library(readr)
library(tseries)## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library('fGarch')## Loading required package: timeDate
## Loading required package: timeSeries
## Loading required package: fBasics
library('lmtest')## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following object is masked from 'package:timeSeries':
##
## time<-
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library('lmtest')
library('FinTS')
library('fGarch')
library('forecast')##
## Attaching package: 'forecast'
## The following object is masked from 'package:FinTS':
##
## Acf
library('TSA')## Registered S3 methods overwritten by 'TSA':
## method from
## fitted.Arima forecast
## plot.Arima forecast
##
## Attaching package: 'TSA'
## The following objects are masked from 'package:timeDate':
##
## kurtosis, skewness
## The following object is masked from 'package:readr':
##
## spec
## The following objects are masked from 'package:stats':
##
## acf, arima
## The following object is masked from 'package:utils':
##
## tar
data <- read_csv("FFINCP.csv")## Rows: 1097 Columns: 2
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## dbl (1): FFINCP
## date (1): DATE
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
#Transformación de los Datos en un Objeto Serie de Tiempo
data_ts <- ts(data$FFINCP)plot.ts(data_ts,main = 'Foreign Financial Commercial Paper Outstanding', xlab = 'Tiempo', ylab = 'data_ts')summary(data_ts)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 72.28 150.45 217.50 214.46 267.71 503.40
Indicios de heterocedasticidad Se estudiara la serie de retornos
#Calculo de Retornos
ret <- diff(log(data_ts))*100
plot.ts(ret,main = 'Retornos St. Louis Fed Financial Stress Index', xlab = 'Tiempo', ylab = 'Ret')mayor dispersion entre 400 y 600
#Estadísticos descriptivos
summary(ret)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -21.4884 -1.3253 0.1989 0.1256 1.6805 15.3790
retorno promedio de 0.12% retorno maximo 15.37%
adf.test(ret) # p-value < 0.05 => no unit-root## Warning in adf.test(ret): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: ret
## Dickey-Fuller = -10.096, Lag order = 10, p-value = 0.01
## alternative hypothesis: stationary
la serie de retornos es estacionario
acf(ret)pacf(ret)p 1,2 q 1,2,3
# Modelo ARIMA(1,0,1)
ModeloArima101 <- arima(ret,c(1,0,1)) # -->> ARMA(1,1)
coeftest(ModeloArima101)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.663610 0.064367 10.3098 < 2.2e-16 ***
## ma1 -0.482686 0.073213 -6.5929 4.314e-11 ***
## intercept 0.120889 0.141300 0.8555 0.3923
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Modelo ARIMA(1,1,1)
ModeloArima111 <- arima(ret,c(1,1,1)) # -->> ARIMA(1,1,1)
coeftest(ModeloArima111)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.1851864 0.0298103 6.2122 5.226e-10 ***
## ma1 -0.9999995 0.0028222 -354.3293 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Modelo ARIMA(1,0,2)
ModeloArima102 <- arima(ret,c(1,0,2)) # -->> ARMA(1,2)
coeftest(ModeloArima102)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.431312 0.119194 3.6186 0.0002962 ***
## ma1 -0.284401 0.119384 -2.3822 0.0172077 *
## ma2 0.133768 0.037379 3.5787 0.0003453 ***
## intercept 0.120992 0.136576 0.8859 0.3756757
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Modelo ARIMA(1,1,2)
ModeloArima112 <- arima(ret,c(1,1,2)) # -->> ARIMA(1,1,2)
coeftest(ModeloArima112)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.665316 0.063489 10.4793 < 2.2e-16 ***
## ma1 -1.482801 0.072136 -20.5556 < 2.2e-16 ***
## ma2 0.482806 0.072087 6.6976 2.119e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Modelo ARIMA(1,0,3)
ModeloArima103 <- arima(ret,c(1,0,3)) # -->> ARMA(1,3)
coeftest(ModeloArima103)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.395068 0.240525 1.6425 0.100481
## ma1 -0.247894 0.241544 -1.0263 0.304755
## ma2 0.137752 0.043891 3.1385 0.001698 **
## ma3 0.010592 0.058904 0.1798 0.857296
## intercept 0.121111 0.136116 0.8898 0.373596
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Modelo ARIMA(1,1,3)
ModeloArima113 <- arima(ret,c(1,1,3)) # -->> ARIMA(1,1,3)
coeftest(ModeloArima113)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.437790 0.116645 3.7532 0.0001746 ***
## ma1 -1.290390 0.116889 -11.0394 < 2.2e-16 ***
## ma2 0.423982 0.102688 4.1289 3.646e-05 ***
## ma3 -0.133593 0.037201 -3.5911 0.0003293 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Modelo ARIMA(2,0,1)
ModeloArima201 <- arima(ret,c(2,0,1)) # -->> ARMA(2,1)
coeftest(ModeloArima201)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.25713 0.14668 1.7530 0.07961 .
## ar2 0.15645 0.04177 3.7455 0.00018 ***
## ma1 -0.10897 0.14766 -0.7380 0.46052
## intercept 0.12300 0.13897 0.8851 0.37612
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Modelo ARIMA(2,1,1)
ModeloArima211 <- arima(ret,c(2,1,1)) # -->> ARIMA(2,1,1)
coeftest(ModeloArima211)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.1525878 0.0298604 5.1100 3.221e-07 ***
## ar2 0.1767687 0.0298539 5.9211 3.197e-09 ***
## ma1 -0.9999999 0.0026799 -373.1484 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Modelo ARIMA(2,0,2)
ModeloArima202 <- arima(ret,c(2,0,2)) # -->> ARMA(2,2)
coeftest(ModeloArima202)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.493462 0.346226 1.4253 0.1541
## ar2 -0.049603 0.252743 -0.1963 0.8444
## ma1 -0.346212 0.343877 -1.0068 0.3140
## ma2 0.172326 0.196930 0.8751 0.3815
## intercept 0.121348 0.135836 0.8933 0.3717
# Modelo ARIMA(2,1,2)
ModeloArima212 <- arima(ret,c(2,1,2)) # -->> ARIMA(2,1,2)
coeftest(ModeloArima212)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.263693 0.144766 1.8215 0.0685294 .
## ar2 0.156457 0.041789 3.7440 0.0001811 ***
## ma1 -1.114571 0.145659 -7.6519 1.98e-14 ***
## ma2 0.114572 0.145632 0.7867 0.4314460
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Modelo ARIMA(2,0,3)
ModeloArima203 <- arima(ret,c(2,0,3)) # -->> ARMA(2,3)
coeftest(ModeloArima203)## Warning in sqrt(diag(se)): Se han producido NaNs
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.102871 NaN NaN NaN
## ar2 0.137805 NaN NaN NaN
## ma1 0.044088 NaN NaN NaN
## ma2 0.043860 NaN NaN NaN
## ma3 0.045423 NaN NaN NaN
## intercept 0.121188 0.136490 0.8879 0.3746
# Modelo ARIMA(2,1,3)
ModeloArima213 <- arima(ret,c(2,1,3)) # -->> ARIMA(2,1,3)
coeftest(ModeloArima213)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.483504 0.335133 1.4427 0.1491
## ar2 -0.036841 0.248150 -0.1485 0.8820
## ma1 -1.335188 0.333176 -4.0074 6.138e-05 ***
## ma2 0.497210 0.513180 0.9689 0.3326
## ma3 -0.162022 0.194645 -0.8324 0.4052
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TablaDiagnosticoArima <-
rbind.data.frame(
list('ModeloArima101' ,
all(coeftest(ModeloArima101)[,4] <=
0.05),AIC(ModeloArima101)),
list('ModeloArima111' ,
all(coeftest(ModeloArima111)[,4] <=
0.05),AIC(ModeloArima111)),
list('ModeloArima102' ,
all(coeftest(ModeloArima102)[,4] <=
0.05),AIC(ModeloArima102)),
list('ModeloArima112' ,
all(coeftest(ModeloArima112)[,4] <=
0.05),AIC(ModeloArima112)),
list('ModeloArima103' ,
all(coeftest(ModeloArima103)[,4] <=
0.05),AIC(ModeloArima103)),
list('ModeloArima113' ,
all(coeftest(ModeloArima113)[,4] <=
0.05),AIC(ModeloArima113)),
list('ModeloArima201' ,
all(coeftest(ModeloArima201)[,4] <=
0.05),AIC(ModeloArima201)),
list('ModeloArima211' ,
all(coeftest(ModeloArima211)[,4] <=
0.05),AIC(ModeloArima211)),
list('ModeloArima202' ,
all(coeftest(ModeloArima202)[,4] <=
0.05),AIC(ModeloArima202)),
list('ModeloArima212' ,
all(coeftest(ModeloArima212)[,4] <=
0.05),AIC(ModeloArima212)),
list('ModeloArima203' ,
all(coeftest(ModeloArima203)[,4] <=
0.05),AIC(ModeloArima203)),
list('ModeloArima213' ,
all(coeftest(ModeloArima213)[,4] <=
0.05),AIC(ModeloArima213))
)## Warning in sqrt(diag(se)): Se han producido NaNs
names(TablaDiagnosticoArima) <-
c('Modelo','AllCoef<0.05?','AIC')
TablaDiagnosticoArima <- TablaDiagnosticoArima[order(-
TablaDiagnosticoArima$`AllCoef<0.05`,TablaDiagnosticoArima$
AIC),]
head(TablaDiagnosticoArima)| Modelo | AllCoef<0.05? | AIC | |
|---|---|---|---|
| 8 | ModeloArima211 | TRUE | 5551.267 |
| 6 | ModeloArima113 | TRUE | 5552.014 |
| 4 | ModeloArima112 | TRUE | 5560.985 |
| 2 | ModeloArima111 | TRUE | 5583.777 |
| 3 | ModeloArima102 | FALSE | 5549.875 |
| 7 | ModeloArima201 | FALSE | 5550.605 |
coeftest(ModeloArima211)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.1525878 0.0298604 5.1100 3.221e-07 ***
## ar2 0.1767687 0.0298539 5.9211 3.197e-09 ***
## ma1 -0.9999999 0.0026799 -373.1484 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ModeloArimaElegido <- ModeloArima211 par(mfrow=c(2,2))
plot.ts(residuals(ModeloArimaElegido),main = 'Residuos,
Modelo en Media Elegido, Arima211')
qqnorm(residuals(ModeloArimaElegido))
qqline(residuals(ModeloArimaElegido))
acf(residuals(ModeloArimaElegido),na.action = na.omit)
pacf(residuals(ModeloArimaElegido),na.action = na.omit) Box.test(residuals(ModeloArimaElegido)^2,type = 'Ljung-Box',lag = 12)##
## Box-Ljung test
##
## data: residuals(ModeloArimaElegido)^2
## X-squared = 40.911, df = 12, p-value = 5.071e-05
ArchTest(residuals(ModeloArimaElegido),lag = 5)##
## ARCH LM-test; Null hypothesis: no ARCH effects
##
## data: residuals(ModeloArimaElegido)
## Chi-squared = 23.085, df = 5, p-value = 0.0003252
Los errores estan correlacionados entre si. Por tanto es necesario estimar garch.
