1 Librerias

library(readr)
library(tseries)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library('fGarch')
## Loading required package: timeDate
## Loading required package: timeSeries
## Loading required package: fBasics
library('lmtest')
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following object is masked from 'package:timeSeries':
## 
##     time<-
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library('lmtest')
library('FinTS')
library('fGarch')
library('forecast')
## 
## Attaching package: 'forecast'
## The following object is masked from 'package:FinTS':
## 
##     Acf
library('TSA')
## Registered S3 methods overwritten by 'TSA':
##   method       from    
##   fitted.Arima forecast
##   plot.Arima   forecast
## 
## Attaching package: 'TSA'
## The following objects are masked from 'package:timeDate':
## 
##     kurtosis, skewness
## The following object is masked from 'package:readr':
## 
##     spec
## The following objects are masked from 'package:stats':
## 
##     acf, arima
## The following object is masked from 'package:utils':
## 
##     tar

2 Datos

data <- read_csv("FFINCP.csv")
## Rows: 1097 Columns: 2
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## dbl  (1): FFINCP
## date (1): DATE
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.

#Transformación de los Datos en un Objeto Serie de Tiempo

data_ts <- ts(data$FFINCP)

3 Estadística descriptiva de la Serie de Tiempo

plot.ts(data_ts,main = 'Foreign Financial Commercial Paper Outstanding', xlab = 'Tiempo', ylab = 'data_ts')

summary(data_ts)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   72.28  150.45  217.50  214.46  267.71  503.40

Indicios de heterocedasticidad Se estudiara la serie de retornos

#Calculo de Retornos

ret <- diff(log(data_ts))*100

plot.ts(ret,main = 'Retornos St. Louis Fed Financial Stress Index', xlab = 'Tiempo', ylab = 'Ret')

mayor dispersion entre 400 y 600

#Estadísticos descriptivos

summary(ret)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -21.4884  -1.3253   0.1989   0.1256   1.6805  15.3790

retorno promedio de 0.12% retorno maximo 15.37%

4 Análisis de la serie de rendimientos, prueba de raíces unitarias.

adf.test(ret) # p-value < 0.05 => no unit-root
## Warning in adf.test(ret): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  ret
## Dickey-Fuller = -10.096, Lag order = 10, p-value = 0.01
## alternative hypothesis: stationary

la serie de retornos es estacionario

5 Estimación del modelo ARIMA

5.1 Identificación

5.1.1 Función de Auto-correlaciones

acf(ret)

pacf(ret)

p 1,2 q 1,2,3

#  Modelo ARIMA(1,0,1)
ModeloArima101 <- arima(ret,c(1,0,1)) # -->> ARMA(1,1)
coeftest(ModeloArima101)
## 
## z test of coefficients:
## 
##            Estimate Std. Error z value  Pr(>|z|)    
## ar1        0.663610   0.064367 10.3098 < 2.2e-16 ***
## ma1       -0.482686   0.073213 -6.5929 4.314e-11 ***
## intercept  0.120889   0.141300  0.8555    0.3923    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#  Modelo ARIMA(1,1,1)
ModeloArima111 <- arima(ret,c(1,1,1)) # -->> ARIMA(1,1,1)
coeftest(ModeloArima111)
## 
## z test of coefficients:
## 
##       Estimate Std. Error   z value  Pr(>|z|)    
## ar1  0.1851864  0.0298103    6.2122 5.226e-10 ***
## ma1 -0.9999995  0.0028222 -354.3293 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#  Modelo ARIMA(1,0,2)
ModeloArima102 <- arima(ret,c(1,0,2)) # -->> ARMA(1,2)
coeftest(ModeloArima102)
## 
## z test of coefficients:
## 
##            Estimate Std. Error z value  Pr(>|z|)    
## ar1        0.431312   0.119194  3.6186 0.0002962 ***
## ma1       -0.284401   0.119384 -2.3822 0.0172077 *  
## ma2        0.133768   0.037379  3.5787 0.0003453 ***
## intercept  0.120992   0.136576  0.8859 0.3756757    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#  Modelo ARIMA(1,1,2)
ModeloArima112 <- arima(ret,c(1,1,2)) # -->> ARIMA(1,1,2)
coeftest(ModeloArima112)
## 
## z test of coefficients:
## 
##      Estimate Std. Error  z value  Pr(>|z|)    
## ar1  0.665316   0.063489  10.4793 < 2.2e-16 ***
## ma1 -1.482801   0.072136 -20.5556 < 2.2e-16 ***
## ma2  0.482806   0.072087   6.6976 2.119e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#  Modelo ARIMA(1,0,3)
ModeloArima103 <- arima(ret,c(1,0,3)) # -->> ARMA(1,3)
coeftest(ModeloArima103)
## 
## z test of coefficients:
## 
##            Estimate Std. Error z value Pr(>|z|)   
## ar1        0.395068   0.240525  1.6425 0.100481   
## ma1       -0.247894   0.241544 -1.0263 0.304755   
## ma2        0.137752   0.043891  3.1385 0.001698 **
## ma3        0.010592   0.058904  0.1798 0.857296   
## intercept  0.121111   0.136116  0.8898 0.373596   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#  Modelo ARIMA(1,1,3)
ModeloArima113 <- arima(ret,c(1,1,3)) # -->> ARIMA(1,1,3)
coeftest(ModeloArima113)
## 
## z test of coefficients:
## 
##      Estimate Std. Error  z value  Pr(>|z|)    
## ar1  0.437790   0.116645   3.7532 0.0001746 ***
## ma1 -1.290390   0.116889 -11.0394 < 2.2e-16 ***
## ma2  0.423982   0.102688   4.1289 3.646e-05 ***
## ma3 -0.133593   0.037201  -3.5911 0.0003293 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#  Modelo ARIMA(2,0,1)
ModeloArima201 <- arima(ret,c(2,0,1)) # -->> ARMA(2,1)
coeftest(ModeloArima201)
## 
## z test of coefficients:
## 
##           Estimate Std. Error z value Pr(>|z|)    
## ar1        0.25713    0.14668  1.7530  0.07961 .  
## ar2        0.15645    0.04177  3.7455  0.00018 ***
## ma1       -0.10897    0.14766 -0.7380  0.46052    
## intercept  0.12300    0.13897  0.8851  0.37612    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#  Modelo ARIMA(2,1,1)
ModeloArima211 <- arima(ret,c(2,1,1)) # -->> ARIMA(2,1,1)
coeftest(ModeloArima211)
## 
## z test of coefficients:
## 
##       Estimate Std. Error   z value  Pr(>|z|)    
## ar1  0.1525878  0.0298604    5.1100 3.221e-07 ***
## ar2  0.1767687  0.0298539    5.9211 3.197e-09 ***
## ma1 -0.9999999  0.0026799 -373.1484 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#  Modelo ARIMA(2,0,2)
ModeloArima202 <- arima(ret,c(2,0,2)) # -->> ARMA(2,2)
coeftest(ModeloArima202)
## 
## z test of coefficients:
## 
##            Estimate Std. Error z value Pr(>|z|)
## ar1        0.493462   0.346226  1.4253   0.1541
## ar2       -0.049603   0.252743 -0.1963   0.8444
## ma1       -0.346212   0.343877 -1.0068   0.3140
## ma2        0.172326   0.196930  0.8751   0.3815
## intercept  0.121348   0.135836  0.8933   0.3717
#  Modelo ARIMA(2,1,2)
ModeloArima212 <- arima(ret,c(2,1,2)) # -->> ARIMA(2,1,2)
coeftest(ModeloArima212)
## 
## z test of coefficients:
## 
##      Estimate Std. Error z value  Pr(>|z|)    
## ar1  0.263693   0.144766  1.8215 0.0685294 .  
## ar2  0.156457   0.041789  3.7440 0.0001811 ***
## ma1 -1.114571   0.145659 -7.6519  1.98e-14 ***
## ma2  0.114572   0.145632  0.7867 0.4314460    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#  Modelo ARIMA(2,0,3)
ModeloArima203 <- arima(ret,c(2,0,3)) # -->> ARMA(2,3)
coeftest(ModeloArima203)
## Warning in sqrt(diag(se)): Se han producido NaNs
## 
## z test of coefficients:
## 
##           Estimate Std. Error z value Pr(>|z|)
## ar1       0.102871        NaN     NaN      NaN
## ar2       0.137805        NaN     NaN      NaN
## ma1       0.044088        NaN     NaN      NaN
## ma2       0.043860        NaN     NaN      NaN
## ma3       0.045423        NaN     NaN      NaN
## intercept 0.121188   0.136490  0.8879   0.3746
#  Modelo ARIMA(2,1,3)
ModeloArima213 <- arima(ret,c(2,1,3)) # -->> ARIMA(2,1,3)
coeftest(ModeloArima213)
## 
## z test of coefficients:
## 
##      Estimate Std. Error z value  Pr(>|z|)    
## ar1  0.483504   0.335133  1.4427    0.1491    
## ar2 -0.036841   0.248150 -0.1485    0.8820    
## ma1 -1.335188   0.333176 -4.0074 6.138e-05 ***
## ma2  0.497210   0.513180  0.9689    0.3326    
## ma3 -0.162022   0.194645 -0.8324    0.4052    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  TablaDiagnosticoArima <-
    rbind.data.frame(
      list('ModeloArima101' , 
           all(coeftest(ModeloArima101)[,4] <= 
                 0.05),AIC(ModeloArima101)),
      list('ModeloArima111' , 
           all(coeftest(ModeloArima111)[,4] <= 
                 0.05),AIC(ModeloArima111)),
      list('ModeloArima102' , 
           all(coeftest(ModeloArima102)[,4] <= 
                 0.05),AIC(ModeloArima102)),
      list('ModeloArima112' , 
           all(coeftest(ModeloArima112)[,4] <= 
                 0.05),AIC(ModeloArima112)),
      list('ModeloArima103' , 
           all(coeftest(ModeloArima103)[,4] <= 
                 0.05),AIC(ModeloArima103)),
      list('ModeloArima113' , 
           all(coeftest(ModeloArima113)[,4] <= 
                 0.05),AIC(ModeloArima113)),
      list('ModeloArima201' , 
           all(coeftest(ModeloArima201)[,4] <= 
                 0.05),AIC(ModeloArima201)),
      list('ModeloArima211' , 
           all(coeftest(ModeloArima211)[,4] <= 
                 0.05),AIC(ModeloArima211)),
      list('ModeloArima202' , 
           all(coeftest(ModeloArima202)[,4] <= 
                 0.05),AIC(ModeloArima202)),
      list('ModeloArima212' , 
           all(coeftest(ModeloArima212)[,4] <= 
                 0.05),AIC(ModeloArima212)),
      list('ModeloArima203' , 
           all(coeftest(ModeloArima203)[,4] <= 
                 0.05),AIC(ModeloArima203)),
      list('ModeloArima213' , 
           all(coeftest(ModeloArima213)[,4] <= 
                 0.05),AIC(ModeloArima213))
    )
## Warning in sqrt(diag(se)): Se han producido NaNs
  names(TablaDiagnosticoArima) <-
    c('Modelo','AllCoef<0.05?','AIC')
  TablaDiagnosticoArima <- TablaDiagnosticoArima[order(-
  TablaDiagnosticoArima$`AllCoef<0.05`,TablaDiagnosticoArima$
                                                         AIC),] 
  head(TablaDiagnosticoArima)
Modelo AllCoef<0.05? AIC
8 ModeloArima211 TRUE 5551.267
6 ModeloArima113 TRUE 5552.014
4 ModeloArima112 TRUE 5560.985
2 ModeloArima111 TRUE 5583.777
3 ModeloArima102 FALSE 5549.875
7 ModeloArima201 FALSE 5550.605
  coeftest(ModeloArima211)
## 
## z test of coefficients:
## 
##       Estimate Std. Error   z value  Pr(>|z|)    
## ar1  0.1525878  0.0298604    5.1100 3.221e-07 ***
## ar2  0.1767687  0.0298539    5.9211 3.197e-09 ***
## ma1 -0.9999999  0.0026799 -373.1484 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  ModeloArimaElegido <- ModeloArima211

