value 395.865924
iter 40 value 346.266885
iter 50 value 330.619958
iter 60 value 326.422987
iter 70 value 323.901299
iter 80 value 322.033862
iter 90 value 320.847800
iter 100 value 319.160694
final value 319.160694
stopped after 100 iterations
# weights: 926
initial value 833.452754
iter 10 value 534.436580
iter 20 value 450.453171
iter 30 value 410.670934
iter 40 value 380.533863
iter 50 value 356.217175
iter 60 value 339.643916
iter 70 value 332.915618
iter 80 value 328.031277
iter 90 value 325.965720
iter 100 value 324.714972
final value 324.714972
stopped after 100 iterations
# weights: 951
initial value 842.883678
iter 10 value 543.042659
iter 20 value 484.986603
iter 30 value 443.531173
iter 40 value 408.455827
iter 50 value 371.172301
iter 60 value 354.135945
iter 70 value 346.089327
iter 80 value 339.257870
iter 90 value 333.110908
iter 100 value 331.161494
final value 331.161494
stopped after 100 iterations
# weights: 976
initial value 632.017741
iter 10 value 536.931878
iter 20 value 452.143813
iter 30 value 389.416656
iter 40 value 359.017152
iter 50 value 344.959298
iter 60 value 337.250496
iter 70 value 334.848675
iter 80 value 333.681851
iter 90 value 332.948078
iter 100 value 332.093985
final value 332.093985
stopped after 100 iterations
model fit failed for Fold09: size= 40, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1001) weights
model fit failed for Fold09: size= 41, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1026) weights
model fit failed for Fold09: size= 42, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1051) weights
model fit failed for Fold09: size= 43, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1076) weights
model fit failed for Fold09: size= 44, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1101) weights
model fit failed for Fold09: size= 45, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1126) weights
model fit failed for Fold09: size= 46, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1151) weights
model fit failed for Fold09: size= 47, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1176) weights
model fit failed for Fold09: size= 48, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1201) weights
model fit failed for Fold09: size= 49, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1226) weights
model fit failed for Fold09: size= 50, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1251) weights
model fit failed for Fold09: size= 51, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1276) weights
model fit failed for Fold09: size= 52, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1301) weights
model fit failed for Fold09: size= 53, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1326) weights
model fit failed for Fold09: size= 54, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1351) weights
model fit failed for Fold09: size= 55, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1376) weights
model fit failed for Fold09: size= 56, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1401) weights
model fit failed for Fold09: size= 57, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1426) weights
model fit failed for Fold09: size= 58, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1451) weights
model fit failed for Fold09: size= 59, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1476) weights
model fit failed for Fold09: size= 60, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1501) weights
model fit failed for Fold09: size= 61, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1526) weights
model fit failed for Fold09: size= 62, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1551) weights
model fit failed for Fold09: size= 63, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1576) weights
model fit failed for Fold09: size= 64, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1601) weights
model fit failed for Fold09: size= 65, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1626) weights
model fit failed for Fold09: size= 66, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1651) weights
model fit failed for Fold09: size= 67, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1676) weights
model fit failed for Fold09: size= 68, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1701) weights
model fit failed for Fold09: size= 69, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1726) weights
model fit failed for Fold09: size= 70, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1751) weights
model fit failed for Fold09: size= 71, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1776) weights
model fit failed for Fold09: size= 72, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1801) weights
model fit failed for Fold09: size= 73, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1826) weights