Los errores tienen efectos garch significativos. Se necesita modelo garch.
par(mfrow=c(2,2))
acf(residuals(ModeloArimaElegido),na.action = na.omit)
pacf(residuals(ModeloArimaElegido),na.action = na.omit)
acf(residuals(ModeloArimaElegido)^2,na.action = na.omit)
pacf(residuals(ModeloArimaElegido)^2,na.action = na.omit) ModeloGarch11 <-
garch(na.omit(residuals(ModeloArimaElegido)),order =
c(1,1),na.action=na.omit)##
## ***** ESTIMATION WITH ANALYTICAL GRADIENT *****
##
##
## I INITIAL X(I) D(I)
##
## 1 8.275202e+00 1.000e+00
## 2 5.000000e-02 1.000e+00
## 3 5.000000e-02 1.000e+00
##
## IT NF F RELDF PRELDF RELDX STPPAR D*STEP NPRELDF
## 0 1 1.748e+03
## 1 3 1.744e+03 2.34e-03 7.78e-03 6.0e-03 1.4e+03 1.0e-01 5.30e+00
## 2 5 1.743e+03 2.60e-04 2.72e-04 5.6e-04 1.1e+01 1.0e-02 5.57e-01
## 3 7 1.742e+03 3.65e-04 3.65e-04 1.1e-03 2.0e+00 2.0e-02 1.43e-02
## 4 9 1.742e+03 5.01e-05 5.02e-05 2.4e-04 8.8e+00 4.0e-03 1.28e-02
## 5 11 1.742e+03 7.96e-05 7.97e-05 4.8e-04 2.0e+00 8.0e-03 6.77e-03
## 6 14 1.742e+03 1.33e-06 1.33e-06 9.4e-06 1.4e+02 1.6e-04 5.23e-03
## 7 16 1.742e+03 2.64e-06 2.64e-06 1.9e-05 1.8e+01 3.2e-04 2.91e-03
## 8 19 1.742e+03 5.24e-08 5.24e-08 3.7e-07 3.4e+03 6.4e-06 2.87e-03
## 9 21 1.742e+03 1.05e-07 1.05e-07 7.5e-07 4.3e+02 1.3e-05 2.80e-03
## 10 23 1.742e+03 2.09e-08 2.09e-08 1.5e-07 8.6e+03 2.6e-06 2.80e-03
## 11 25 1.742e+03 4.18e-08 4.18e-08 3.0e-07 1.1e+03 5.1e-06 2.79e-03
## 12 27 1.742e+03 8.37e-09 8.37e-09 6.0e-08 2.1e+04 1.0e-06 2.79e-03
## 13 30 1.742e+03 6.69e-08 6.69e-08 4.8e-07 6.7e+02 8.2e-06 2.79e-03
## 14 33 1.742e+03 1.34e-09 1.34e-09 9.6e-09 1.3e+05 1.6e-07 2.79e-03
## 15 35 1.742e+03 2.68e-09 2.68e-09 1.9e-08 1.7e+04 3.3e-07 2.79e-03
## 16 39 1.742e+03 5.35e-12 5.35e-12 3.8e-11 6.8e-01 6.6e-10 -2.02e-03
## 17 41 1.742e+03 1.07e-11 1.07e-11 7.7e-11 6.8e-01 1.3e-09 -2.02e-03
## 18 43 1.742e+03 2.14e-11 2.14e-11 1.5e-10 6.8e-01 2.6e-09 -2.02e-03
## 19 46 1.742e+03 4.28e-13 4.28e-13 3.1e-12 6.8e-01 5.2e-11 -2.02e-03
## 20 48 1.742e+03 8.58e-13 8.56e-13 6.1e-12 6.8e-01 1.0e-10 -2.01e-03
## 21 50 1.742e+03 1.70e-13 1.71e-13 1.2e-12 6.8e-01 2.1e-11 -2.02e-03
## 22 52 1.742e+03 3.43e-13 3.43e-13 2.5e-12 6.8e-01 4.2e-11 -2.01e-03
## 23 54 1.742e+03 6.84e-13 6.85e-13 4.9e-12 6.8e-01 8.4e-11 -2.02e-03
## 24 56 1.742e+03 1.37e-13 1.37e-13 9.8e-13 6.8e-01 1.7e-11 -2.02e-03
## 25 58 1.742e+03 2.98e-14 2.74e-14 2.0e-13 6.8e-01 3.4e-12 -2.01e-03
## 26 60 1.742e+03 6.26e-15 5.48e-15 3.9e-14 6.8e-01 6.7e-13 -2.01e-03
## 27 62 1.742e+03 -3.92e-16 1.10e-15 7.9e-15 6.8e-01 1.3e-13 -2.02e-03
##
## ***** FALSE CONVERGENCE *****
##
## FUNCTION 1.742242e+03 RELDX 7.860e-15
## FUNC. EVALS 62 GRAD. EVALS 27
## PRELDF 1.096e-15 NPRELDF -2.017e-03
##
## I FINAL X(I) D(I) G(I)
##
## 1 8.267843e+00 1.000e+00 2.954e+00
## 2 1.395996e-01 1.000e+00 -1.970e+00
## 3 1.004897e-12 1.000e+00 1.378e+01
ModeloGarch02 <-
garch(na.omit(residuals(ModeloArimaElegido)),order =
c(0,2),na.action=na.omit)##
## ***** ESTIMATION WITH ANALYTICAL GRADIENT *****
##
##
## I INITIAL X(I) D(I)
##
## 1 8.275202e+00 1.000e+00
## 2 5.000000e-02 1.000e+00
## 3 5.000000e-02 1.000e+00
##
## IT NF F RELDF PRELDF RELDX STPPAR D*STEP NPRELDF
## 0 1 1.744e+03
## 1 4 1.742e+03 1.12e-03 8.64e-03 7.5e-03 9.7e+02 1.2e-01 4.19e+00
## 2 6 1.741e+03 3.14e-04 2.97e-04 5.7e-04 4.6e+00 1.2e-02 1.36e-01
## 3 7 1.740e+03 4.21e-04 4.45e-04 1.2e-03 3.3e+00 2.5e-02 1.86e-02
## 4 8 1.740e+03 4.49e-05 3.02e-04 2.6e-03 2.0e+00 5.0e-02 2.01e-02
## 5 9 1.740e+03 1.99e-04 2.74e-04 2.4e-03 2.0e+00 5.0e-02 1.01e-02
## 6 11 1.740e+03 1.68e-05 6.81e-05 9.5e-04 3.1e+00 1.8e-02 6.89e-03
## 7 12 1.740e+03 4.77e-05 5.53e-05 8.8e-04 2.0e+00 1.8e-02 5.16e-03
## 8 13 1.740e+03 3.73e-05 4.05e-05 9.7e-04 2.0e+00 1.8e-02 4.55e-03
## 9 17 1.738e+03 1.10e-03 1.94e-03 6.4e-02 9.3e-01 9.8e-01 4.31e-03
## 10 19 1.738e+03 3.76e-05 3.23e-04 6.1e-03 1.8e+00 9.8e-02 2.43e-03
## 11 20 1.738e+03 1.20e-05 9.11e-05 6.7e-03 1.2e+00 9.8e-02 9.97e-05
## 12 22 1.738e+03 4.43e-05 9.94e-05 2.8e-03 1.5e+00 4.5e-02 1.08e-04