6 Validación

    par(mfrow=c(2,2))
    plot.ts(residuals(ModeloArimaElegido),main = 'Residuos, 
Modelo en Media Elegido, Arima211')
    qqnorm(residuals(ModeloArimaElegido))
    qqline(residuals(ModeloArimaElegido))
    acf(residuals(ModeloArimaElegido),na.action = na.omit)
    pacf(residuals(ModeloArimaElegido),na.action = na.omit)

7 Análisis de los efectos GARCH

  Box.test(residuals(ModeloArimaElegido)^2,type = 'Ljung-Box',lag = 12)
## 
##  Box-Ljung test
## 
## data:  residuals(ModeloArimaElegido)^2
## X-squared = 40.911, df = 12, p-value = 5.071e-05
  ArchTest(residuals(ModeloArimaElegido),lag = 5)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(ModeloArimaElegido)
## Chi-squared = 23.085, df = 5, p-value = 0.0003252

Los errores estan correlacionados entre si. Por tanto es necesario estimar garch.

Los errores tienen efectos garch significativos. Se necesita modelo garch.

8 Estimación del modelo GARCH

8.1 Correlogramas y Gráfico, Autocorrelaciones Simples y Parciales de la Serie de Residuos

  par(mfrow=c(2,2))
  acf(residuals(ModeloArimaElegido),na.action = na.omit)
  pacf(residuals(ModeloArimaElegido),na.action = na.omit)
  acf(residuals(ModeloArimaElegido)^2,na.action = na.omit)
  pacf(residuals(ModeloArimaElegido)^2,na.action = na.omit)