model fit failed for Fold09: size= 74, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1851) weights
model fit failed for Fold09: size= 75, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1876) weights
model fit failed for Fold09: size= 76, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1901) weights
model fit failed for Fold09: size= 77, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1926) weights
model fit failed for Fold09: size= 78, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1951) weights
model fit failed for Fold09: size= 79, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1976) weights
model fit failed for Fold09: size= 80, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2001) weights
model fit failed for Fold09: size= 81, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2026) weights
model fit failed for Fold09: size= 82, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2051) weights
model fit failed for Fold09: size= 83, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2076) weights
model fit failed for Fold09: size= 84, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2101) weights
model fit failed for Fold09: size= 85, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2126) weights
model fit failed for Fold09: size= 86, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2151) weights
model fit failed for Fold09: size= 87, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2176) weights
model fit failed for Fold09: size= 88, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2201) weights
model fit failed for Fold09: size= 89, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2226) weights
model fit failed for Fold09: size= 90, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2251) weights
model fit failed for Fold09: size= 91, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2276) weights
model fit failed for Fold09: size= 92, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2301) weights
model fit failed for Fold09: size= 93, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2326) weights
model fit failed for Fold09: size= 94, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2351) weights
model fit failed for Fold09: size= 95, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2376) weights
model fit failed for Fold09: size= 96, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2401) weights
model fit failed for Fold09: size= 97, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2426) weights
model fit failed for Fold09: size= 98, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2451) weights
model fit failed for Fold09: size= 99, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2476) weights
model fit failed for Fold09: size=100, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2501) weights
# weights: 26
initial value 705.934549
iter 10 value 534.253201
iter 20 value 474.900900
iter 30 value 367.460667
iter 40 value 321.505638
iter 50 value 312.570299
iter 60 value 309.902484
iter 70 value 309.855339
final value 309.846866
converged
# weights: 51
initial value 572.131657
iter 10 value 475.780745
iter 20 value 418.866922
iter 30 value 348.452824
iter 40 value 323.904225
iter 50 value 319.543897
iter 60 value 319.175871
iter 70 value 319.050839
iter 80 value 318.860118
final value 318.841323
converged
# weights: 76
initial value 602.946407
iter 10 value 483.377840
iter 20 value 440.078081
iter 30 value 410.240629
iter 40 value 344.064149
iter 50 value 329.045900
iter 60 value 325.954503
iter 70 value 319.657462
iter 80 value 312.717259
iter 90 value 311.284294
iter 100 value 311.091857
final value 311.091857
stopped after 100 iterations
# weights: 101
initial value 547.809030
iter 10 value 501.533703
iter 20 value 454.056690
iter 30 value 375.189926
iter 40 value 338.660202
iter 50 value 334.107397
iter 60 value 332.309077
iter 70 value 331.612131
iter 80 value 331.406830
iter 90 value 331.374781
iter 100 value 331.358795
final value 331.358795
stopped after 100 iterations
# weights: 126
initial value 666.265352
iter 10 value 496.527972
iter 20 value 451.614745
iter 30 value 403.838591
iter 40 value 356.061967
iter 50 value 338.720863
iter 60 value 334.082934
iter 70 value 326.350558
iter 80 value 324.561297
iter 90 value 323.127731
iter 100 value 322.583074
final value 322.583074
stopped after 100 iterations
# weights: 151
initial value 561.250254
iter 10 value 474.548388
iter 20 value 428.283966
iter 30 value 356.433880
iter 40 value 335.114261
iter 50 value 331.188637
iter 60 value 330.209752
iter 70 value 329.063037
iter 80 value 328.807248
iter 90 value 328.574786
iter 100 value 328.512917
final value 328.512917
stopped after 100 iterations
# weights: 176
initial value 718.808805
iter 10 value 508.154276
iter 20 value 468.927007
iter 30 value 392.378365