## 13 23 1.738e+03 1.88e-05 2.23e-05 1.1e-03 0.0e+00 1.9e-02 2.23e-05
## 14 24 1.738e+03 5.60e-07 6.33e-07 1.1e-04 0.0e+00 2.5e-03 6.33e-07
## 15 25 1.738e+03 2.28e-08 2.44e-08 3.4e-05 0.0e+00 6.2e-04 2.44e-08
## 16 26 1.738e+03 1.55e-10 1.58e-10 2.5e-06 0.0e+00 4.5e-05 1.58e-10
## 17 27 1.738e+03 7.77e-14 7.78e-14 6.8e-08 0.0e+00 1.2e-06 7.78e-14
##
## ***** RELATIVE FUNCTION CONVERGENCE *****
##
## FUNCTION 1.737581e+03 RELDX 6.850e-08
## FUNC. EVALS 27 GRAD. EVALS 18
## PRELDF 7.777e-14 NPRELDF 7.777e-14
##
## I FINAL X(I) D(I) G(I)
##
## 1 7.141701e+00 1.000e+00 1.626e-07
## 2 1.543825e-01 1.000e+00 -4.395e-06
## 3 8.387965e-02 1.000e+00 5.517e-06
ModeloGarch22 <-
garch(na.omit(residuals(ModeloArimaElegido)),order =
c(2,2),na.action=na.omit)##
## ***** ESTIMATION WITH ANALYTICAL GRADIENT *****
##
##
## I INITIAL X(I) D(I)
##
## 1 7.355735e+00 1.000e+00
## 2 5.000000e-02 1.000e+00
## 3 5.000000e-02 1.000e+00
## 4 5.000000e-02 1.000e+00
## 5 5.000000e-02 1.000e+00
##
## IT NF F RELDF PRELDF RELDX STPPAR D*STEP NPRELDF
## 0 1 1.743e+03
## 1 3 1.740e+03 2.11e-03 6.87e-03 6.7e-03 1.2e+03 1.0e-01 4.12e+00
## 2 5 1.739e+03 3.79e-04 4.16e-04 4.5e-04 1.3e+01 1.0e-02 1.40e+00
## 3 6 1.738e+03 4.39e-04 4.38e-04 9.4e-04 2.5e+00 2.0e-02 8.07e-02
## 4 8 1.738e+03 5.11e-05 5.14e-05 2.1e-04 8.9e+00 4.0e-03 9.51e-02
## 5 10 1.738e+03 8.48e-05 8.51e-05 4.0e-04 2.1e+00 8.0e-03 5.22e-02
## 6 12 1.738e+03 1.53e-05 1.54e-05 6.8e-05 4.7e+01 1.6e-03 3.32e-02
## 7 14 1.738e+03 2.91e-05 2.91e-05 1.3e-04 4.9e+00 3.2e-03 1.81e-03
## 8 16 1.738e+03 5.26e-05 5.26e-05 2.7e-04 2.9e+00 6.4e-03 1.38e-03
## 9 18 1.738e+03 9.66e-06 9.66e-06 5.6e-05 3.5e+01 1.3e-03 7.99e-04
## 10 20 1.738e+03 1.90e-06 1.90e-06 1.1e-05 1.7e+02 2.6e-04 3.17e-04
## 11 22 1.738e+03 3.78e-07 3.78e-07 2.2e-06 8.4e+02 5.1e-05 3.04e-04
## 12 24 1.738e+03 7.56e-08 7.56e-08 4.5e-07 4.2e+03 1.0e-05 3.02e-04
## 13 27 1.738e+03 6.04e-07 6.04e-07 3.6e-06 1.3e+02 8.2e-05 3.01e-04
## 14 30 1.738e+03 1.21e-08 1.21e-08 7.2e-08 2.6e+04 1.6e-06 3.01e-04
## 15 32 1.738e+03 2.42e-09 2.42e-09 1.4e-08 1.3e+05 3.3e-07 3.00e-04
## 16 35 1.738e+03 4.83e-11 4.83e-11 2.9e-10 6.5e+06 6.6e-09 3.00e-04
## 17 37 1.738e+03 9.66e-11 9.66e-11 5.7e-10 8.2e+05 1.3e-08 3.00e-04
## 18 39 1.738e+03 1.93e-11 1.93e-11 1.1e-10 1.6e+07 2.6e-09 3.00e-04
## 19 41 1.738e+03 3.86e-11 3.86e-11 2.3e-10 2.0e+06 5.2e-09 3.00e-04
## 20 43 1.738e+03 7.73e-12 7.73e-12 4.6e-11 4.1e+07 1.0e-09 3.00e-04
## 21 45 1.738e+03 1.55e-11 1.55e-11 9.2e-11 5.1e+06 2.1e-09 3.00e-04
## 22 47 1.738e+03 3.09e-11 3.09e-11 1.8e-10 2.6e+06 4.2e-09 3.00e-04
## 23 50 1.738e+03 6.19e-13 6.18e-13 3.7e-12 5.1e+08 8.4e-11 3.00e-04
## 24 52 1.738e+03 1.24e-12 1.24e-12 7.3e-12 6.4e+07 1.7e-10 3.00e-04
## 25 54 1.738e+03 2.46e-13 2.47e-13 1.5e-12 1.3e+09 3.4e-11 3.00e-04
## 26 56 1.738e+03 4.94e-13 4.95e-13 2.9e-12 1.6e+08 6.7e-11 3.00e-04
## 27 58 1.738e+03 1.00e-13 9.89e-14 5.9e-13 3.2e+09 1.3e-11 3.00e-04
## 28 61 1.738e+03 7.91e-13 7.91e-13 4.7e-12 1.0e+08 1.1e-10 3.00e-04
## 29 64 1.738e+03 1.66e-14 1.58e-14 9.4e-14 2.0e+10 2.1e-12 3.00e-04
## 30 66 1.738e+03 3.15e-14 3.17e-14 1.9e-13 2.5e+09 4.3e-12 2.99e-04
## 31 68 1.738e+03 6.02e-15 6.33e-15 3.8e-14 5.0e+10 8.6e-13 3.00e-04
## 32 70 1.738e+03 1.22e-14 1.27e-14 7.5e-14 6.2e+09 1.7e-12 3.01e-04
## 33 72 1.738e+03 3.14e-15 2.53e-15 1.5e-14 1.2e+11 3.4e-13 2.99e-04
## 34 74 1.738e+03 5.10e-15 5.06e-15 3.0e-14 1.6e+10 6.9e-13 3.00e-04
## 35 76 1.738e+03 -3.93e-16 1.01e-15 6.0e-15 3.1e+11 1.4e-13 2.99e-04
##
## ***** FALSE CONVERGENCE *****
##
## FUNCTION 1.737761e+03 RELDX 6.009e-15
## FUNC. EVALS 76 GRAD. EVALS 35
## PRELDF 1.013e-15 NPRELDF 2.991e-04
##
## I FINAL X(I) D(I) G(I)
##
## 1 7.350539e+00 1.000e+00 5.008e-01
## 2 1.446907e-01 1.000e+00 -4.113e+00
## 3 6.110465e-02 1.000e+00 -8.233e+00
## 4 4.304983e-03 1.000e+00 4.954e+00
## 5 5.939996e-13 1.000e+00 7.386e+00
#Modelo GARCH(2,2)
coeftest(ModeloGarch22)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## a0 7.3505e+00 4.0098e+00 1.8332 0.06678 .