8.2 Modelos Plausibles

  ModeloGarch11 <-
    garch(na.omit(residuals(ModeloArimaElegido)),order = 
            c(1,1),na.action=na.omit)
## 
##  ***** ESTIMATION WITH ANALYTICAL GRADIENT ***** 
## 
## 
##      I     INITIAL X(I)        D(I)
## 
##      1     8.275202e+00     1.000e+00
##      2     5.000000e-02     1.000e+00
##      3     5.000000e-02     1.000e+00
## 
##     IT   NF      F         RELDF    PRELDF    RELDX   STPPAR   D*STEP   NPRELDF
##      0    1  1.748e+03
##      1    3  1.744e+03  2.34e-03  7.78e-03  6.0e-03  1.4e+03  1.0e-01  5.30e+00
##      2    5  1.743e+03  2.60e-04  2.72e-04  5.6e-04  1.1e+01  1.0e-02  5.57e-01
##      3    7  1.742e+03  3.65e-04  3.65e-04  1.1e-03  2.0e+00  2.0e-02  1.43e-02
##      4    9  1.742e+03  5.01e-05  5.02e-05  2.4e-04  8.8e+00  4.0e-03  1.28e-02
##      5   11  1.742e+03  7.96e-05  7.97e-05  4.8e-04  2.0e+00  8.0e-03  6.77e-03
##      6   14  1.742e+03  1.33e-06  1.33e-06  9.4e-06  1.4e+02  1.6e-04  5.23e-03
##      7   16  1.742e+03  2.64e-06  2.64e-06  1.9e-05  1.8e+01  3.2e-04  2.91e-03
##      8   19  1.742e+03  5.24e-08  5.24e-08  3.7e-07  3.4e+03  6.4e-06  2.87e-03
##      9   21  1.742e+03  1.05e-07  1.05e-07  7.5e-07  4.3e+02  1.3e-05  2.80e-03
##     10   23  1.742e+03  2.09e-08  2.09e-08  1.5e-07  8.6e+03  2.6e-06  2.80e-03
##     11   25  1.742e+03  4.18e-08  4.18e-08  3.0e-07  1.1e+03  5.1e-06  2.79e-03
##     12   27  1.742e+03  8.37e-09  8.37e-09  6.0e-08  2.1e+04  1.0e-06  2.79e-03
##     13   30  1.742e+03  6.69e-08  6.69e-08  4.8e-07  6.7e+02  8.2e-06  2.79e-03
##     14   33  1.742e+03  1.34e-09  1.34e-09  9.6e-09  1.3e+05  1.6e-07  2.79e-03
##     15   35  1.742e+03  2.68e-09  2.68e-09  1.9e-08  1.7e+04  3.3e-07  2.79e-03
##     16   39  1.742e+03  5.35e-12  5.35e-12  3.8e-11  6.8e-01  6.6e-10 -2.02e-03
##     17   41  1.742e+03  1.07e-11  1.07e-11  7.7e-11  6.8e-01  1.3e-09 -2.02e-03
##     18   43  1.742e+03  2.14e-11  2.14e-11  1.5e-10  6.8e-01  2.6e-09 -2.02e-03
##     19   46  1.742e+03  4.28e-13  4.28e-13  3.1e-12  6.8e-01  5.2e-11 -2.02e-03
##     20   48  1.742e+03  8.58e-13  8.56e-13  6.1e-12  6.8e-01  1.0e-10 -2.01e-03
##     21   50  1.742e+03  1.70e-13  1.71e-13  1.2e-12  6.8e-01  2.1e-11 -2.02e-03
##     22   52  1.742e+03  3.43e-13  3.43e-13  2.5e-12  6.8e-01  4.2e-11 -2.01e-03
##     23   54  1.742e+03  6.84e-13  6.85e-13  4.9e-12  6.8e-01  8.4e-11 -2.02e-03
##     24   56  1.742e+03  1.37e-13  1.37e-13  9.8e-13  6.8e-01  1.7e-11 -2.02e-03
##     25   58  1.742e+03  2.98e-14  2.74e-14  2.0e-13  6.8e-01  3.4e-12 -2.01e-03
##     26   60  1.742e+03  6.26e-15  5.48e-15  3.9e-14  6.8e-01  6.7e-13 -2.01e-03
##     27   62  1.742e+03 -3.92e-16  1.10e-15  7.9e-15  6.8e-01  1.3e-13 -2.02e-03
## 
##  ***** FALSE CONVERGENCE *****
## 
##  FUNCTION     1.742242e+03   RELDX        7.860e-15
##  FUNC. EVALS      62         GRAD. EVALS      27
##  PRELDF       1.096e-15      NPRELDF     -2.017e-03
## 
##      I      FINAL X(I)        D(I)          G(I)
## 
##      1    8.267843e+00     1.000e+00     2.954e+00
##      2    1.395996e-01     1.000e+00    -1.970e+00
##      3    1.004897e-12     1.000e+00     1.378e+01
  ModeloGarch02 <-
    garch(na.omit(residuals(ModeloArimaElegido)),order = 
            c(0,2),na.action=na.omit)
## 
##  ***** ESTIMATION WITH ANALYTICAL GRADIENT ***** 
## 
## 
##      I     INITIAL X(I)        D(I)
## 
##      1     8.275202e+00     1.000e+00
##      2     5.000000e-02     1.000e+00
##      3     5.000000e-02     1.000e+00
## 
##     IT   NF      F         RELDF    PRELDF    RELDX   STPPAR   D*STEP   NPRELDF
##      0    1  1.744e+03
##      1    4  1.742e+03  1.12e-03  8.64e-03  7.5e-03  9.7e+02  1.2e-01  4.19e+00
##      2    6  1.741e+03  3.14e-04  2.97e-04  5.7e-04  4.6e+00  1.2e-02  1.36e-01
##      3    7  1.740e+03  4.21e-04  4.45e-04  1.2e-03  3.3e+00  2.5e-02  1.86e-02
##      4    8  1.740e+03  4.49e-05  3.02e-04  2.6e-03  2.0e+00  5.0e-02  2.01e-02
##      5    9  1.740e+03  1.99e-04  2.74e-04  2.4e-03  2.0e+00  5.0e-02  1.01e-02
##      6   11  1.740e+03  1.68e-05  6.81e-05  9.5e-04  3.1e+00  1.8e-02  6.89e-03
##      7   12  1.740e+03  4.77e-05  5.53e-05  8.8e-04  2.0e+00  1.8e-02  5.16e-03
##      8   13  1.740e+03  3.73e-05  4.05e-05  9.7e-04  2.0e+00  1.8e-02  4.55e-03
##      9   17  1.738e+03  1.10e-03  1.94e-03  6.4e-02  9.3e-01  9.8e-01  4.31e-03
##     10   19  1.738e+03  3.76e-05  3.23e-04  6.1e-03  1.8e+00  9.8e-02  2.43e-03
##     11   20  1.738e+03  1.20e-05  9.11e-05  6.7e-03  1.2e+00  9.8e-02  9.97e-05
##     12   22  1.738e+03  4.43e-05  9.94e-05  2.8e-03  1.5e+00  4.5e-02  1.08e-04
##     13   23  1.738e+03  1.88e-05  2.23e-05  1.1e-03  0.0e+00  1.9e-02  2.23e-05
##     14   24  1.738e+03  5.60e-07  6.33e-07  1.1e-04  0.0e+00  2.5e-03  6.33e-07
##     15   25  1.738e+03  2.28e-08  2.44e-08  3.4e-05  0.0e+00  6.2e-04  2.44e-08
##     16   26  1.738e+03  1.55e-10  1.58e-10  2.5e-06  0.0e+00  4.5e-05  1.58e-10
##     17   27  1.738e+03  7.77e-14  7.78e-14  6.8e-08  0.0e+00  1.2e-06  7.78e-14
## 
##  ***** RELATIVE FUNCTION CONVERGENCE *****
## 
##  FUNCTION     1.737581e+03   RELDX        6.850e-08
##  FUNC. EVALS      27         GRAD. EVALS      18
##  PRELDF       7.777e-14      NPRELDF      7.777e-14
## 
##      I      FINAL X(I)        D(I)          G(I)
## 
##      1    7.141701e+00     1.000e+00     1.626e-07
##      2    1.543825e-01     1.000e+00    -4.395e-06
##      3    8.387965e-02     1.000e+00     5.517e-06
  ModeloGarch22 <-
    garch(na.omit(residuals(ModeloArimaElegido)),order = 
            c(2,2),na.action=na.omit)
## 
##  ***** ESTIMATION WITH ANALYTICAL GRADIENT ***** 
## 
## 
##      I     INITIAL X(I)        D(I)
## 
##      1     7.355735e+00     1.000e+00
##      2     5.000000e-02     1.000e+00
##      3     5.000000e-02     1.000e+00
##      4     5.000000e-02     1.000e+00
##      5     5.000000e-02     1.000e+00
## 
##     IT   NF      F         RELDF    PRELDF    RELDX   STPPAR   D*STEP   NPRELDF
##      0    1  1.743e+03
##      1    3  1.740e+03  2.11e-03  6.87e-03  6.7e-03  1.2e+03  1.0e-01  4.12e+00
##      2    5  1.739e+03  3.79e-04  4.16e-04  4.5e-04  1.3e+01  1.0e-02  1.40e+00
##      3    6  1.738e+03  4.39e-04  4.38e-04  9.4e-04  2.5e+00  2.0e-02  8.07e-02
##      4    8  1.738e+03  5.11e-05  5.14e-05  2.1e-04  8.9e+00  4.0e-03  9.51e-02
##      5   10  1.738e+03  8.48e-05  8.51e-05  4.0e-04  2.1e+00  8.0e-03  5.22e-02
##      6   12  1.738e+03  1.53e-05  1.54e-05  6.8e-05  4.7e+01  1.6e-03  3.32e-02
##      7   14  1.738e+03  2.91e-05  2.91e-05  1.3e-04  4.9e+00  3.2e-03  1.81e-03
##      8   16  1.738e+03  5.26e-05  5.26e-05  2.7e-04  2.9e+00  6.4e-03  1.38e-03
##      9   18  1.738e+03  9.66e-06  9.66e-06  5.6e-05  3.5e+01  1.3e-03  7.99e-04
##     10   20  1.738e+03  1.90e-06  1.90e-06  1.1e-05  1.7e+02  2.6e-04  3.17e-04
##     11   22  1.738e+03  3.78e-07  3.78e-07  2.2e-06  8.4e+02  5.1e-05  3.04e-04
##     12   24  1.738e+03  7.56e-08  7.56e-08  4.5e-07  4.2e+03  1.0e-05  3.02e-04
##     13   27  1.738e+03  6.04e-07  6.04e-07  3.6e-06  1.3e+02  8.2e-05  3.01e-04
##     14   30  1.738e+03  1.21e-08  1.21e-08  7.2e-08  2.6e+04  1.6e-06  3.01e-04
##     15   32  1.738e+03  2.42e-09  2.42e-09  1.4e-08  1.3e+05  3.3e-07  3.00e-04
##     16   35  1.738e+03  4.83e-11  4.83e-11  2.9e-10  6.5e+06  6.6e-09  3.00e-04
##     17   37  1.738e+03  9.66e-11  9.66e-11  5.7e-10  8.2e+05  1.3e-08  3.00e-04
##     18   39  1.738e+03  1.93e-11  1.93e-11  1.1e-10  1.6e+07  2.6e-09  3.00e-04
##     19   41  1.738e+03  3.86e-11  3.86e-11  2.3e-10  2.0e+06  5.2e-09  3.00e-04
##     20   43  1.738e+03  7.73e-12  7.73e-12  4.6e-11  4.1e+07  1.0e-09  3.00e-04
##     21   45  1.738e+03  1.55e-11  1.55e-11  9.2e-11  5.1e+06  2.1e-09  3.00e-04
##     22   47  1.738e+03  3.09e-11  3.09e-11  1.8e-10  2.6e+06  4.2e-09  3.00e-04
##     23   50  1.738e+03  6.19e-13  6.18e-13  3.7e-12  5.1e+08  8.4e-11  3.00e-04
##     24   52  1.738e+03  1.24e-12  1.24e-12  7.3e-12  6.4e+07  1.7e-10  3.00e-04
##     25   54  1.738e+03  2.46e-13  2.47e-13  1.5e-12  1.3e+09  3.4e-11  3.00e-04
##     26   56  1.738e+03  4.94e-13  4.95e-13  2.9e-12  1.6e+08  6.7e-11  3.00e-04
##     27   58  1.738e+03  1.00e-13  9.89e-14  5.9e-13  3.2e+09  1.3e-11  3.00e-04
##     28   61  1.738e+03  7.91e-13  7.91e-13  4.7e-12  1.0e+08  1.1e-10  3.00e-04
##     29   64  1.738e+03  1.66e-14  1.58e-14  9.4e-14  2.0e+10  2.1e-12  3.00e-04
##     30   66  1.738e+03  3.15e-14  3.17e-14  1.9e-13  2.5e+09  4.3e-12  2.99e-04
##     31   68  1.738e+03  6.02e-15  6.33e-15  3.8e-14  5.0e+10  8.6e-13  3.00e-04
##     32   70  1.738e+03  1.22e-14  1.27e-14  7.5e-14  6.2e+09  1.7e-12  3.01e-04
##     33   72  1.738e+03  3.14e-15  2.53e-15  1.5e-14  1.2e+11  3.4e-13  2.99e-04
##     34   74  1.738e+03  5.10e-15  5.06e-15  3.0e-14  1.6e+10  6.9e-13  3.00e-04
##     35   76  1.738e+03 -3.93e-16  1.01e-15  6.0e-15  3.1e+11  1.4e-13  2.99e-04
## 
##  ***** FALSE CONVERGENCE *****
## 
##  FUNCTION     1.737761e+03   RELDX        6.009e-15
##  FUNC. EVALS      76         GRAD. EVALS      35
##  PRELDF       1.013e-15      NPRELDF      2.991e-04
## 
##      I      FINAL X(I)        D(I)          G(I)
## 
##      1    7.350539e+00     1.000e+00     5.008e-01
##      2    1.446907e-01     1.000e+00    -4.113e+00
##      3    6.110465e-02     1.000e+00    -8.233e+00
##      4    4.304983e-03     1.000e+00     4.954e+00
##      5    5.939996e-13     1.000e+00     7.386e+00
#Modelo GARCH(2,2)
  coeftest(ModeloGarch22)
## 
## z test of coefficients:
## 
##      Estimate Std. Error z value  Pr(>|z|)    
## a0 7.3505e+00 4.0098e+00  1.8332   0.06678 .  
## a1 1.4469e-01 3.2662e-02  4.4299 9.426e-06 ***
## a2 6.1105e-02 1.1225e-01  0.5443   0.58620    
## b1 4.3050e-03 7.4673e-01  0.0058   0.99540    
## b2 5.9400e-13 2.3699e-01  0.0000   1.00000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Modelo GARCH(0,2)
  coeftest(ModeloGarch02)
## 
## z test of coefficients:
## 
##    Estimate Std. Error z value  Pr(>|z|)    
## a0 7.141701   0.209866 34.0299 < 2.2e-16 ***
## a1 0.154382   0.031623  4.8819 1.051e-06 ***
## a2 0.083880   0.026649  3.1476  0.001646 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Modelo GARCH(1,1)
  coeftest(ModeloGarch11)
## 
## z test of coefficients:
## 
##      Estimate Std. Error z value  Pr(>|z|)    
## a0 8.2678e+00 9.2890e-01  8.9007 < 2.2e-16 ***
## a1 1.3960e-01 3.2440e-02  4.3033 1.683e-05 ***
## b1 1.0049e-12 1.0083e-01  0.0000         1    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.3 Selección del Mejor Modelo