iter 40 value 361.507200
iter 50 value 345.367200
iter 60 value 337.920154
iter 70 value 337.348734
iter 80 value 337.202692
iter 90 value 336.732461
iter 100 value 336.032979
final value 336.032979
stopped after 100 iterations
# weights: 201
initial value 628.595894
iter 10 value 484.917333
iter 20 value 429.040633
iter 30 value 370.932585
iter 40 value 356.442825
iter 50 value 350.529170
iter 60 value 345.732888
iter 70 value 341.111419
iter 80 value 339.890414
iter 90 value 339.561209
iter 100 value 339.363164
final value 339.363164
stopped after 100 iterations
# weights: 226
initial value 879.045524
iter 10 value 500.081862
iter 20 value 476.331178
iter 30 value 428.029615
iter 40 value 372.544303
iter 50 value 362.316000
iter 60 value 353.281694
iter 70 value 348.386528
iter 80 value 346.275717
iter 90 value 345.147493
iter 100 value 344.453760
final value 344.453760
stopped after 100 iterations
# weights: 251
initial value 699.315453
iter 10 value 512.767058
iter 20 value 486.667904
iter 30 value 417.359675
iter 40 value 370.544565
iter 50 value 356.222208
iter 60 value 351.888788
iter 70 value 349.366002
iter 80 value 348.087391
iter 90 value 347.746605
iter 100 value 347.418579
final value 347.418579
stopped after 100 iterations
# weights: 276
initial value 531.825110
iter 10 value 479.013797
iter 20 value 373.512004
iter 30 value 331.336964
iter 40 value 298.027499
iter 50 value 290.158808
iter 60 value 285.691360
iter 70 value 280.386075
iter 80 value 270.973004
iter 90 value 266.014595
iter 100 value 264.154246
final value 264.154246
stopped after 100 iterations
# weights: 301
initial value 525.165971
iter 10 value 465.599123
iter 20 value 417.664893
iter 30 value 365.156016
iter 40 value 335.698333
iter 50 value 327.329759
iter 60 value 316.270581
iter 70 value 307.620156
iter 80 value 300.934958
iter 90 value 295.378571
iter 100 value 293.773958
final value 293.773958
stopped after 100 iterations
# weights: 326
initial value 744.619738
iter 10 value 490.685407
iter 20 value 435.454927
iter 30 value 353.351618
iter 40 value 330.505259
iter 50 value 319.195554
iter 60 value 313.745558
iter 70 value 309.230657
iter 80 value 305.123352
iter 90 value 302.381935
iter 100 value 300.406399
final value 300.406399
stopped after 100 iterations
# weights: 351
initial value 605.071458
iter 10 value 489.646529
iter 20 value 444.186176
iter 30 value 378.677010
iter 40 value 346.443841
iter 50 value 333.311926
iter 60 value 323.729656
iter 70 value 321.210418
iter 80 value 319.072934
iter 90 value 316.984184
iter 100 value 315.294973
final value 315.294973
stopped after 100 iterations
# weights: 376
initial value 743.947147
iter 10 value 481.209867
iter 20 value 459.077485
iter 30 value 417.584927
iter 40 value 378.834299
iter 50 value 353.900904
iter 60 value 339.954922
iter 70 value 331.743065
iter 80 value 325.937776
iter 90 value 323.633632
iter 100 value 321.964388
final value 321.964388
stopped after 100 iterations
# weights: 401
initial value 682.194257
iter 10 value 521.386597
iter 20 value 482.523039
iter 30 value 453.898323
iter 40 value 426.583066
iter 50 value 378.577963
iter 60 value 345.647118
iter 70 value 336.204688
iter 80 value 331.452857
iter 90 value 329.263328
iter 100 value 328.308556
final value 328.308556
stopped after 100 iterations
# weights: 426
initial value 557.910816
iter 10 value 486.883446
iter 20 value 409.276513
iter 30 value 384.661614
iter 40 value 362.896215
iter 50 value 347.144332
iter 60 value 341.615192
iter 70 value 338.427341
iter 80 value 335.801639
iter 90 value 334.369598
iter 100 value 333.729415
final value 333.729415
stopped after 100 iterations
# weights: 451
initial value 1008.751143
iter 10 value 516.457623
iter 20 value 449.195742
iter 30 value 373.425540
iter 40 value 354.285655
iter 50 value 347.378951
iter 60 value 342.068603
iter 70 value 340.266159
iter 80 value 339.502142
iter 90 value 338.649299
iter 100 value 337.831948
final value 337.831948
stopped after 100 iterations
# weights: 476
initial value 694.122426
iter 10 value 537.800219
iter 20 value 402.828818
iter 30 value 374.881708
iter 40 value 365.512939
iter 50 value 353.844451
iter 60 value 349.078405
iter 70 value 347.341752
iter 80 value 345.431350
iter 90 value 343.962214
iter 100 value 343.649353
final value 343.649353
stopped after 100 iterations
# weights: 501
initial value 914.093960
iter 10 value 532.891104
iter 20 value 419.701110
iter 30 value 371.012668
iter 40 value 356.849451
iter 50 value 354.322328
iter 60 value 351.533276
iter 70 value 349.424757
iter 80 value 348.615531
iter 90 value 347.935668
iter 100 value 346.969002
final value 346.969002
stopped after 100 iterations
# weights: 526
initial value 635.310341
iter 10 value 482.608605
iter 20 value 439.334746
iter 30 value 400.196146
iter 40 value 361.529939