## a1 1.4469e-01 3.2662e-02 4.4299 9.426e-06 ***
## a2 6.1105e-02 1.1225e-01 0.5443 0.58620
## b1 4.3050e-03 7.4673e-01 0.0058 0.99540
## b2 5.9400e-13 2.3699e-01 0.0000 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Modelo GARCH(0,2)
coeftest(ModeloGarch02)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## a0 7.141701 0.209866 34.0299 < 2.2e-16 ***
## a1 0.154382 0.031623 4.8819 1.051e-06 ***
## a2 0.083880 0.026649 3.1476 0.001646 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Modelo GARCH(1,1)
coeftest(ModeloGarch11)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## a0 8.2678e+00 9.2890e-01 8.9007 < 2.2e-16 ***
## a1 1.3960e-01 3.2440e-02 4.3033 1.683e-05 ***
## b1 1.0049e-12 1.0083e-01 0.0000 1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TablaDiagnosticoGarch <-
rbind.data.frame(
list('ModeloGarch11' ,
all(coeftest(ModeloGarch11)[,4] <=
0.05),AIC(ModeloGarch11)),
list('ModeloGarch02' ,
all(coeftest(ModeloGarch02)[,4] <=
0.05),AIC(ModeloGarch02)),
list('ModeloGarch22' ,
all(coeftest(ModeloGarch22)[,4] <=
0.05),AIC(ModeloGarch22))
)
names(TablaDiagnosticoGarch) <-
c('Modelo','AllCoef<0.05?','AIC')
TablaDiagnosticoGarch <- TablaDiagnosticoGarch[order(-
TablaDiagnosticoGarch$`AllCoef<0.05`,TablaDiagnosticoGarch$
AIC),]
head(TablaDiagnosticoGarch)| Modelo | AllCoef<0.05? | AIC | |
|---|---|---|---|
| 2 | ModeloGarch02 | TRUE | 5491.800 |
| 3 | ModeloGarch22 | FALSE | 5496.159 |
| 1 | ModeloGarch11 | FALSE | 5502.959 |
coeftest(ModeloGarch02)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## a0 7.141701 0.209866 34.0299 < 2.2e-16 ***
## a1 0.154382 0.031623 4.8819 1.051e-06 ***
## a2 0.083880 0.026649 3.1476 0.001646 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ModeloGarchElegido <- ModeloGarch02El modelo garch02 es el modelo que estimara la varianza condicional de la serie de los retornos.
par(mfrow=c(2,2))
plot.ts(residuals(ModeloGarchElegido),main = 'Residuos,Modelo en Varianza, Garch(0,2)')
qqnorm(residuals(ModeloGarchElegido))
qqline(residuals(ModeloGarchElegido))
acf(residuals(ModeloGarchElegido)^2,na.action = na.omit)
pacf(residuals(ModeloGarchElegido)^2,na.action = na.omit) fit <- fitted.values(ModeloArimaElegido)
fitgarch <- fitted.values(ModeloGarchElegido)[,1]
low <- fit - (1.96 * fitgarch)
high <- fit + (1.96 * fitgarch)
plot(ret,
main = 'Google: Retornos VS Ajuste de Retornos con
Modelo ARIMA(2,1,1)-GRACH(0,2)',
type = 'l')
lines(low,col = 'purple')
lines(high,col = 'purple')
lines(fit,col = 'red') coeftest(ModeloArima211)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.1525878 0.0298604 5.1100 3.221e-07 ***
## ar2 0.1767687 0.0298539 5.9211 3.197e-09 ***
## ma1 -0.9999999 0.0026799 -373.1484 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(ModeloGarch02)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## a0 7.141701 0.209866 34.0299 < 2.2e-16 ***
## a1 0.154382 0.031623 4.8819 1.051e-06 ***
## a2 0.083880 0.026649 3.1476 0.001646 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
predict(ModeloGarch02,n.ahead=5)## Time Series:
## Start = 2
## End = 1097
## Frequency = 1
## [,1] [,2]
## 2 NA NA
## 3 NA NA
## 4 2.717260 -2.717260
## 5 2.742022 -2.742022
## 6 2.716042 -2.716042
## 7 2.706146 -2.706146
## 8 2.803603 -2.803603
## 9 2.737954 -2.737954
## 10 3.493368 -3.493368
## 11 3.485848 -3.485848
## 12 2.973143 -2.973143
## 13 2.883784 -2.883784
## 14 2.792537 -2.792537
## 15 3.688857 -3.688857
## 16 3.438484 -3.438484
## 17 2.835423 -2.835423
## 18 2.743086 -2.743086
## 19 2.724192 -2.724192
## 20 2.724856 -2.724856
## 21 2.695248 -2.695248
## 22 2.839707 -2.839707
## 23 2.765913 -2.765913
## 24 2.674964 -2.674964
## 25 2.792614 -2.792614
## 26 2.846169 -2.846169
## 27 2.748830 -2.748830
## 28 2.681592 -2.681592
## 29 2.752539 -2.752539
## 30 2.716232 -2.716232
## 31 2.673781 -2.673781
## 32 2.782058 -2.782058
## 33 2.863498 -2.863498
## 34 3.065053 -3.065053
## 35 2.884418 -2.884418
## 36 2.724682 -2.724682
## 37 2.700869 -2.700869
## 38 3.153894 -3.153894
## 39 3.164254 -3.164254
## 40 3.039782 -3.039782
## 41 2.841226 -2.841226
## 42 2.708533 -2.708533
## 43 2.738758 -2.738758
## 44 3.020470 -3.020470
## 45 2.958788 -2.958788
## 46 2.736443 -2.736443
## 47 2.686393 -2.686393
## 48 2.684164 -2.684164
## 49 2.788468 -2.788468
## 50 2.794030 -2.794030
## 51 2.815727 -2.815727
## 52 2.859484 -2.859484
## 53 3.346748 -3.346748
## 54 3.028319 -3.028319
## 55 3.144604 -3.144604
## 56 3.343411 -3.343411
## 57 2.924229 -2.924229
## 58 2.764280 -2.764280
## 59 2.827755 -2.827755
## 60 2.768553 -2.768553
## 61 2.725663 -2.725663
## 62 2.695218 -2.695218
## 63 2.678695 -2.678695
## 64 2.712984 -2.712984
## 65 2.704128 -2.704128
## 66 3.202182 -3.202182
## 67 3.047893 -3.047893
## 68 2.811682 -2.811682
## 69 2.844474 -2.844474
## 70 2.787257 -2.787257
## 71 2.758856 -2.758856
## 72 2.715149 -2.715149
## 73 2.737100 -2.737100
## 74 2.822861 -2.822861
## 75 2.742071 -2.742071
## 76 2.744302 -2.744302
## 77 2.741097 -2.741097
## 78 2.691258 -2.691258
## 79 2.679634 -2.679634
## 80 2.797224 -2.797224
## 81 2.794485 -2.794485
## 82 2.720415 -2.720415
## 83 2.917023 -2.917023
## 84 2.822736 -2.822736
## 85 2.690289 -2.690289
## 86 2.679206 -2.679206
## 87 2.693569 -2.693569
## 88 2.684274 -2.684274
## 89 2.673118 -2.673118
## 90 2.682762 -2.682762
## 91 2.722076 -2.722076
## 92 2.756278 -2.756278
## 93 2.705419 -2.705419
## 94 2.700819 -2.700819
## 95 2.688004 -2.688004
## 96 2.710731 -2.710731
## 97 2.708560 -2.708560
## 98 2.685248 -2.685248
## 99 2.705744 -2.705744
## 100 2.804893 -2.804893
## 101 3.235702 -3.235702
## 102 2.966439 -2.966439
## 103 2.749009 -2.749009
## 104 2.712278 -2.712278
## 105 2.819725 -2.819725
## 106 2.887636 -2.887636
## 107 3.366505 -3.366505
## 108 3.058538 -3.058538
## 109 2.715795 -2.715795
## 110 2.687585 -2.687585
## 111 2.712619 -2.712619
## 112 2.973580 -2.973580
## 113 2.829431 -2.829431
## 114 2.773621 -2.773621
## 115 2.778320 -2.778320
## 116 2.723319 -2.723319
## 117 2.859005 -2.859005
## 118 2.939307 -2.939307
## 119 2.773726 -2.773726
## 120 2.704383 -2.704383
## 121 2.738777 -2.738777
## 122 3.361568 -3.361568
## 123 3.053236 -3.053236
## 124 2.978076 -2.978076
## 125 2.843102 -2.843102
## 126 2.708726 -2.708726
## 127 2.893982 -2.893982
## 128 2.787202 -2.787202
## 129 2.706136 -2.706136
## 130 