  TablaDiagnosticoGarch <-
    rbind.data.frame(
      list('ModeloGarch11' , 
           all(coeftest(ModeloGarch11)[,4] <= 
                 0.05),AIC(ModeloGarch11)),
      list('ModeloGarch02' , 
           all(coeftest(ModeloGarch02)[,4] <= 
                 0.05),AIC(ModeloGarch02)),
      list('ModeloGarch22' , 
           all(coeftest(ModeloGarch22)[,4] <= 
                 0.05),AIC(ModeloGarch22))
    )
  names(TablaDiagnosticoGarch) <-
    c('Modelo','AllCoef<0.05?','AIC')
  TablaDiagnosticoGarch <- TablaDiagnosticoGarch[order(-
  TablaDiagnosticoGarch$`AllCoef<0.05`,TablaDiagnosticoGarch$
                                                         AIC),] 
  head(TablaDiagnosticoGarch)
Modelo AllCoef<0.05? AIC
2 ModeloGarch02 TRUE 5491.800
3 ModeloGarch22 FALSE 5496.159
1 ModeloGarch11 FALSE 5502.959
  coeftest(ModeloGarch02)
## 
## z test of coefficients:
## 
##    Estimate Std. Error z value  Pr(>|z|)    
## a0 7.141701   0.209866 34.0299 < 2.2e-16 ***
## a1 0.154382   0.031623  4.8819 1.051e-06 ***
## a2 0.083880   0.026649  3.1476  0.001646 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  ModeloGarchElegido <- ModeloGarch02

El modelo garch02 es el modelo que estimara la varianza condicional de la serie de los retornos.

8.4 Comprobación del modelo ajustado

  par(mfrow=c(2,2))
  plot.ts(residuals(ModeloGarchElegido),main = 'Residuos,Modelo en Varianza, Garch(0,2)')
  qqnorm(residuals(ModeloGarchElegido))
  qqline(residuals(ModeloGarchElegido))
  acf(residuals(ModeloGarchElegido)^2,na.action = na.omit)
  pacf(residuals(ModeloGarchElegido)^2,na.action = na.omit)

9 Presentación Modelo ARIMA-GARCH estimado

    fit <- fitted.values(ModeloArimaElegido)
    fitgarch <- fitted.values(ModeloGarchElegido)[,1]
    low <- fit - (1.96 * fitgarch)
    high <- fit + (1.96 * fitgarch)
    plot(ret, 
         main = 'Google: Retornos VS Ajuste de Retornos con 
Modelo ARIMA(2,1,1)-GRACH(0,2)', 
         type = 'l') 
    lines(low,col = 'purple') 
    lines(high,col = 'purple') 
    lines(fit,col = 'red') 