iter 50 value 316.422806
iter 60 value 288.281944
iter 70 value 270.422654
iter 80 value 250.342377
iter 90 value 245.395712
iter 100 value 241.752856
final value 241.752856
stopped after 100 iterations
# weights: 551
initial value 886.056287
iter 10 value 465.395279
iter 20 value 426.854947
iter 30 value 378.044985
iter 40 value 351.900581
iter 50 value 331.789625
iter 60 value 311.740785
iter 70 value 306.020200
iter 80 value 302.001811
iter 90 value 300.972062
iter 100 value 298.757864
final value 298.757864
stopped after 100 iterations
# weights: 576
initial value 673.234623
iter 10 value 470.465343
iter 20 value 429.231827
iter 30 value 367.214755
iter 40 value 342.539372
iter 50 value 331.862046
iter 60 value 324.037565
iter 70 value 315.120701
iter 80 value 307.699858
iter 90 value 303.001697
iter 100 value 301.073456
final value 301.073456
stopped after 100 iterations
# weights: 601
initial value 1310.684151
iter 10 value 489.359129
iter 20 value 425.562320
iter 30 value 386.592118
iter 40 value 369.769498
iter 50 value 342.963414
iter 60 value 322.112561
iter 70 value 316.894161
iter 80 value 315.378526
iter 90 value 313.786746
iter 100 value 313.090139
final value 313.090139
stopped after 100 iterations
# weights: 626
initial value 595.918758
iter 10 value 497.967367
iter 20 value 451.722454
iter 30 value 410.432833
iter 40 value 370.467953
iter 50 value 359.132814
iter 60 value 340.830882
iter 70 value 335.171287
iter 80 value 330.648116
iter 90 value 327.803968
iter 100 value 326.201208
final value 326.201208
stopped after 100 iterations
# weights: 651
initial value 634.993022
iter 10 value 486.415236
iter 20 value 433.425815
iter 30 value 378.106411
iter 40 value 369.445231
iter 50 value 357.442900
iter 60 value 347.158130
iter 70 value 339.020357
iter 80 value 333.235641
iter 90 value 330.702796
iter 100 value 328.851236
final value 328.851236
stopped after 100 iterations
# weights: 676
initial value 814.763922
iter 10 value 518.370405
iter 20 value 451.304524
iter 30 value 406.739628
iter 40 value 367.764141
iter 50 value 350.371592
iter 60 value 344.012399
iter 70 value 339.888976
iter 80 value 337.848354
iter 90 value 336.487807
iter 100 value 335.507696
final value 335.507696
stopped after 100 iterations
# weights: 701
initial value 592.567159
iter 10 value 526.703988
iter 20 value 472.893098
iter 30 value 429.155214
iter 40 value 397.078898
iter 50 value 367.568464
iter 60 value 349.835589
iter 70 value 343.353371
iter 80 value 340.616596
iter 90 value 339.488551
iter 100 value 337.875054
final value 337.875054
stopped after 100 iterations
# weights: 726
initial value 898.470562
iter 10 value 517.100148
iter 20 value 439.216336
iter 30 value 396.063092
iter 40 value 368.311842
iter 50 value 360.032665
iter 60 value 357.517982
iter 70 value 351.960800
iter 80 value 347.113499
iter 90 value 344.444645
iter 100 value 343.167302
final value 343.167302
stopped after 100 iterations
# weights: 751
initial value 734.118823
iter 10 value 555.803762
iter 20 value 473.461827
iter 30 value 411.293740
iter 40 value 386.573941
iter 50 value 366.245727
iter 60 value 360.876869
iter 70 value 356.701400
iter 80 value 352.401227
iter 90 value 349.388659
iter 100 value 348.075021
final value 348.075021
stopped after 100 iterations
# weights: 776
initial value 900.283556
iter 10 value 457.952903
iter 20 value 402.692486
iter 30 value 357.952290
iter 40 value 328.972657
iter 50 value 300.703011
iter 60 value 292.758841
iter 70 value 288.421027
iter 80 value 274.521453
iter 90 value 251.699200
iter 100 value 249.177090
final value 249.177090
stopped after 100 iterations
# weights: 801
initial value 930.390272
iter 10 value 476.806460
iter 20 value 406.877229
iter 30 value 352.284671
iter 40 value 329.664446
iter 50 value 316.263779
iter 60 value 307.062678
iter 70 value 298.706365
iter 80 value 291.909585
iter 90 value 286.996881
iter 100 value 281.357414
final value 281.357414
stopped after 100 iterations
# weights: 826
initial value 529.337092
iter 10 value 488.541087
iter 20 value 438.135304
iter 30 value 413.594917
iter 40 value 366.482628
iter 50 value 341.134089
iter 60 value 318.770397
iter 70 value 309.023561
iter 80 value 303.866937
iter 90 value 299.787330
iter 100 value 296.280150
final value 296.280150
stopped after 100 iterations
# weights: 851
initial value 1364.519603
iter 10 value 507.947587
iter 20 value 459.546474
iter 30 value 425.930298
iter 40 value 387.981827
iter 50 value 349.772203
iter 60 value 334.001470
iter 70 value 327.189605
iter 80 value 322.953904
iter 90 value 319.603908
iter 100 value 315.902142
final value 315.902142
stopped after 100 iterations
# weights: 876
initial value 583.830613
iter 10 value 519.236213
iter 20 value 471.716645
iter 30 value 419.842164
iter 40 value 399.933485
iter 50 value 361.355888