2.821093 -2.821093
## 131 2.746372 -2.746372
## 132 3.424703 -3.424703
## 133 3.135743 -3.135743
## 134 2.730391 -2.730391
## 135 2.693963 -2.693963
## 136 3.052682 -3.052682
## 137 3.306739 -3.306739
## 138 3.098064 -3.098064
## 139 2.776032 -2.776032
## 140 2.696705 -2.696705
## 141 2.702322 -2.702322
## 142 3.073659 -3.073659
## 143 3.128936 -3.128936
## 144 2.841480 -2.841480
## 145 2.868260 -2.868260
## 146 2.778798 -2.778798
## 147 2.697876 -2.697876
## 148 2.685366 -2.685366
## 149 3.040823 -3.040823
## 150 2.881902 -2.881902
## 151 2.834597 -2.834597
## 152 2.760578 -2.760578
## 153 2.802881 -2.802881
## 154 2.745229 -2.745229
## 155 2.980530 -2.980530
## 156 3.298161 -3.298161
## 157 2.963036 -2.963036
## 158 2.712141 -2.712141
## 159 4.017315 -4.017315
## 160 3.462300 -3.462300
## 161 2.745936 -2.745936
## 162 2.905887 -2.905887
## 163 2.817126 -2.817126
## 164 2.711099 -2.711099
## 165 2.797085 -2.797085
## 166 2.735599 -2.735599
## 167 2.672734 -2.672734
## 168 2.678156 -2.678156
## 169 2.678000 -2.678000
## 170 2.674802 -2.674802
## 171 2.676734 -2.676734
## 172 2.903081 -2.903081
## 173 2.832220 -2.832220
## 174 3.018502 -3.018502
## 175 2.881126 -2.881126
## 176 2.745473 -2.745473
## 177 2.710471 -2.710471
## 178 2.678127 -2.678127
## 179 2.680389 -2.680389
## 180 2.707858 -2.707858
## 181 2.715860 -2.715860
## 182 2.686904 -2.686904
## 183 2.684855 -2.684855
## 184 2.682677 -2.682677
## 185 2.723600 -2.723600
## 186 2.750184 -2.750184
## 187 2.759778 -2.759778
## 188 2.736380 -2.736380
## 189 2.714933 -2.714933
## 190 2.695034 -2.695034
## 191 2.730824 -2.730824
## 192 2.702613 -2.702613
## 193 2.727703 -2.727703
## 194 2.717180 -2.717180
## 195 2.764436 -2.764436
## 196 2.737365 -2.737365
## 197 2.687645 -2.687645
## 198 2.686379 -2.686379
## 199 2.692234 -2.692234
## 200 2.680016 -2.680016
## 201 2.678898 -2.678898
## 202 2.737718 -2.737718
## 203 2.771629 -2.771629
## 204 2.751416 -2.751416
## 205 2.724508 -2.724508
## 206 2.704941 -2.704941
## 207 2.689188 -2.689188
## 208 2.679299 -2.679299
## 209 2.769321 -2.769321
## 210 2.728692 -2.728692
## 211 3.807211 -3.807211
## 212 3.364003 -3.364003
## 213 3.456418 -3.456418
## 214 3.136852 -3.136852
## 215 2.692150 -2.692150
## 216 2.682265 -2.682265
## 217 2.683379 -2.683379
## 218 2.678342 -2.678342
## 219 2.673980 -2.673980
## 220 2.672659 -2.672659
## 221 2.672591 -2.672591
## 222 2.676656 -2.676656
## 223 2.682149 -2.682149
## 224 2.693234 -2.693234
## 225 2.683655 -2.683655
## 226 2.682040 -2.682040
## 227 3.386987 -3.386987
## 228 3.100602 -3.100602
## 229 3.421767 -3.421767
## 230 3.146729 -3.146729
## 231 2.706378 -2.706378
## 232 2.680727 -2.680727
## 233 3.123700 -3.123700
## 234 2.932760 -2.932760
## 235 2.717065 -2.717065
## 236 2.729826 -2.729826
## 237 3.038381 -3.038381
## 238 2.871664 -2.871664
## 239 2.836531 -2.836531
## 240 2.761890 -2.761890
## 241 2.679830 -2.679830
## 242 2.690072 -2.690072
## 243 2.686548 -2.686548
## 244 2.682753 -2.682753
## 245 2.730319 -2.730319
## 246 2.702183 -2.702183
## 247 2.798071 -2.798071
## 248 2.777429 -2.777429
## 249 2.742228 -2.742228
## 250 2.700583 -2.700583
## 251 2.673388 -2.673388
## 252 2.673052 -2.673052
## 253 2.673335 -2.673335
## 254 2.672981 -2.672981
## 255 2.859864 -2.859864
## 256 3.024180 -3.024180
## 257 3.238355 -3.238355
## 258 3.045604 -3.045604
## 259 3.080309 -3.080309
## 260 3.514108 -3.514108
## 261 3.137629 -3.137629
## 262 2.841005 -2.841005
## 263 2.741295 -2.741295
## 264 3.713707 -3.713707
## 265 3.282324 -3.282324
## 266 2.677045 -2.677045
## 267 2.697168 -2.697168
## 268 2.759950 -2.759950
## 269 3.607578 -3.607578
## 270 3.253493 -3.253493
## 271 2.877584 -2.877584
## 272 2.885889 -2.885889
## 273 2.924810 -2.924810
## 274 3.109815 -3.109815
## 275 3.046108 -3.046108
## 276 2.918308 -2.918308
## 277 2.822253 -2.822253
## 278 3.009201 -3.009201
## 279 3.167474 -3.167474
## 280 3.128510 -3.128510
## 281 2.828695 -2.828695
## 282 2.703827 -2.703827
## 283 2.690896 -2.690896
## 284 2.684140 -2.684140
## 285 3.353574 -3.353574
## 286 3.574564 -3.574564
## 287 3.246119 -3.246119
## 288 2.869473 -2.869473
## 289 2.702530 -2.702530
## 290 2.688639 -2.688639
## 291 2.787318 -2.787318
## 292 2.763752 -2.763752
## 293 2.711181 -2.711181
## 294 2.874805 -2.874805
## 295 3.060388 -3.060388
## 296 5.488408 -5.488408
## 297 4.665003 -4.665003
## 298 2.976653 -2.976653
## 299 2.704307 -2.704307
## 300 2.681646 -2.681646
## 301 2.847138 -2.847138
## 302 2.806196 -2.806196
## 303 3.205735 -3.205735
## 304 2.963193 -2.963193
## 305 2.717735 -2.717735
## 306 2.718800 -2.718800
## 307 3.338165 -3.338165
## 308 3.200654 -3.200654
## 309 3.046823 -3.046823
## 310 2.839019 -2.839019
## 311 3.316431 -3.316431
## 312 3.038582 -3.038582
## 313 2.804477 -2.804477
## 314 2.744602 -2.744602
## 315 2.839571 -2.839571
## 316 3.210417 -3.210417
## 317 2.945305 -2.945305
## 318 3.149862 -3.149862
## 319 3.044201 -3.044201
## 320 2.958932 -2.958932
## 321 3.050786 -3.050786
## 322 4.045267 -4.045267
## 323 3.518132 -3.518132
## 324 3.600282 -3.600282
## 325 3.377946 -3.377946
## 326 2.804615 -2.804615
## 327 2.676206 -2.676206
## 328 2.786404 -2.786404
## 329 3.067833 -3.067833
## 330 2.863861 -2.863861
## 331 3.892909 -3.892909
## 332 3.925006 -3.925006
## 333 3.045227 -3.045227
## 334 2.673092 -2.673092
## 335 2.672499 -2.672499
## 336 2.892123 -2.892123
## 337 2.830189 -2.830189
## 338 2.721436 -2.721436
## 339 2.800509 -2.800509
## 340 2.772611 -2.772611
## 341 2.694877 -2.694877
## 342 2.698512 -2.698512
## 343 2.750300 -2.750300
## 344 2.745383 -2.745383
## 345 2.774208 -2.774208
## 346 2.913236 -2.913236
## 347 5.416570 -5.416570
## 348 5.333352 -5.333352
## 349 3.541542 -3.541542
## 350 3.218576 -3.218576
## 351 4.663728 -4.663728
## 352 3.787749 -3.787749
## 353 2.742213 -2.742213
## 354 2.717871 -2.717871
## 355 2.681998 -2.681998
## 356 2.853602 -2.853602
## 357 2.824194 -2.824194
## 358 2.720748 -2.720748
## 359 2.687745 -2.687745
## 360 2.699247 -2.699247
## 361 2.890638 -2.890638
## 362 2.833356 -2.833356
## 363 2.712865 -2.712865
## 364 2.999021 -2.999021
## 365 2.851769 -2.851769
## 366 2.676533 -2.676533
## 367 2.717848 -2.717848
## 368 3.287735 -3.287735
## 369 3.014784 -3.014784
## 370 2.680065 -2.680065
## 371 2.828125 -2.828125
## 372 2.802692 -2.802692
## 