    coeftest(ModeloArima211)
## 
## z test of coefficients:
## 
##       Estimate Std. Error   z value  Pr(>|z|)    
## ar1  0.1525878  0.0298604    5.1100 3.221e-07 ***
## ar2  0.1767687  0.0298539    5.9211 3.197e-09 ***
## ma1 -0.9999999  0.0026799 -373.1484 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    coeftest(ModeloGarch02)
## 
## z test of coefficients:
## 
##    Estimate Std. Error z value  Pr(>|z|)    
## a0 7.141701   0.209866 34.0299 < 2.2e-16 ***
## a1 0.154382   0.031623  4.8819 1.051e-06 ***
## a2 0.083880   0.026649  3.1476  0.001646 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    predict(ModeloGarch02,n.ahead=5)
## Time Series:
## Start = 2 
## End = 1097 
## Frequency = 1 
##          [,1]      [,2]
##    2       NA        NA
##    3       NA        NA
##    4 2.717260 -2.717260
##    5 2.742022 -2.742022
##    6 2.716042 -2.716042
##    7 2.706146 -2.706146
##    8 2.803603 -2.803603
##    9 2.737954 -2.737954
##   10 3.493368 -3.493368
##   11 3.485848 -3.485848
##   12 2.973143 -2.973143
##   13 2.883784 -2.883784
##   14 2.792537 -2.792537
##   15 3.688857 -3.688857
##   16 3.438484 -3.438484
##   17 2.835423 -2.835423
##   18 2.743086 -2.743086
##   19 2.724192 -2.724192
##   20 2.724856 -2.724856
##   21 2.695248 -2.695248
##   22 2.839707 -2.839707
##   23 2.765913 -2.765913
##   24 2.674964 -2.674964
##   25 2.792614 -2.792614
##   26 2.846169 -2.846169
##   27 2.748830 -2.748830
##   28 2.681592 -2.681592
##   29 2.752539 -2.752539
##   30 2.716232 -2.716232
##   31 2.673781 -2.673781
##   32 2.782058 -2.782058
##   33 2.863498 -2.863498
##   34 3.065053 -3.065053
##   35 2.884418 -2.884418
##   36 2.724682 -2.724682
##   37 2.700869 -2.700869
##   38 3.153894 -3.153894
##   39 3.164254 -3.164254
##   40 3.039782 -3.039782
##   41 2.841226 -2.841226
##   42 2.708533 -2.708533
##   43 2.738758 -2.738758
##   44 3.020470 -3.020470
##   45 2.958788 -2.958788
##   46 2.736443 -2.736443
##   47 2.686393 -2.686393
##   48 2.684164 -2.684164
##   49 2.788468 -2.788468
##   50 2.794030 -2.794030
##   51 2.815727 -2.815727
##   52 2.859484 -2.859484
##   53 3.346748 -3.346748
##   54 3.028319 -3.028319
##   55 3.144604 -3.144604
##   56 3.343411 -3.343411
##   57 2.924229 -2.924229
##   58 2.764280 -2.764280
##   59 2.827755 -2.827755
##   60 2.768553 -2.768553
##   61 2.725663 -2.725663
##   62 2.695218 -2.695218
##   63 2.678695 -2.678695
##   64 2.712984 -2.712984
##   65 2.704128 -2.704128
##   66 3.202182 -3.202182
##   67 3.047893 -3.047893
##   68 2.811682 -2.811682
##   69 2.844474 -2.844474
##   70 2.787257 -2.787257
##   71 2.758856 -2.758856
##   72 2.715149 -2.715149
##   73 2.737100 -2.737100
##   74 2.822861 -2.822861
##   75 2.742071 -2.742071
##   76 2.744302 -2.744302
##   77 2.741097 -2.741097
##   78 2.691258 -2.691258
##   79 2.679634 -2.679634
##   80 2.797224 -2.797224
##   81 2.794485 -2.794485
##   82 2.720415 -2.720415
##   83 2.917023 -2.917023
##   84 2.822736 -2.822736
##   85 2.690289 -2.690289
##   86 2.679206 -2.679206
##   87 2.693569 -2.693569
##   88 2.684274 -2.684274
##   89 2.673118 -2.673118
##   90 2.682762 -2.682762
##   91 2.722076 -2.722076
##   92 2.756278 -2.756278
##   93 2.705419 -2.705419
##   94 2.700819 -2.700819
##   95 2.688004 -2.688004
##   96 2.710731 -2.710731
##   97 2.708560 -2.708560
##   98 2.685248 -2.685248
##   99 2.705744 -2.705744
##  100 2.804893 -2.804893
##  101 3.235702 -3.235702
##  102 2.966439 -2.966439
##  103 2.749009 -2.749009
##  104 2.712278 -2.712278
##  105 2.819725 -2.819725
##  106 2.887636 -2.887636
##  107 3.366505 -3.366505
##  108 3.058538 -3.058538
##  109 2.715795 -2.715795
##  110 2.687585 -2.687585
##  111 2.712619 -2.712619
##  112 2.973580 -2.973580
##  113 2.829431 -2.829431
##  114 2.773621 -2.773621
##  115 2.778320 -2.778320
##  116 2.723319 -2.723319
##  117 2.859005 -2.859005
##  118 2.939307 -2.939307
##  119 2.773726 -2.773726
##  120 2.704383 -2.704383
##  121 2.738777 -2.738777
##  122 3.361568 -3.361568
##  123 3.053236 -3.053236
##  124 2.978076 -2.978076
##  125 2.843102 -2.843102
##  126 2.708726 -2.708726
##  127 2.893982 -2.893982
##  128 2.787202 -2.787202
##  129 2.706136 -2.706136
##  130 2.821093 -2.821093
##  131 2.746372 -2.746372
##  132 3.424703 -3.424703
##  133 3.135743 -3.135743
##  134 2.730391 -2.730391
##  135 2.693963 -2.693963
##  136 3.052682 -3.052682
##  137 3.306739 -3.306739
##  138 3.098064 -3.098064
##  139 2.776032 -2.776032
##  140 2.696705 -2.696705
##  141 2.702322 -2.702322
##  142 3.073659 -3.073659
##  143 3.128936 -3.128936
##  144 2.841480 -2.841480
##  145 2.868260 -2.868260
##  146 2.778798 -2.778798
##  147 2.697876 -2.697876
##  148 2.685366 -2.685366
##  149 3.040823 -3.040823
##  150 2.881902 -2.881902
##  151 2.834597 -2.834597
##  152 2.760578 -2.760578
##  153 2.802881 -2.802881
##  154 2.745229 -2.745229
##  155 2.980530 -2.980530
##  156 3.298161 -3.298161
##  157 2.963036 -2.963036
##  158 2.712141 -2.712141
##  159 4.017315 -4.017315
##  160 3.462300 -3.462300
##  161 2.745936 -2.745936
##  162 2.905887 -2.905887
##  163 2.817126 -2.817126
##  164 2.711099 -2.711099
##  165 2.797085 -2.797085
##  166 2.735599 -2.735599
##  167 2.672734 -2.672734
##  168 2.678156 -2.678156
##  169 2.678000 -2.678000
##  170 2.674802 -2.674802
##  171 2.676734 -2.676734
##  172 2.903081 -2.903081
##  173 2.832220 -2.832220
##  174 3.018502 -3.018502
##  175 2.881126 -2.881126
##  176 2.745473 -2.745473
##  177 2.710471 -2.710471
##  178 2.678127 -2.678127
##  179 2.680389 -2.680389
##  180 2.707858 -2.707858
##  181 2.715860 -2.715860
##  182 2.686904 -2.686904
##  183 2.684855 -2.684855
##  184 2.682677 -2.682677
##  185 2.723600 -2.723600
##  186 2.750184 -2.750184
##  187 2.759778 -2.759778
##  188 2.736380 -2.736380
##  189 2.714933 -2.714933
##  190 2.695034 -2.695034
##  191 2.730824 -2.730824
##  192 2.702613 -2.702613
##  193 2.727703 -2.727703
##  194 2.717180 -2.717180
##  195 2.764436 -2.764436
##  196 2.737365 -2.737365
##  197 2.687645 -2.687645
##  198 2.686379 -2.686379
##  199 2.692234 -2.692234
##  200 2.680016 -2.680016
##  201 2.678898 -2.678898
##  202 2.737718 -2.737718
##  203 2.771629 -2.771629
##  204 2.751416 -2.751416
##  205 2.724508 -2.724508
##  206 2.704941 -2.704941
##  207 2.689188 -2.689188
##  208 2.679299 -2.679299
##  209 2.769321 -2.769321
##  210 2.728692 -2.728692
##  211 3.807211 -3.807211
##  212 3.364003 -3.364003
##  213 3.456418 -3.456418
##  214 3.136852 -3.136852
##  215 2.692150 -2.692150
##  216 2.682265 -2.682265
##  217 2.683379 -2.683379
##  218 2.678342 -2.678342
##  219 2.673980 -2.673980
##  220 2.672659 -2.672659
##  221 2.672591 -2.672591
##  222 2.676656 -2.676656
##  223 2.682149 -2.682149
##  224 2.693234 -2.693234
##  225 2.683655 -2.683655
##  226 2.682040 -2.682040
##  227 3.386987 -3.386987
##  228 3.100602 -3.100602
##  229 3.421767 -3.421767
##  230 3.146729 -3.146729
##  231 2.706378 -2.706378
##  232 2.680727 -2.680727
##  233 3.123700 -3.123700
##  234 2.932760 -2.932760
##  235 2.717065 -2.717065
##  236 2.729826 -2.729826
##  237 3.038381 -3.038381
##  238 2.871664 -2.871664
##  239 2.836531 -2.836531
##  240 2.761890 -2.761890
##  241 2.679830 -2.679830
##  242 2.690072 -2.690072
##  243 2.686548 -2.686548
##  244 2.682753 -2.682753
##  245 2.730319 -2.730319
##  246 2.702183 -2.702183
##  247 2.798071 -2.798071
##  248 2.777429 -2.777429
##  249 2.742228 -2.742228
##  250 2.700583 -2.700583
##  251 2.673388 -2.673388
##  252 2.673052 -2.673052
##  253 2.673335 -2.673335
##  254 2.672981 -2.672981
##  255 