iter 60 value 342.143671
iter 70 value 335.014125
iter 80 value 331.624045
iter 90 value 326.645755
iter 100 value 323.046535
final value 323.046535
stopped after 100 iterations
# weights: 901
initial value 1360.165123
iter 10 value 535.618586
iter 20 value 451.322346
iter 30 value 422.765799
iter 40 value 406.083938
iter 50 value 377.938786
iter 60 value 355.221075
iter 70 value 342.214438
iter 80 value 337.476175
iter 90 value 334.846240
iter 100 value 332.605793
final value 332.605793
stopped after 100 iterations
# weights: 926
initial value 643.994121
iter 10 value 538.398021
iter 20 value 431.607237
iter 30 value 381.232333
iter 40 value 364.968027
iter 50 value 351.382613
iter 60 value 345.007582
iter 70 value 341.241316
iter 80 value 338.961321
iter 90 value 337.285761
iter 100 value 335.811031
final value 335.811031
stopped after 100 iterations
# weights: 951
initial value 1378.895425
iter 10 value 566.388384
iter 20 value 472.790197
iter 30 value 429.742662
iter 40 value 396.916575
iter 50 value 375.674589
iter 60 value 356.358582
iter 70 value 350.603681
iter 80 value 345.783697
iter 90 value 342.624606
iter 100 value 341.696768
final value 341.696768
stopped after 100 iterations
# weights: 976
initial value 628.606804
iter 10 value 549.292006
iter 20 value 419.733137
iter 30 value 375.017016
iter 40 value 364.981802
iter 50 value 359.519209
iter 60 value 354.738442
iter 70 value 352.047241
iter 80 value 349.407044
iter 90 value 346.740949
iter 100 value 344.325184
final value 344.325184
stopped after 100 iterations
model fit failed for Fold10: size= 40, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1001) weights
model fit failed for Fold10: size= 41, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1026) weights
model fit failed for Fold10: size= 42, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1051) weights
model fit failed for Fold10: size= 43, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1076) weights
model fit failed for Fold10: size= 44, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1101) weights
model fit failed for Fold10: size= 45, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1126) weights
model fit failed for Fold10: size= 46, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1151) weights
model fit failed for Fold10: size= 47, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1176) weights
model fit failed for Fold10: size= 48, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1201) weights
model fit failed for Fold10: size= 49, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1226) weights
model fit failed for Fold10: size= 50, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1251) weights
model fit failed for Fold10: size= 51, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1276) weights
model fit failed for Fold10: size= 52, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1301) weights
model fit failed for Fold10: size= 53, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1326) weights
model fit failed for Fold10: size= 54, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1351) weights
model fit failed for Fold10: size= 55, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1376) weights
model fit failed for Fold10: size= 56, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1401) weights
model fit failed for Fold10: size= 57, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1426) weights
model fit failed for Fold10: size= 58, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1451) weights
model fit failed for Fold10: size= 59, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1476) weights
model fit failed for Fold10: size= 60, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1501) weights
model fit failed for Fold10: size= 61, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1526) weights
model fit failed for Fold10: size= 62, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1551) weights
model fit failed for Fold10: size= 63, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1576) weights
model fit failed for Fold10: size= 64, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1601) weights
model fit failed for Fold10: size= 65, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1626) weights
model fit failed for Fold10: size= 66, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1651) weights
model fit failed for Fold10: size= 67, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1676) weights
model fit failed for Fold10: size= 68, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1701) weights
model fit failed for Fold10: size= 69, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1726) weights
model fit failed for Fold10: size= 70, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1751) weights