373 2.770302 -2.770302
## 374 2.737078 -2.737078
## 375 2.741157 -2.741157
## 376 2.830425 -2.830425
## 377 2.786988 -2.786988
## 378 2.816752 -2.816752
## 379 2.742182 -2.742182
## 380 2.716209 -2.716209
## 381 2.719972 -2.719972
## 382 2.778786 -2.778786
## 383 2.728150 -2.728150
## 384 2.683652 -2.683652
## 385 3.742300 -3.742300
## 386 3.331134 -3.331134
## 387 2.750414 -2.750414
## 388 2.726895 -2.726895
## 389 2.686519 -2.686519
## 390 2.672641 -2.672641
## 391 2.680475 -2.680475
## 392 2.682886 -2.682886
## 393 2.697030 -2.697030
## 394 2.701262 -2.701262
## 395 2.999577 -2.999577
## 396 2.908355 -2.908355
## 397 2.708804 -2.708804
## 398 2.740204 -2.740204
## 399 2.811099 -2.811099
## 400 2.781336 -2.781336
## 401 2.907149 -2.907149
## 402 3.234443 -3.234443
## 403 2.945240 -2.945240
## 404 2.712704 -2.712704
## 405 3.924819 -3.924819
## 406 4.972371 -4.972371
## 407 4.901450 -4.901450
## 408 4.459787 -4.459787
## 409 4.390941 -4.390941
## 410 4.136074 -4.136074
## 411 3.195971 -3.195971
## 412 3.681058 -3.681058
## 413 3.258098 -3.258098
## 414 2.803527 -2.803527
## 415 3.278375 -3.278375
## 416 6.545323 -6.545323
## 417 5.255328 -5.255328
## 418 2.879235 -2.879235
## 419 2.911396 -2.911396
## 420 3.381931 -3.381931
## 421 3.815943 -3.815943
## 422 3.199596 -3.199596
## 423 3.984881 -3.984881
## 424 3.453948 -3.453948
## 425 3.419573 -3.419573
## 426 3.689582 -3.689582
## 427 3.065902 -3.065902
## 428 3.568871 -3.568871
## 429 5.105729 -5.105729
## 430 4.332962 -4.332962
## 431 3.158020 -3.158020
## 432 2.838290 -2.838290
## 433 2.706514 -2.706514
## 434 5.134722 -5.134722
## 435 4.603110 -4.603110
## 436 3.611602 -3.611602
## 437 3.483919 -3.483919
## 438 3.293478 -3.293478
## 439 2.943196 -2.943196
## 440 2.920757 -2.920757
## 441 3.900360 -3.900360
## 442 3.648961 -3.648961
## 443 3.184724 -3.184724
## 444 3.376889 -3.376889
## 445 2.997048 -2.997048
## 446 3.462683 -3.462683
## 447 3.144005 -3.144005
## 448 2.860776 -2.860776
## 449 2.892758 -2.892758
## 450 3.699706 -3.699706
## 451 3.431621 -3.431621
## 452 5.515396 -5.515396
## 453 4.861316 -4.861316
## 454 3.166437 -3.166437
## 455 2.825799 -2.825799
## 456 2.948647 -2.948647
## 457 3.027837 -3.027837
## 458 3.530920 -3.530920
## 459 5.639454 -5.639454
## 460 4.426963 -4.426963
## 461 2.926828 -2.926828
## 462 3.241153 -3.241153
## 463 2.983980 -2.983980
## 464 2.744855 -2.744855
## 465 2.937173 -2.937173
## 466 2.937533 -2.937533
## 467 2.764312 -2.764312
## 468 2.693923 -2.693923
## 469 4.454696 -4.454696
## 470 3.949438 -3.949438
## 471 2.830403 -2.830403
## 472 2.746867 -2.746867
## 473 2.968617 -2.968617
## 474 3.400565 -3.400565
## 475 3.136740 -3.136740
## 476 2.963253 -2.963253
## 477 2.800133 -2.800133
## 478 2.750519 -2.750519
## 479 2.851435 -2.851435
## 480 2.914923 -2.914923
## 481 2.769525 -2.769525
## 482 2.804142 -2.804142
## 483 2.915634 -2.915634
## 484 2.772163 -2.772163
## 485 2.676674 -2.676674
## 486 3.105038 -3.105038
## 487 2.991906 -2.991906
## 488 3.077247 -3.077247
## 489 2.902114 -2.902114
## 490 3.235720 -3.235720
## 491 3.435268 -3.435268
## 492 3.407435 -3.407435
## 493 2.986879 -2.986879
## 494 2.887740 -2.887740
## 495 2.780528 -2.780528
## 496 2.724830 -2.724830
## 497 3.216661 -3.216661
## 498 2.966431 -2.966431
## 499 3.073853 -3.073853
## 500 2.979426 -2.979426
## 501 2.893344 -2.893344
## 502 2.966413 -2.966413
## 503 2.785479 -2.785479
## 504 2.679578 -2.679578
## 505 2.699001 -2.699001
## 506 2.904869 -2.904869
## 507 3.464581 -3.464581
## 508 3.098049 -3.098049
## 509 2.710450 -2.710450
## 510 2.698016 -2.698016
## 511 3.082742 -3.082742
## 512 2.912280 -2.912280
## 513 2.858243 -2.858243
## 514 3.233706 -3.233706
## 515 3.058016 -3.058016
## 516 2.969986 -2.969986
## 517 2.803277 -2.803277
## 518 2.798435 -2.798435
## 519 3.183146 -3.183146
## 520 3.023912 -3.023912
## 521 2.731546 -2.731546
## 522 2.708948 -2.708948
## 523 2.745413 -2.745413
## 524 9.093673 -9.093673
## 525 7.438019 -7.438019
## 526 4.538401 -4.538401
## 527 4.005615 -4.005615
## 528 3.033588 -3.033588
## 529 2.681327 -2.681327
## 530 2.739301 -2.739301
## 531 2.815469 -2.815469
## 532 3.076165 -3.076165
## 533 2.876751 -2.876751
## 534 2.722795 -2.722795
## 535 2.744970 -2.744970
## 536 2.713407 -2.713407
## 537 2.895583 -2.895583
## 538 2.795948 -2.795948
## 539 2.675032 -2.675032
## 540 2.717915 -2.717915
## 541 2.699791 -2.699791
## 542 3.039185 -3.039185
## 543 2.976790 -2.976790
## 544 2.956004 -2.956004
## 545 2.806579 -2.806579
## 546 2.687078 -2.687078
## 547 2.686191 -2.686191
## 548 2.679451 -2.679451
## 549 3.056300 -3.056300
## 550 3.083768 -3.083768
## 551 2.956480 -2.956480
## 552 3.326514 -3.326514
## 553 3.159957 -3.159957
## 554 3.181625 -3.181625
## 555 2.932262 -2.932262
## 556 2.723683 -2.723683
## 557 2.727545 -2.727545
## 558 2.724850 -2.724850
## 559 2.852977 -2.852977
## 560 2.763849 -2.763849
## 561 2.922075 -2.922075
## 562 3.321085 -3.321085
## 563 3.561848 -3.561848
## 564 3.045422 -3.045422
## 565 2.824790 -2.824790
## 566 3.108896 -3.108896
## 567 3.038574 -3.038574
## 568 2.939665 -2.939665
## 569 2.849256 -2.849256
## 570 2.728972 -2.728972
## 571 2.769036 -2.769036
## 572 3.204441 -3.204441
## 573 3.032743 -3.032743
## 574 2.847368 -2.847368
## 575 3.075309 -3.075309
## 576 3.765993 -3.765993
## 577 4.107387 -4.107387
## 578 3.383098 -3.383098
## 579 2.751603 -2.751603
## 580 2.964824 -2.964824
## 581 3.279064 -3.279064
## 582 3.397819 -3.397819
## 583 3.566756 -3.566756
## 584 3.056545 -3.056545
## 585 2.728412 -2.728412
## 586 2.714741 -2.714741
## 587 2.707167 -2.707167
## 588 3.558628 -3.558628
## 589 3.240753 -3.240753
## 590 2.760377 -2.760377
## 591 2.768029 -2.768029
## 592 2.712851 -2.712851
## 593 2.699999 -2.699999
## 594 4.726457 -4.726457
## 595 3.977860 -3.977860
## 596 2.732177 -2.732177
## 597 3.232608 -3.232608
## 598 3.123963 -3.123963
## 599 2.819604 -2.819604
## 600 2.887636 -2.887636
## 601 2.800547 -2.800547
## 602 2.788301 -2.788301
## 603 2.772272 -2.772272
## 604 2.710024 -2.710024
## 605 3.125969 -3.125969
## 606 4.184996 -4.184996
## 607 4.149133 -4.149133
## 608 3.226250 -3.226250
## 609 2.789916 -2.789916
## 610 2.730966 -2.730966
## 611 2.706147 -2.706147
## 612 2.709913 -2.709913
## 613 2.924519 -2.924519
## 614 2.882357 -2.882357
## 615 2.765713 -2.765713