2.859864 -2.859864
##  256 3.024180 -3.024180
##  257 3.238355 -3.238355
##  258 3.045604 -3.045604
##  259 3.080309 -3.080309
##  260 3.514108 -3.514108
##  261 3.137629 -3.137629
##  262 2.841005 -2.841005
##  263 2.741295 -2.741295
##  264 3.713707 -3.713707
##  265 3.282324 -3.282324
##  266 2.677045 -2.677045
##  267 2.697168 -2.697168
##  268 2.759950 -2.759950
##  269 3.607578 -3.607578
##  270 3.253493 -3.253493
##  271 2.877584 -2.877584
##  272 2.885889 -2.885889
##  273 2.924810 -2.924810
##  274 3.109815 -3.109815
##  275 3.046108 -3.046108
##  276 2.918308 -2.918308
##  277 2.822253 -2.822253
##  278 3.009201 -3.009201
##  279 3.167474 -3.167474
##  280 3.128510 -3.128510
##  281 2.828695 -2.828695
##  282 2.703827 -2.703827
##  283 2.690896 -2.690896
##  284 2.684140 -2.684140
##  285 3.353574 -3.353574
##  286 3.574564 -3.574564
##  287 3.246119 -3.246119
##  288 2.869473 -2.869473
##  289 2.702530 -2.702530
##  290 2.688639 -2.688639
##  291 2.787318 -2.787318
##  292 2.763752 -2.763752
##  293 2.711181 -2.711181
##  294 2.874805 -2.874805
##  295 3.060388 -3.060388
##  296 5.488408 -5.488408
##  297 4.665003 -4.665003
##  298 2.976653 -2.976653
##  299 2.704307 -2.704307
##  300 2.681646 -2.681646
##  301 2.847138 -2.847138
##  302 2.806196 -2.806196
##  303 3.205735 -3.205735
##  304 2.963193 -2.963193
##  305 2.717735 -2.717735
##  306 2.718800 -2.718800
##  307 3.338165 -3.338165
##  308 3.200654 -3.200654
##  309 3.046823 -3.046823
##  310 2.839019 -2.839019
##  311 3.316431 -3.316431
##  312 3.038582 -3.038582
##  313 2.804477 -2.804477
##  314 2.744602 -2.744602
##  315 2.839571 -2.839571
##  316 3.210417 -3.210417
##  317 2.945305 -2.945305
##  318 3.149862 -3.149862
##  319 3.044201 -3.044201
##  320 2.958932 -2.958932
##  321 3.050786 -3.050786
##  322 4.045267 -4.045267
##  323 3.518132 -3.518132
##  324 3.600282 -3.600282
##  325 3.377946 -3.377946
##  326 2.804615 -2.804615
##  327 2.676206 -2.676206
##  328 2.786404 -2.786404
##  329 3.067833 -3.067833
##  330 2.863861 -2.863861
##  331 3.892909 -3.892909
##  332 3.925006 -3.925006
##  333 3.045227 -3.045227
##  334 2.673092 -2.673092
##  335 2.672499 -2.672499
##  336 2.892123 -2.892123
##  337 2.830189 -2.830189
##  338 2.721436 -2.721436
##  339 2.800509 -2.800509
##  340 2.772611 -2.772611
##  341 2.694877 -2.694877
##  342 2.698512 -2.698512
##  343 2.750300 -2.750300
##  344 2.745383 -2.745383
##  345 2.774208 -2.774208
##  346 2.913236 -2.913236
##  347 5.416570 -5.416570
##  348 5.333352 -5.333352
##  349 3.541542 -3.541542
##  350 3.218576 -3.218576
##  351 4.663728 -4.663728
##  352 3.787749 -3.787749
##  353 2.742213 -2.742213
##  354 2.717871 -2.717871
##  355 2.681998 -2.681998
##  356 2.853602 -2.853602
##  357 2.824194 -2.824194
##  358 2.720748 -2.720748
##  359 2.687745 -2.687745
##  360 2.699247 -2.699247
##  361 2.890638 -2.890638
##  362 2.833356 -2.833356
##  363 2.712865 -2.712865
##  364 2.999021 -2.999021
##  365 2.851769 -2.851769
##  366 2.676533 -2.676533
##  367 2.717848 -2.717848
##  368 3.287735 -3.287735
##  369 3.014784 -3.014784
##  370 2.680065 -2.680065
##  371 2.828125 -2.828125
##  372 2.802692 -2.802692
##  373 2.770302 -2.770302
##  374 2.737078 -2.737078
##  375 2.741157 -2.741157
##  376 2.830425 -2.830425
##  377 2.786988 -2.786988
##  378 2.816752 -2.816752
##  379 2.742182 -2.742182
##  380 2.716209 -2.716209
##  381 2.719972 -2.719972
##  382 2.778786 -2.778786
##  383 2.728150 -2.728150
##  384 2.683652 -2.683652
##  385 3.742300 -3.742300
##  386 3.331134 -3.331134
##  387 2.750414 -2.750414
##  388 2.726895 -2.726895
##  389 2.686519 -2.686519
##  390 2.672641 -2.672641
##  391 2.680475 -2.680475
##  392 2.682886 -2.682886
##  393 2.697030 -2.697030
##  394 2.701262 -2.701262
##  395 2.999577 -2.999577
##  396 2.908355 -2.908355
##  397 2.708804 -2.708804
##  398 2.740204 -2.740204
##  399 2.811099 -2.811099
##  400 2.781336 -2.781336
##  401 2.907149 -2.907149
##  402 3.234443 -3.234443
##  403 2.945240 -2.945240
##  404 2.712704 -2.712704
##  405 3.924819 -3.924819
##  406 4.972371 -4.972371
##  407 4.901450 -4.901450
##  408 4.459787 -4.459787
##  409 4.390941 -4.390941
##  410 4.136074 -4.136074
##  411 3.195971 -3.195971
##  412 3.681058 -3.681058
##  413 3.258098 -3.258098
##  414 2.803527 -2.803527
##  415 3.278375 -3.278375
##  416 6.545323 -6.545323
##  417 5.255328 -5.255328
##  418 2.879235 -2.879235
##  419 2.911396 -2.911396
##  420 3.381931 -3.381931
##  421 3.815943 -3.815943
##  422 3.199596 -3.199596
##  423 3.984881 -3.984881
##  424 3.453948 -3.453948
##  425 3.419573 -3.419573
##  426 3.689582 -3.689582
##  427 3.065902 -3.065902
##  428 3.568871 -3.568871
##  429 5.105729 -5.105729
##  430 4.332962 -4.332962
##  431 3.158020 -3.158020
##  432 2.838290 -2.838290
##  433 2.706514 -2.706514
##  434 5.134722 -5.134722
##  435 4.603110 -4.603110
##  436 3.611602 -3.611602
##  437 3.483919 -3.483919
##  438 3.293478 -3.293478
##  439 2.943196 -2.943196
##  440 2.920757 -2.920757
##  441 3.900360 -3.900360
##  442 3.648961 -3.648961
##  443 3.184724 -3.184724
##  444 3.376889 -3.376889
##  445 2.997048 -2.997048
##  446 3.462683 -3.462683
##  447 3.144005 -3.144005
##  448 2.860776 -2.860776
##  449 2.892758 -2.892758
##  450 3.699706 -3.699706
##  451 3.431621 -3.431621
##  452 5.515396 -5.515396
##  453 4.861316 -4.861316
##  454 3.166437 -3.166437
##  455 2.825799 -2.825799
##  456 2.948647 -2.948647
##  457 3.027837 -3.027837
##  458 3.530920 -3.530920
##  459 5.639454 -5.639454
##  460 4.426963 -4.426963
##  461 2.926828 -2.926828
##  462 3.241153 -3.241153
##  463 2.983980 -2.983980
##  464 2.744855 -2.744855
##  465 2.937173 -2.937173
##  466 2.937533 -2.937533
##  467 2.764312 -2.764312
##  468 2.693923 -2.693923
##  469 4.454696 -4.454696
##  470 3.949438 -3.949438
##  471 2.830403 -2.830403
##  472 2.746867 -2.746867
##  473 2.968617 -2.968617
##  474 3.400565 -3.400565
##  475 3.136740 -3.136740
##  476 2.963253 -2.963253
##  477 2.800133 -2.800133
##  478 2.750519 -2.750519
##  479 2.851435 -2.851435
##  480 2.914923 -2.914923
##  481 2.769525 -2.769525
##  482 2.804142 -2.804142
##  483 2.915634 -2.915634
##  484 2.772163 -2.772163
##  485 2.676674 -2.676674
##  486 3.105038 -3.105038
##  487 2.991906 -2.991906
##  488 3.077247 -3.077247
##  489 2.902114 -2.902114
##  490 3.235720 -3.235720
##  491 3.435268 -3.435268
##  492 3.407435 -3.407435
##  493 2.986879 -2.986879
##  494 2.887740 -2.887740
##  495 2.780528 -2.780528
##  496 2.724830 -2.724830
##  497 3.216661 -3.216661
##  498 2.966431 -2.966431
##  499 3.073853 -3.073853
##  500 2.979426 -2.979426
##  501 2.893344 -2.893344
##  502 2.966413 -2.966413
##  503 2.785479 -2.785479
##  504 2.679578 -2.679578
##  505 2.699001 -2.699001
##  506 2.904869 -2.904869
##  507 3.464581 -3.464581
##  508 3.098049 -3.098049
##  509 2.710450 -2.710450
##  510 2.698016 -2.698016
##  511 3.082742 -3.082742
##  512 2.912280 -2.912280
##  513 2.858243 -2.858243
##  514 3.233706 -3.233706
##  515 3.058016 -3.058016
##  516 2.969986 -2.969986
##  517 2.803277 -2.803277
##  518 2.798435 -2.798435
##  519 3.183146 -3.183146
##  520 3.023912 -3.023912
##  521 2.731546 -2.731546
##  522 2.708948 -2.708948
##  523 2.745413 -2.745413
##  524 9.093673 -9.093673
##  525 7.438019 -7.438019
##  526 4.538401 -4.538401
##  527 4.005615 -4.005615
##  528 3.033588 -3.033588
##  529 2.681327 -2.681327
##  530 2.739301 -2.739301
##  531 2.815469 -2.815469
##  532 3.076165 -3.076165
##  533 2.876751 -2.876751
##  534 2.722795 -2.722795
##  535 2.744970 -2.744970
##  