model fit failed for Fold10: size= 71, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1776) weights
model fit failed for Fold10: size= 72, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1801) weights
model fit failed for Fold10: size= 73, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1826) weights
model fit failed for Fold10: size= 74, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1851) weights
model fit failed for Fold10: size= 75, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1876) weights
model fit failed for Fold10: size= 76, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1901) weights
model fit failed for Fold10: size= 77, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1926) weights
model fit failed for Fold10: size= 78, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1951) weights
model fit failed for Fold10: size= 79, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (1976) weights
model fit failed for Fold10: size= 80, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2001) weights
model fit failed for Fold10: size= 81, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2026) weights
model fit failed for Fold10: size= 82, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2051) weights
model fit failed for Fold10: size= 83, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2076) weights
model fit failed for Fold10: size= 84, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2101) weights
model fit failed for Fold10: size= 85, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2126) weights
model fit failed for Fold10: size= 86, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2151) weights
model fit failed for Fold10: size= 87, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2176) weights
model fit failed for Fold10: size= 88, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2201) weights
model fit failed for Fold10: size= 89, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2226) weights
model fit failed for Fold10: size= 90, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2251) weights
model fit failed for Fold10: size= 91, decay=0.01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2276) weights
model fit failed for Fold10: size= 92, decay=0.11 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2301) weights
model fit failed for Fold10: size= 93, decay=0.21 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2326) weights
model fit failed for Fold10: size= 94, decay=0.31 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2351) weights
model fit failed for Fold10: size= 95, decay=0.41 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2376) weights
model fit failed for Fold10: size= 96, decay=0.51 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2401) weights
model fit failed for Fold10: size= 97, decay=0.61 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2426) weights
model fit failed for Fold10: size= 98, decay=0.71 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2451) weights
model fit failed for Fold10: size= 99, decay=0.81 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2476) weights
model fit failed for Fold10: size=100, decay=0.91 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (2501) weights
There were missing values in resampled performance measures.missing values found in aggregated results
# weights: 251
initial value 672.190405
iter 10 value 549.611792
iter 20 value 490.363061
iter 30 value 423.739736
iter 40 value 396.662851
iter 50 value 384.647318
iter 60 value 382.711173
iter 70 value 381.677349
iter 80 value 380.288314
iter 90 value 379.272059
iter 100 value 378.796717
final value 378.796717
stopped after 100 iterations
train_nn$bestTune
#Result
plot(train_nn)
rf_model <- randomForest(factor(Survived) ~ Pclass + Sex + Age + SibSp + Parch +
Fare + Embarked + Title +
Family_size,
data = train)
plot(rf_model, ylim=c(0,0.36))
legend('topright', colnames(rf_model$err.rate), col=1:3, fill=1:3)
importance <- importance(rf_model)
varImportance <- data.frame(Variables = row.names(importance),
Importance = round(importance[ ,'MeanDecreaseGini'],2))
rankImportance <- varImportance %>%
mutate(Rank = paste0('#',dense_rank(desc(Importance))))
ggplot(rankImportance, aes(x = reorder(Variables, Importance),
y = Importance, fill = Importance)) +
geom_bar(stat='identity') +
geom_text(aes(x = Variables, y = 0.5, label = Rank),
hjust=0, vjust=0.55, size = 4, colour = 'red') +
labs(x = 'Variables') +
coord_flip()
prediction <- predict(rf_model, test)
solution <- data.frame(PassengerID = test$PassengerId, Survived = prediction)
write.csv(solution, file = 'rf_mod_Solution.csv', row.names = FALSE)
nn_preds <- predict(train_nn, test)
solution <- data.frame(PassengerID = test$PassengerId,
Survived = nn_preds)
write.csv(solution, file = 'nn.titanic.preds.csv', row.names = FALSE)