## 616 2.705436 -2.705436
## 617 3.014843 -3.014843
## 618 3.344617 -3.344617
## 619 3.284655 -3.284655
## 620 2.930231 -2.930231
## 621 2.708844 -2.708844
## 622 2.674260 -2.674260
## 623 2.832943 -2.832943
## 624 2.760642 -2.760642
## 625 2.753211 -2.753211
## 626 2.817952 -2.817952
## 627 2.838885 -2.838885
## 628 5.599533 -5.599533
## 629 4.559193 -4.559193
## 630 2.740151 -2.740151
## 631 2.676291 -2.676291
## 632 2.838871 -2.838871
## 633 2.833023 -2.833023
## 634 3.142172 -3.142172
## 635 3.817057 -3.817057
## 636 3.322234 -3.322234
## 637 3.441128 -3.441128
## 638 3.410281 -3.410281
## 639 2.961585 -2.961585
## 640 3.069080 -3.069080
## 641 2.899684 -2.899684
## 642 2.885079 -2.885079
## 643 3.011525 -3.011525
## 644 2.918867 -2.918867
## 645 2.832607 -2.832607
## 646 2.756461 -2.756461
## 647 3.060095 -3.060095
## 648 2.881985 -2.881985
## 649 2.674384 -2.674384
## 650 2.941508 -2.941508
## 651 2.822598 -2.822598
## 652 2.744971 -2.744971
## 653 2.729437 -2.729437
## 654 2.820316 -2.820316
## 655 2.751564 -2.751564
## 656 2.717000 -2.717000
## 657 2.757774 -2.757774
## 658 2.843277 -2.843277
## 659 2.759692 -2.759692
## 660 2.731590 -2.731590
## 661 2.701477 -2.701477
## 662 2.685171 -2.685171
## 663 2.686559 -2.686559
## 664 2.712092 -2.712092
## 665 3.094542 -3.094542
## 666 2.988859 -2.988859
## 667 2.762958 -2.762958
## 668 2.784374 -2.784374
## 669 3.411031 -3.411031
## 670 4.483050 -4.483050
## 671 3.784095 -3.784095
## 672 2.857297 -2.857297
## 673 2.700813 -2.700813
## 674 2.680715 -2.680715
## 675 2.721324 -2.721324
## 676 2.699140 -2.699140
## 677 3.038755 -3.038755
## 678 3.064840 -3.064840
## 679 2.812147 -2.812147
## 680 5.316905 -5.316905
## 681 4.770010 -4.770010
## 682 3.107799 -3.107799
## 683 3.646748 -3.646748
## 684 3.228004 -3.228004
## 685 3.157645 -3.157645
## 686 2.946134 -2.946134
## 687 5.150687 -5.150687
## 688 4.756771 -4.756771
## 689 3.347373 -3.347373
## 690 2.829232 -2.829232
## 691 2.844074 -2.844074
## 692 3.051065 -3.051065
## 693 2.849300 -2.849300
## 694 2.699889 -2.699889
## 695 2.684252 -2.684252
## 696 2.672661 -2.672661
## 697 2.711040 -2.711040
## 698 2.704446 -2.704446
## 699 2.721338 -2.721338
## 700 2.726933 -2.726933
## 701 2.798299 -2.798299
## 702 2.777897 -2.777897
## 703 2.810635 -2.810635
## 704 2.737970 -2.737970
## 705 2.698190 -2.698190
## 706 2.698098 -2.698098
## 707 2.902902 -2.902902
## 708 2.927565 -2.927565
## 709 2.747648 -2.747648
## 710 2.672526 -2.672526
## 711 2.718227 -2.718227
## 712 2.699315 -2.699315
## 713 2.800141 -2.800141
## 714 2.815308 -2.815308
## 715 2.800407 -2.800407
## 716 2.728212 -2.728212
## 717 2.684789 -2.684789
## 718 2.703082 -2.703082
## 719 2.711440 -2.711440
## 720 4.818905 -4.818905
## 721 4.548917 -4.548917
## 722 3.127236 -3.127236
## 723 2.794812 -2.794812
## 724 2.922653 -2.922653
## 725 2.928703 -2.928703
## 726 2.785645 -2.785645
## 727 2.731394 -2.731394
## 728 2.786320 -2.786320
## 729 2.804798 -2.804798
## 730 2.753411 -2.753411
## 731 3.150903 -3.150903
## 732 2.956309 -2.956309
## 733 6.407966 -6.407966
## 734 6.968998 -6.968998
## 735 4.519711 -4.519711
## 736 2.763558 -2.763558
## 737 2.680716 -2.680716
## 738 2.807560 -2.807560
## 739 2.811185 -2.811185
## 740 3.606182 -3.606182
## 741 4.190721 -4.190721
## 742 3.559879 -3.559879
## 743 2.955649 -2.955649
## 744 2.772653 -2.772653
## 745 2.840165 -2.840165
## 746 2.854342 -2.854342
## 747 2.752052 -2.752052
## 748 2.825838 -2.825838
## 749 2.777103 -2.777103
## 750 2.699737 -2.699737
## 751 2.717802 -2.717802
## 752 3.156724 -3.156724
## 753 2.951895 -2.951895
## 754 2.705963 -2.705963
## 755 3.029563 -3.029563
## 756 2.957975 -2.957975
## 757 2.776268 -2.776268
## 758 3.468466 -3.468466
## 759 4.290560 -4.290560
## 760 3.448384 -3.448384
## 761 2.675878 -2.675878
## 762 2.825625 -2.825625
## 763 2.778403 -2.778403
## 764 2.684912 -2.684912
## 765 2.787577 -2.787577
## 766 2.754273 -2.754273
## 767 2.764382 -2.764382
## 768 2.838433 -2.838433
## 769 2.771980 -2.771980
## 770 2.818353 -2.818353
## 771 2.815557 -2.815557
## 772 2.913122 -2.913122
## 773 2.978850 -2.978850
## 774 2.848276 -2.848276
## 775 2.841089 -2.841089
## 776 2.754708 -2.754708
## 777 3.193165 -3.193165
## 778 2.976437 -2.976437
## 779 2.680501 -2.680501
## 780 2.676935 -2.676935
## 781 2.688282 -2.688282
## 782 2.919934 -2.919934
## 783 3.126801 -3.126801
## 784 3.001651 -3.001651
## 785 2.755809 -2.755809
## 786 5.418425 -5.418425
## 787 4.830312 -4.830312
## 788 3.422333 -3.422333
## 789 3.057798 -3.057798
## 790 2.874550 -2.874550
## 791 2.790101 -2.790101
## 792 2.728238 -2.728238
## 793 2.717006 -2.717006
## 794 2.723076 -2.723076
## 795 2.714603 -2.714603
## 796 2.687717 -2.687717
## 797 2.874044 -2.874044
## 798 2.787566 -2.787566
## 799 2.731122 -2.731122
## 800 3.199596 -3.199596
## 801 2.979929 -2.979929
## 802 2.687400 -2.687400
## 803 2.788908 -2.788908
## 804 2.760117 -2.760117
## 805 3.042803 -3.042803
## 806 2.894347 -2.894347
## 807 2.731893 -2.731893
## 808 2.709307 -2.709307
## 809 2.687230 -2.687230
## 810 2.711250 -2.711250
## 811 2.693267 -2.693267
## 812 2.746133 -2.746133
## 813 2.716641 -2.716641
## 814 3.183206 -3.183206
## 815 3.069396 -3.069396
## 816 2.738837 -2.738837
## 817 2.789407 -2.789407
## 818 2.840952 -2.840952
## 819 2.976061 -2.976061
## 820 2.848584 -2.848584
## 821 2.757229 -2.757229
## 822 2.974924 -2.974924
## 823 3.153739 -3.153739
## 824 3.188429 -3.188429
## 825 3.906496 -3.906496
## 826 3.333724 -3.333724
## 827 2.710158 -2.710158
## 828 2.702081 -2.702081
## 829 2.696063 -2.696063
## 830 2.960495 -2.960495
## 831 2.865842 -2.865842
## 832 3.586139 -3.586139
## 833 3.206279 -3.206279
## 834 3.042777 -3.042777
## 835 2.919163 -2.919163
## 836 2.747048 -2.747048
## 837 2.914324 -2.914324
## 838 2.833075 -2.833075
## 839 3.199627 -3.199627
## 840 2.959393 -2.959393
## 841 2.732224 -2.732224
## 842 2.706973 -2.706973
## 843 2.673960 -2.673960
## 844 2.673373 -2.673373
## 845 2.677344 -2.677344
## 846 2.687826 -2.687826
## 847 2.806511 -2.806511
## 848 3.208634 -3.208634
## 849 3.518612 -3.518612
## 850 3.055953 -3.055953
## 851 2.846535 -2.846535
## 852 2.818658 -2.818658
## 853 3.485816 -3.485816
## 854 3.145315 -3.145315
## 855 2.780097 -2.780097
## 856 2.866373 -2.866373
## 857 2.796892 -2.796892
## 858 2.730373 -2.730373