536 2.713407 -2.713407
##  537 2.895583 -2.895583
##  538 2.795948 -2.795948
##  539 2.675032 -2.675032
##  540 2.717915 -2.717915
##  541 2.699791 -2.699791
##  542 3.039185 -3.039185
##  543 2.976790 -2.976790
##  544 2.956004 -2.956004
##  545 2.806579 -2.806579
##  546 2.687078 -2.687078
##  547 2.686191 -2.686191
##  548 2.679451 -2.679451
##  549 3.056300 -3.056300
##  550 3.083768 -3.083768
##  551 2.956480 -2.956480
##  552 3.326514 -3.326514
##  553 3.159957 -3.159957
##  554 3.181625 -3.181625
##  555 2.932262 -2.932262
##  556 2.723683 -2.723683
##  557 2.727545 -2.727545
##  558 2.724850 -2.724850
##  559 2.852977 -2.852977
##  560 2.763849 -2.763849
##  561 2.922075 -2.922075
##  562 3.321085 -3.321085
##  563 3.561848 -3.561848
##  564 3.045422 -3.045422
##  565 2.824790 -2.824790
##  566 3.108896 -3.108896
##  567 3.038574 -3.038574
##  568 2.939665 -2.939665
##  569 2.849256 -2.849256
##  570 2.728972 -2.728972
##  571 2.769036 -2.769036
##  572 3.204441 -3.204441
##  573 3.032743 -3.032743
##  574 2.847368 -2.847368
##  575 3.075309 -3.075309
##  576 3.765993 -3.765993
##  577 4.107387 -4.107387
##  578 3.383098 -3.383098
##  579 2.751603 -2.751603
##  580 2.964824 -2.964824
##  581 3.279064 -3.279064
##  582 3.397819 -3.397819
##  583 3.566756 -3.566756
##  584 3.056545 -3.056545
##  585 2.728412 -2.728412
##  586 2.714741 -2.714741
##  587 2.707167 -2.707167
##  588 3.558628 -3.558628
##  589 3.240753 -3.240753
##  590 2.760377 -2.760377
##  591 2.768029 -2.768029
##  592 2.712851 -2.712851
##  593 2.699999 -2.699999
##  594 4.726457 -4.726457
##  595 3.977860 -3.977860
##  596 2.732177 -2.732177
##  597 3.232608 -3.232608
##  598 3.123963 -3.123963
##  599 2.819604 -2.819604
##  600 2.887636 -2.887636
##  601 2.800547 -2.800547
##  602 2.788301 -2.788301
##  603 2.772272 -2.772272
##  604 2.710024 -2.710024
##  605 3.125969 -3.125969
##  606 4.184996 -4.184996
##  607 4.149133 -4.149133
##  608 3.226250 -3.226250
##  609 2.789916 -2.789916
##  610 2.730966 -2.730966
##  611 2.706147 -2.706147
##  612 2.709913 -2.709913
##  613 2.924519 -2.924519
##  614 2.882357 -2.882357
##  615 2.765713 -2.765713
##  616 2.705436 -2.705436
##  617 3.014843 -3.014843
##  618 3.344617 -3.344617
##  619 3.284655 -3.284655
##  620 2.930231 -2.930231
##  621 2.708844 -2.708844
##  622 2.674260 -2.674260
##  623 2.832943 -2.832943
##  624 2.760642 -2.760642
##  625 2.753211 -2.753211
##  626 2.817952 -2.817952
##  627 2.838885 -2.838885
##  628 5.599533 -5.599533
##  629 4.559193 -4.559193
##  630 2.740151 -2.740151
##  631 2.676291 -2.676291
##  632 2.838871 -2.838871
##  633 2.833023 -2.833023
##  634 3.142172 -3.142172
##  635 3.817057 -3.817057
##  636 3.322234 -3.322234
##  637 3.441128 -3.441128
##  638 3.410281 -3.410281
##  639 2.961585 -2.961585
##  640 3.069080 -3.069080
##  641 2.899684 -2.899684
##  642 2.885079 -2.885079
##  643 3.011525 -3.011525
##  644 2.918867 -2.918867
##  645 2.832607 -2.832607
##  646 2.756461 -2.756461
##  647 3.060095 -3.060095
##  648 2.881985 -2.881985
##  649 2.674384 -2.674384
##  650 2.941508 -2.941508
##  651 2.822598 -2.822598
##  652 2.744971 -2.744971
##  653 2.729437 -2.729437
##  654 2.820316 -2.820316
##  655 2.751564 -2.751564
##  656 2.717000 -2.717000
##  657 2.757774 -2.757774
##  658 2.843277 -2.843277
##  659 2.759692 -2.759692
##  660 2.731590 -2.731590
##  661 2.701477 -2.701477
##  662 2.685171 -2.685171
##  663 2.686559 -2.686559
##  664 2.712092 -2.712092
##  665 3.094542 -3.094542
##  666 2.988859 -2.988859
##  667 2.762958 -2.762958
##  668 2.784374 -2.784374
##  669 3.411031 -3.411031
##  670 4.483050 -4.483050
##  671 3.784095 -3.784095
##  672 2.857297 -2.857297
##  673 2.700813 -2.700813
##  674 2.680715 -2.680715
##  675 2.721324 -2.721324
##  676 2.699140 -2.699140
##  677 3.038755 -3.038755
##  678 3.064840 -3.064840
##  679 2.812147 -2.812147
##  680 5.316905 -5.316905
##  681 4.770010 -4.770010
##  682 3.107799 -3.107799
##  683 3.646748 -3.646748
##  684 3.228004 -3.228004
##  685 3.157645 -3.157645
##  686 2.946134 -2.946134
##  687 5.150687 -5.150687
##  688 4.756771 -4.756771
##  689 3.347373 -3.347373
##  690 2.829232 -2.829232
##  691 2.844074 -2.844074
##  692 3.051065 -3.051065
##  693 2.849300 -2.849300
##  694 2.699889 -2.699889
##  695 2.684252 -2.684252
##  696 2.672661 -2.672661
##  697 2.711040 -2.711040
##  698 2.704446 -2.704446
##  699 2.721338 -2.721338
##  700 2.726933 -2.726933
##  701 2.798299 -2.798299
##  702 2.777897 -2.777897
##  703 2.810635 -2.810635
##  704 2.737970 -2.737970
##  705 2.698190 -2.698190
##  706 2.698098 -2.698098
##  707 2.902902 -2.902902
##  708 2.927565 -2.927565
##  709 2.747648 -2.747648
##  710 2.672526 -2.672526
##  711 2.718227 -2.718227
##  712 2.699315 -2.699315
##  713 2.800141 -2.800141
##  714 2.815308 -2.815308
##  715 2.800407 -2.800407
##  716 2.728212 -2.728212
##  717 2.684789 -2.684789
##  718 2.703082 -2.703082
##  719 2.711440 -2.711440
##  720 4.818905 -4.818905
##  721 4.548917 -4.548917
##  722 3.127236 -3.127236
##  723 2.794812 -2.794812
##  724 2.922653 -2.922653
##  725 2.928703 -2.928703
##  726 2.785645 -2.785645
##  727 2.731394 -2.731394
##  728 2.786320 -2.786320
##  729 2.804798 -2.804798
##  730 2.753411 -2.753411
##  731 3.150903 -3.150903
##  732 2.956309 -2.956309
##  733 6.407966 -6.407966
##  734 6.968998 -6.968998
##  735 4.519711 -4.519711
##  736 2.763558 -2.763558
##  737 2.680716 -2.680716
##  738 2.807560 -2.807560
##  739 2.811185 -2.811185
##  740 3.606182 -3.606182
##  741 4.190721 -4.190721
##  742 3.559879 -3.559879
##  743 2.955649 -2.955649
##  744 2.772653 -2.772653
##  745 2.840165 -2.840165
##  746 2.854342 -2.854342
##  747 2.752052 -2.752052
##  748 2.825838 -2.825838
##  749 2.777103 -2.777103
##  750 2.699737 -2.699737
##  751 2.717802 -2.717802
##  752 3.156724 -3.156724
##  753 2.951895 -2.951895
##  754 2.705963 -2.705963
##  755 3.029563 -3.029563
##  756 2.957975 -2.957975
##  757 2.776268 -2.776268
##  758 3.468466 -3.468466
##  759 4.290560 -4.290560
##  760 3.448384 -3.448384
##  761 2.675878 -2.675878
##  762 2.825625 -2.825625
##  763 2.778403 -2.778403
##  764 2.684912 -2.684912
##  765 2.787577 -2.787577
##  766 2.754273 -2.754273
##  767 2.764382 -2.764382
##  768 2.838433 -2.838433
##  769 2.771980 -2.771980
##  770 2.818353 -2.818353
##  771 2.815557 -2.815557
##  772 2.913122 -2.913122
##  773 2.978850 -2.978850
##  774 2.848276 -2.848276
##  775 2.841089 -2.841089
##  776 2.754708 -2.754708
##  777 3.193165 -3.193165
##  778 2.976437 -2.976437
##  779 2.680501 -2.680501
##  780 2.676935 -2.676935
##  781 2.688282 -2.688282
##  782 2.919934 -2.919934
##  783 3.126801 -3.126801
##  784 3.001651 -3.001651
##  785 2.755809 -2.755809
##  786 5.418425 -5.418425
##  787 4.830312 -4.830312
##  788 3.422333 -3.422333
##  789 3.057798 -3.057798
##  790 2.874550 -2.874550
##  791 2.790101 -2.790101
##  792 2.728238 -2.728238
##  793 2.717006 -2.717006
##  794 2.723076 -2.723076
##  795 2.714603 -2.714603
##  796 2.687717 -2.687717
##  797 2.874044 -2.874044
##  798 2.787566 -2.787566
##  799 2.731122 -2.731122
##  800 3.199596 -3.199596
##  801 2.979929 -2.979929
##  802 2.687400 -2.687400
##  803 2.788908 -2.788908
##  804 2.760117 -2.760117
##  805 3.042803 -3.042803
##  806 2.894347 -2.894347
##  807 2.731893 -2.731893
##  808 2.709307 -2.709307
##  809 2.687230 -2.687230
##  810 2.711250 -2.711250
##  811 2.693267 -2.693267
##  812 2.746133 -2.746133
##  813 2.716641 -2.716641
##  814 3.183206 -3.183206
##  815 3.069396 -3.069396
##  816 2.738837 -2.738837
