This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
a <- c(22,30)
b <- c(26,16)
x <- data.frame(a,b)
chisq.test(x)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: x
## X-squared = 2.8296, df = 1, p-value = 0.09254
y <- matrix(c(22,30,26,16),nc=2)
chisq.test(y,correct = FALSE)
##
## Pearson's Chi-squared test
##
## data: y
## X-squared = 3.5708, df = 1, p-value = 0.0588
## Effect of simulating p-values
x <- matrix(c(12, 5, 7, 7), ncol = 2)
chisq.test(x)$p.value # 0.4233
## [1] 0.4233054
chisq.test(x)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: x
## X-squared = 0.64112, df = 1, p-value = 0.4233
x <- matrix(c(39, 44, 8, 2), ncol = 2)
chisq.test(x)$p.value # 0.4233
## Warning in chisq.test(x): Chi-squared approximation may be incorrect
## [1] 0.1014673
chisq.test(x)
## Warning in chisq.test(x): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: x
## X-squared = 2.6823, df = 1, p-value = 0.1015
x <- matrix(c(22,26, 30, 16), ncol = 2)
chi.t <- chisq.test(x)
chi.t$expected
## [,1] [,2]
## [1,] 26.55319 25.44681
## [2,] 21.44681 20.55319
chi.t$observed
## [,1] [,2]
## [1,] 22 30
## [2,] 26 16
chi.t
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: x
## X-squared = 2.8296, df = 1, p-value = 0.09254
chi.t <- chisq.test(x,correct = FALSE)
chi.t
##
## Pearson's Chi-squared test
##
## data: x
## X-squared = 3.5708, df = 1, p-value = 0.0588
x <- trunc(5 * runif(100))
x
## [1] 4 1 2 3 2 2 0 0 0 1 2 1 3 2 1 0 0 0 2 3 0 4 0 3 2 3 0 3 0 3 3 0 2 4 1 4 0
## [38] 3 3 4 3 2 2 0 2 3 4 0 1 4 2 1 4 3 4 4 1 0 3 3 2 3 3 4 0 3 2 4 2 2 1 2 1 3
## [75] 4 1 2 0 4 1 4 3 1 4 2 3 0 1 3 0 2 1 0 1 0 1 3 0 4 0
table(x)
## x
## 0 1 2 3 4
## 23 17 20 23 17
chisq.test(table(x))
##
## Chi-squared test for given probabilities
##
## data: table(x)
## X-squared = 1.8, df = 4, p-value = 0.7725
fit <- lm(weight~height,data=women)
summary(fit)
##
## Call:
## lm(formula = weight ~ height, data = women)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7333 -1.1333 -0.3833 0.7417 3.1167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -87.51667 5.93694 -14.74 1.71e-09 ***
## height 3.45000 0.09114 37.85 1.09e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.525 on 13 degrees of freedom
## Multiple R-squared: 0.991, Adjusted R-squared: 0.9903
## F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14
residuals(fit)
## 1 2 3 4 5 6
## 2.41666667 0.96666667 0.51666667 0.06666667 -0.38333333 -0.83333333
## 7 8 9 10 11 12
## -1.28333333 -1.73333333 -1.18333333 -1.63333333 -1.08333333 -0.53333333
## 13 14 15
## 0.01666667 1.56666667 3.11666667
plot(women$weight~women$height)
abline(fit,col="red")
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.