Exclusions
# remove looking times less than 1 sec
complete_df <- complete_df %>%
filter(
looking_time_2000 > 1, # remove looking times less than 1 sec
looks_error_2000_s == 0, # remove looking times less than 1 sec
valid,
!(subject_num == '6' & session_num == "1" & trial_num >= 4), # subj 6, sess 1 exclude trials 4,5,6
!(subject_num == '9' & session_num == "1"), # subj 9, sess 1 exclude completely
!(subject_num == '13' & session_num == "1"), # subj 13, session 1 exclude completely
!(subject_num == '17' & session_num == "1" & trial_num == 6), # subj 17 sess 1 exclude trial 6
!(subject_num == '18' & session_num == "1" & trial_num == 3), # subj 18 sess 1 exclude trial 3
!(subject_num == '22' & session_num == "1" & trial_num == 6), # subj 22 sess 1 exclude trial 6
!(subject_num == '27' & session_num == "1" & trial_num == 4), # subj 27 sess 1 exclude trial 4
!(subject_num == '4' & session_num == "2" & trial_num == 6), # subj 4, sess 2 exclude trial 6
!(subject_num == '6' & session_num == "2"), # subj 6, sess 2 exclude completely
!(subject_num == '10' & session_num == "2" & trial_num == 5),# subj 10 sess 2 exclude trial 5
!(subject_num == '12' & session_num == "2" & trial_num == 6), # subj 12 sess 2 exclude trial 6
!(subject_num == '19' & session_num == "2" & trial_num == 6), # subj 19 sess 2 exclude trial 6
!(subject_num == '16' & session_num == "2" & trial_num >= 4), # subj 16 sess 2 exclude trial 4,5,6
!(subject_num == '34' & session_num == "2" & trial_num >= 5)# subj 34 sess 2 exclude trial 5,6
)
Descriptives on test trials
# only test trials (and reorder some stuff)
test_df <- complete_df %>% filter(fam_or_test == 'test') %>% group_by(subject_num) %>% mutate(normLT = (looking_time_2000-mean(looking_time_2000))/sd(looking_time_2000)) %>% select(c(session_number, subject_num, block_number, block_type, fam_duration), everything())
# check how many subjects are left
length(unique(complete_df$subject_num))
## [1] 35
# check distribution of standard vs deviant trials
test_df %>% group_by(block_type) %>% dplyr::summarise(n=n())
## # A tibble: 2 × 2
## block_type n
## <fct> <int>
## 1 Dev 136
## 2 Std 136
# how many trials per fam duration
test_df %>% group_by(fam_duration) %>% dplyr::summarise(n_trial = n())
## # A tibble: 3 × 2
## fam_duration n_trial
## <fct> <int>
## 1 3 94
## 2 5 85
## 3 7 93
# number of trials by complexity
test_df %>% group_by(complexity) %>% dplyr::summarise(n = n())
## # A tibble: 2 × 2
## complexity n
## <chr> <int>
## 1 complex 126
## 2 simple 146
# number of trials by session
test_df %>% group_by(session_number) %>% dplyr::summarise(n = n())
## # A tibble: 2 × 2
## session_number n
## <dbl> <int>
## 1 1 145
## 2 2 127
# number of trials by block number
test_df %>% group_by(block_number) %>% dplyr::summarise(n = n())
## # A tibble: 6 × 2
## block_number n
## <dbl> <int>
## 1 1 52
## 2 2 50
## 3 3 49
## 4 4 49
## 5 5 33
## 6 6 39
check for sampling imbalance
## `summarise()` has grouped output by 'block_number', 'block_type', 'fam_duration'. You can override using the `.groups` argument.
## Joining, by = c("block_number", "block_type", "fam_duration", "complexity")
Plot results
ggplot(test_df, aes(x=looking_time_2000)) + geom_histogram(bins = 20) + xlab('Looking time in (s)')
# calculate means
mean_df <- summarySE(test_df, measurevar="looking_time_2000", groupvars=c("block_number"))
ggplot(test_df, aes(x=block_number, y = looking_time_2000)) +
geom_jitter(alpha = 0.2, width = 0.1) + stat_summary(fun.data = "mean_cl_boot", geom = "line", position = position_dodge(width = .1)) + stat_summary(fun.data = "mean_cl_boot", geom = "pointrange", position = position_dodge(width = .1)) + xlab('Block Number') + ylab('LT in sec') + theme_classic(base_size = 15)
ggplot(test_df, aes(x=block_type, y=looking_time_2000)) + geom_jitter(width = 0.1, alpha = 0.2) + stat_summary(fun.data = "mean_cl_boot", geom = "pointrange", position = position_dodge(width = .1)) + xlab('Test trial type') + ylab('Looking Time (s)') + theme_classic(base_size = 15)
ggplot(test_df, aes(x=fam_duration, y=looking_time_2000, color = fam_duration)) + geom_jitter(width = 0.1, alpha = 0.2) + stat_summary(fun.data = "mean_cl_boot", geom = "pointrange", position = position_dodge(width = .1)) + xlab('# of Fam Trials') + ylab('Looking Time (s)') + labs(color = '# of Fam Trials') + theme_grey(base_size = 14) + theme(legend.position="none", axis.text=element_text(size=15))
ggplot(test_df, aes(x=block_type, y=log(looking_time_2000), group=complexity, color = complexity)) + geom_point(alpha=0.2, position = position_dodge(width = .1)) + facet_grid(~fam_duration) + xlab('Trial type') + ylab('log seconds') + labs(color = '# of Fam Trials') + theme_classic() + theme(strip.text.x = element_text(size = 14, colour = "black")) + stat_summary(fun.data = "mean_cl_boot", geom = "line", position = position_dodge(width = .1)) +
stat_summary(fun.data = "mean_cl_boot", geom = "pointrange", position = position_dodge(width = .1))