##  817 2.789407 -2.789407
##  818 2.840952 -2.840952
##  819 2.976061 -2.976061
##  820 2.848584 -2.848584
##  821 2.757229 -2.757229
##  822 2.974924 -2.974924
##  823 3.153739 -3.153739
##  824 3.188429 -3.188429
##  825 3.906496 -3.906496
##  826 3.333724 -3.333724
##  827 2.710158 -2.710158
##  828 2.702081 -2.702081
##  829 2.696063 -2.696063
##  830 2.960495 -2.960495
##  831 2.865842 -2.865842
##  832 3.586139 -3.586139
##  833 3.206279 -3.206279
##  834 3.042777 -3.042777
##  835 2.919163 -2.919163
##  836 2.747048 -2.747048
##  837 2.914324 -2.914324
##  838 2.833075 -2.833075
##  839 3.199627 -3.199627
##  840 2.959393 -2.959393
##  841 2.732224 -2.732224
##  842 2.706973 -2.706973
##  843 2.673960 -2.673960
##  844 2.673373 -2.673373
##  845 2.677344 -2.677344
##  846 2.687826 -2.687826
##  847 2.806511 -2.806511
##  848 3.208634 -3.208634
##  849 3.518612 -3.518612
##  850 3.055953 -3.055953
##  851 2.846535 -2.846535
##  852 2.818658 -2.818658
##  853 3.485816 -3.485816
##  854 3.145315 -3.145315
##  855 2.780097 -2.780097
##  856 2.866373 -2.866373
##  857 2.796892 -2.796892
##  858 2.730373 -2.730373
##  859 2.697727 -2.697727
##  860 3.004351 -3.004351
##  861 2.870307 -2.870307
##  862 2.681706 -2.681706
##  863 2.705110 -2.705110
##  864 2.756740 -2.756740
##  865 2.743801 -2.743801
##  866 2.696509 -2.696509
##  867 2.692392 -2.692392
##  868 2.683621 -2.683621
##  869 2.676866 -2.676866
##  870 2.701115 -2.701115
##  871 3.309894 -3.309894
##  872 3.336173 -3.336173
##  873 3.075598 -3.075598
##  874 3.081769 -3.081769
##  875 3.406534 -3.406534
##  876 3.024077 -3.024077
##  877 2.716293 -2.716293
##  878 2.838094 -2.838094
##  879 2.759550 -2.759550
##  880 2.991456 -2.991456
##  881 3.041146 -3.041146
##  882 2.792697 -2.792697
##  883 2.696301 -2.696301
##  884 2.683295 -2.683295
##  885 2.948744 -2.948744
##  886 3.006964 -3.006964
##  887 2.801325 -2.801325
##  888 2.691702 -2.691702
##  889 2.922494 -2.922494
##  890 2.857315 -2.857315
##  891 2.742029 -2.742029
##  892 2.698840 -2.698840
##  893 3.856277 -3.856277
##  894 3.367047 -3.367047
##  895 2.850520 -2.850520
##  896 2.969463 -2.969463
##  897 2.786649 -2.786649
##  898 2.741155 -2.741155
##  899 3.221225 -3.221225
##  900 3.071080 -3.071080
##  901 2.795735 -2.795735
##  902 2.726683 -2.726683
##  903 2.697197 -2.697197
##  904 2.693184 -2.693184
##  905 3.027490 -3.027490
##  906 2.927885 -2.927885
##  907 2.731148 -2.731148
##  908 2.686955 -2.686955
##  909 2.730579 -2.730579
##  910 2.733660 -2.733660
##  911 2.795621 -2.795621
##  912 2.734759 -2.734759
##  913 2.678233 -2.678233
##  914 2.731824 -2.731824
##  915 3.203526 -3.203526
##  916 3.082553 -3.082553
##  917 2.948018 -2.948018
##  918 2.809283 -2.809283
##  919 2.685812 -2.685812
##  920 2.761622 -2.761622
##  921 2.723479 -2.723479
##  922 2.674340 -2.674340
##  923 2.738342 -2.738342
##  924 2.894398 -2.894398
##  925 3.170213 -3.170213
##  926 3.068684 -3.068684
##  927 2.777505 -2.777505
##  928 2.907278 -2.907278
##  929 2.915687 -2.915687
##  930 3.050843 -3.050843
##  931 2.960593 -2.960593
##  932 2.768467 -2.768467
##  933 2.753801 -2.753801
##  934 2.749632 -2.749632
##  935 2.696810 -2.696810
##  936 2.740054 -2.740054
##  937 2.742512 -2.742512
##  938 3.089596 -3.089596
##  939 3.191989 -3.191989
##  940 3.020340 -3.020340
##  941 2.839110 -2.839110
##  942 3.506665 -3.506665
##  943 3.417377 -3.417377
##  944 2.857215 -2.857215
##  945 2.810300 -2.810300
##  946 2.813197 -2.813197
##  947 2.753159 -2.753159
##  948 2.771247 -2.771247
##  949 2.805699 -2.805699
##  950 2.791851 -2.791851
##  951 2.719859 -2.719859
##  952 2.837041 -2.837041
##  953 2.836292 -2.836292
##  954 2.859111 -2.859111
##  955 2.796765 -2.796765
##  956 2.944909 -2.944909
##  957 2.847300 -2.847300
##  958 2.693389 -2.693389
##  959 3.094945 -3.094945
##  960 2.956360 -2.956360
##  961 2.701438 -2.701438
##  962 2.739553 -2.739553
##  963 3.149711 -3.149711
##  964 2.924855 -2.924855
##  965 2.695243 -2.695243
##  966 2.690205 -2.690205
##  967 2.790554 -2.790554
##  968 3.105299 -3.105299
##  969 3.028058 -3.028058
##  970 2.844962 -2.844962
##  971 2.751766 -2.751766
##  972 2.749123 -2.749123
##  973 2.710145 -2.710145
##  974 2.675846 -2.675846
##  975 2.683336 -2.683336
##  976 2.700294 -2.700294
##  977 2.829700 -2.829700
##  978 3.086495 -3.086495
##  979 2.969821 -2.969821
##  980 2.881617 -2.881617
##  981 3.097751 -3.097751
##  982 2.968952 -2.968952
##  983 2.746929 -2.746929
##  984 3.074952 -3.074952
##  985 3.137443 -3.137443
##  986 2.902323 -2.902323
##  987 2.723065 -2.723065
##  988 2.777846 -2.777846
##  989 2.839796 -2.839796
##  990 2.982762 -2.982762
##  991 2.842734 -2.842734
##  992 2.699540 -2.699540
##  993 2.959744 -2.959744
##  994 2.915502 -2.915502
##  995 2.759179 -2.759179
##  996 2.751833 -2.751833
##  997 2.978930 -2.978930
##  998 2.837775 -2.837775
##  999 2.850666 -2.850666
## 1000 2.786764 -2.786764
## 1001 2.710066 -2.710066
## 1002 2.690605 -2.690605
## 1003 2.794078 -2.794078
## 1004 2.755042 -2.755042
## 1005 5.631253 -5.631253
## 1006 4.732643 -4.732643
## 1007 3.068410 -3.068410
## 1008 3.060383 -3.060383
## 1009 2.830991 -2.830991
## 1010 3.446048 -3.446048
## 1011 3.173265 -3.173265
## 1012 2.747597 -2.747597
## 1013 2.727746 -2.727746
## 1014 2.697477 -2.697477
## 1015 2.825157 -2.825157
## 1016 2.966645 -2.966645
## 1017 2.818760 -2.818760
## 1018 3.672093 -3.672093
## 1019 3.606425 -3.606425
## 1020 3.260222 -3.260222
## 1021 3.207459 -3.207459
## 1022 2.945812 -2.945812
## 1023 3.075593 -3.075593
## 1024 2.995879 -2.995879
## 1025 3.063943 -3.063943
## 1026 2.876957 -2.876957
## 1027 2.703676 -2.703676
## 1028 2.696935 -2.696935
## 1029 2.685288 -2.685288
## 1030 4.289708 -4.289708
## 1031 3.960910 -3.960910
## 1032 3.242585 -3.242585
## 1033 2.879255 -2.879255
## 1034 2.687742 -2.687742
## 1035 2.693124 -2.693124
## 1036 2.790677 -2.790677
## 1037 3.262606 -3.262606
## 1038 3.017503 -3.017503
## 1039 2.742913 -2.742913
## 1040 2.722011 -2.722011
## 1041 2.693637 -2.693637
## 1042 3.116147 -3.116147
## 1043 2.951010 -2.951010
## 1044 3.819231 -3.819231
## 1045 3.483132 -3.483132
## 1046 3.608028 -3.608028
## 1047 3.202016 -3.202016
## 1048 2.723270 -2.723270
## 1049 2.866572 -2.866572
## 1050 2.816830 -2.816830
## 1051 2.732801 -2.732801
## 1052 2.790007 -2.790007
## 1053 2.821628 -2.821628
## 1054 3.105034 -3.105034
## 1055 2.902748 -2.902748
## 1056 2.685769 -2.685769
## 1057 2.919428 -2.919428
## 1058 3.048873 -3.048873
## 1059 3.007164 -3.007164
## 1060 2.856984 -2.856984
## 1061 2.715735 -2.715735
## 1062 2.780753 -2.780753
## 1063 2.959472 -2.959472
## 1064 2.829755 -2.829755
## 1065 2.709108 -2.709108
## 1066 2.751884 -2.751884
## 1067 2.710833 -2.710833
## 1068 2.708547 -2.708547
## 1069 2.758517 -2.758517
## 1070 2.719537 -2.719537
## 1071 2.956616 -2.956616
## 1072 3.165514 -3.165514
## 1073 2.964870 -2.964870
## 1074 2.852263 -2.852263
## 1075 2.743969 -2.743969
## 1076 2.745320 -2.745320
## 1077 2.729650 -2.729650
## 1078 2.683009 -2.683009
## 1079 2.689171 -2.689171
## 1080 2.702764 -2.702764
## 1081 2.704395 -2.704395
## 1082 2.693991 -2.693991
## 1083 2.681690 -2.681690
## 1084 2.694395 -2.694395
## 1085 2.896480 -2.896480
## 1086 2.811719 -2.811719
## 1087 2.834493 -2.834493
## 1088 2.755384 -2.755384
## 1089 3.504780 -3.504780
## 1090 3.155248 -3.155248
## 1091 3.115682 -3.115682
## 1092 2.937778 -2.937778
## 1093 2.685513 -2.685513
## 1094 2.674090 -2.674090
## 1095 2.764391 -2.764391
## 1096 3.017971 -3.017971
## 1097 2.976001 -2.976001