## 859 2.697727 -2.697727
## 860 3.004351 -3.004351
## 861 2.870307 -2.870307
## 862 2.681706 -2.681706
## 863 2.705110 -2.705110
## 864 2.756740 -2.756740
## 865 2.743801 -2.743801
## 866 2.696509 -2.696509
## 867 2.692392 -2.692392
## 868 2.683621 -2.683621
## 869 2.676866 -2.676866
## 870 2.701115 -2.701115
## 871 3.309894 -3.309894
## 872 3.336173 -3.336173
## 873 3.075598 -3.075598
## 874 3.081769 -3.081769
## 875 3.406534 -3.406534
## 876 3.024077 -3.024077
## 877 2.716293 -2.716293
## 878 2.838094 -2.838094
## 879 2.759550 -2.759550
## 880 2.991456 -2.991456
## 881 3.041146 -3.041146
## 882 2.792697 -2.792697
## 883 2.696301 -2.696301
## 884 2.683295 -2.683295
## 885 2.948744 -2.948744
## 886 3.006964 -3.006964
## 887 2.801325 -2.801325
## 888 2.691702 -2.691702
## 889 2.922494 -2.922494
## 890 2.857315 -2.857315
## 891 2.742029 -2.742029
## 892 2.698840 -2.698840
## 893 3.856277 -3.856277
## 894 3.367047 -3.367047
## 895 2.850520 -2.850520
## 896 2.969463 -2.969463
## 897 2.786649 -2.786649
## 898 2.741155 -2.741155
## 899 3.221225 -3.221225
## 900 3.071080 -3.071080
## 901 2.795735 -2.795735
## 902 2.726683 -2.726683
## 903 2.697197 -2.697197
## 904 2.693184 -2.693184
## 905 3.027490 -3.027490
## 906 2.927885 -2.927885
## 907 2.731148 -2.731148
## 908 2.686955 -2.686955
## 909 2.730579 -2.730579
## 910 2.733660 -2.733660
## 911 2.795621 -2.795621
## 912 2.734759 -2.734759
## 913 2.678233 -2.678233
## 914 2.731824 -2.731824
## 915 3.203526 -3.203526
## 916 3.082553 -3.082553
## 917 2.948018 -2.948018
## 918 2.809283 -2.809283
## 919 2.685812 -2.685812
## 920 2.761622 -2.761622
## 921 2.723479 -2.723479
## 922 2.674340 -2.674340
## 923 2.738342 -2.738342
## 924 2.894398 -2.894398
## 925 3.170213 -3.170213
## 926 3.068684 -3.068684
## 927 2.777505 -2.777505
## 928 2.907278 -2.907278
## 929 2.915687 -2.915687
## 930 3.050843 -3.050843
## 931 2.960593 -2.960593
## 932 2.768467 -2.768467
## 933 2.753801 -2.753801
## 934 2.749632 -2.749632
## 935 2.696810 -2.696810
## 936 2.740054 -2.740054
## 937 2.742512 -2.742512
## 938 3.089596 -3.089596
## 939 3.191989 -3.191989
## 940 3.020340 -3.020340
## 941 2.839110 -2.839110
## 942 3.506665 -3.506665
## 943 3.417377 -3.417377
## 944 2.857215 -2.857215
## 945 2.810300 -2.810300
## 946 2.813197 -2.813197
## 947 2.753159 -2.753159
## 948 2.771247 -2.771247
## 949 2.805699 -2.805699
## 950 2.791851 -2.791851
## 951 2.719859 -2.719859
## 952 2.837041 -2.837041
## 953 2.836292 -2.836292
## 954 2.859111 -2.859111
## 955 2.796765 -2.796765
## 956 2.944909 -2.944909
## 957 2.847300 -2.847300
## 958 2.693389 -2.693389
## 959 3.094945 -3.094945
## 960 2.956360 -2.956360
## 961 2.701438 -2.701438
## 962 2.739553 -2.739553
## 963 3.149711 -3.149711
## 964 2.924855 -2.924855
## 965 2.695243 -2.695243
## 966 2.690205 -2.690205
## 967 2.790554 -2.790554
## 968 3.105299 -3.105299
## 969 3.028058 -3.028058
## 970 2.844962 -2.844962
## 971 2.751766 -2.751766
## 972 2.749123 -2.749123
## 973 2.710145 -2.710145
## 974 2.675846 -2.675846
## 975 2.683336 -2.683336
## 976 2.700294 -2.700294
## 977 2.829700 -2.829700
## 978 3.086495 -3.086495
## 979 2.969821 -2.969821
## 980 2.881617 -2.881617
## 981 3.097751 -3.097751
## 982 2.968952 -2.968952
## 983 2.746929 -2.746929
## 984 3.074952 -3.074952
## 985 3.137443 -3.137443
## 986 2.902323 -2.902323
## 987 2.723065 -2.723065
## 988 2.777846 -2.777846
## 989 2.839796 -2.839796
## 990 2.982762 -2.982762
## 991 2.842734 -2.842734
## 992 2.699540 -2.699540
## 993 2.959744 -2.959744
## 994 2.915502 -2.915502
## 995 2.759179 -2.759179
## 996 2.751833 -2.751833
## 997 2.978930 -2.978930
## 998 2.837775 -2.837775
## 999 2.850666 -2.850666
## 1000 2.786764 -2.786764
## 1001 2.710066 -2.710066
## 1002 2.690605 -2.690605
## 1003 2.794078 -2.794078
## 1004 2.755042 -2.755042
## 1005 5.631253 -5.631253
## 1006 4.732643 -4.732643
## 1007 3.068410 -3.068410
## 1008 3.060383 -3.060383
## 1009 2.830991 -2.830991
## 1010 3.446048 -3.446048
## 1011 3.173265 -3.173265
## 1012 2.747597 -2.747597
## 1013 2.727746 -2.727746
## 1014 2.697477 -2.697477
## 1015 2.825157 -2.825157
## 1016 2.966645 -2.966645
## 1017 2.818760 -2.818760
## 1018 3.672093 -3.672093
## 1019 3.606425 -3.606425
## 1020 3.260222 -3.260222
## 1021 3.207459 -3.207459
## 1022 2.945812 -2.945812
## 1023 3.075593 -3.075593
## 1024 2.995879 -2.995879
## 1025 3.063943 -3.063943
## 1026 2.876957 -2.876957
## 1027 2.703676 -2.703676
## 1028 2.696935 -2.696935
## 1029 2.685288 -2.685288
## 1030 4.289708 -4.289708
## 1031 3.960910 -3.960910
## 1032 3.242585 -3.242585
## 1033 2.879255 -2.879255
## 1034 2.687742 -2.687742
## 1035 2.693124 -2.693124
## 1036 2.790677 -2.790677
## 1037 3.262606 -3.262606
## 1038 3.017503 -3.017503
## 1039 2.742913 -2.742913
## 1040 2.722011 -2.722011
## 1041 2.693637 -2.693637
## 1042 3.116147 -3.116147
## 1043 2.951010 -2.951010
## 1044 3.819231 -3.819231
## 1045 3.483132 -3.483132
## 1046 3.608028 -3.608028
## 1047 3.202016 -3.202016
## 1048 2.723270 -2.723270
## 1049 2.866572 -2.866572
## 1050 2.816830 -2.816830
## 1051 2.732801 -2.732801
## 1052 2.790007 -2.790007
## 1053 2.821628 -2.821628
## 1054 3.105034 -3.105034
## 1055 2.902748 -2.902748
## 1056 2.685769 -2.685769
## 1057 2.919428 -2.919428
## 1058 3.048873 -3.048873
## 1059 3.007164 -3.007164
## 1060 2.856984 -2.856984
## 1061 2.715735 -2.715735
## 1062 2.780753 -2.780753
## 1063 2.959472 -2.959472
## 1064 2.829755 -2.829755
## 1065 2.709108 -2.709108
## 1066 2.751884 -2.751884
## 1067 2.710833 -2.710833
## 1068 2.708547 -2.708547
## 1069 2.758517 -2.758517
## 1070 2.719537 -2.719537
## 1071 2.956616 -2.956616
## 1072 3.165514 -3.165514
## 1073 2.964870 -2.964870
## 1074 2.852263 -2.852263
## 1075 2.743969 -2.743969
## 1076 2.745320 -2.745320
## 1077 2.729650 -2.729650
## 1078 2.683009 -2.683009
## 1079 2.689171 -2.689171
## 1080 2.702764 -2.702764
## 1081 2.704395 -2.704395
## 1082 2.693991 -2.693991
## 1083 2.681690 -2.681690
## 1084 2.694395 -2.694395
## 1085 2.896480 -2.896480
## 1086 2.811719 -2.811719
## 1087 2.834493 -2.834493
## 1088 2.755384 -2.755384
## 1089 3.504780 -3.504780
## 1090 3.155248 -3.155248
## 1091 3.115682 -3.115682
## 1092 2.937778 -2.937778
## 1093 2.685513 -2.685513
## 1094 2.674090 -2.674090
## 1095 2.764391 -2.764391
## 1096 3.017971 -3.017971
## 1097 2.976001 -2.976001