#Sets working directory where this file stored. Very useful piece of code.
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
library(ggplot2)
library(ggthemes)
library(dplyr)
library(readxl)
library(plyr)
library(deaR)
library(ggridges)
#tinytex::install_tinytex()
ccr <- deaR::Fortune500
Citations from deaR paper:
Data Envelopment Analysis (DEA) is a widely used mathematical programming technique for evaluating the relative efficiency of a set of homogeneous DMUs (Decision Making Units) which consume the same inputs (in different quantities) to produce the same outputs (in different quantities).
Available classic models: CCR, BCC, Multiplier, Directional function and non-radial models.
Works on both input and output oriented style.
What is data envelopment analysis?
Data Envelopment Analysis (DEA) is a relatively new “data oriented” approach for evaluating the performance of a set of peer entities called Decision Making Units (DMUs) which convert multiple inputs into multiple outputs.
Here we are mostly focusing on Definition 1.2, Relative Efficiency:
A DMU is to be rated as fully (100%) efficient on the basis of available evidence if and only if the performances of other DMUs does not show that some of its inputs or outputs can be improved without worsening some of its other inputs or outputs.
Fortune 500 dataset is embedded within deaR package, consists of 15 firms from the Fortune 500 list 1995 with 3 inputs and 2 outputs.
Importing data with deaR package.
ccr_f500 <- read_data(ccr, ni= 3, no= 2, dmus = 1, inputs = 2:4, outputs = 5:6)
Modeling basic DEA with input orientation.
result_ccr_f500 <- model_basic(ccr_f500, orientation = "io", rts = "crs", dmu_eval = 1:15, dmu_ref = 1:15)
Efficiency percentages and scores:
x <- efficiencies(result_ccr_f500)
data.frame(x)
## x
## Mitsubishi 0.66283
## Mitsui 1.00000
## Itochu 1.00000
## General Motors 1.00000
## Sumitomo 1.00000
## Marubeni 0.97197
## Ford Motor 0.73717
## Toyota Motor 0.52456
## Exxon 1.00000
## Royal Dutch/Shell Group 0.84142
## Wal-Mart 1.00000
## Hitachi 0.38606
## Nippon Life Insurance 1.00000
## Nippon Telegraph & Telephone 0.34858
## AT&T 0.27038
One can interpret that Wal-Mart, Mitsui, Itochu, Nippon, General Motors, Exxon and Sumitomo DMUs are the efficient ones. Others are not efficient if you compare to efficient DMUs.
targets(result_ccr_f500)
## $target_input
## Assets Equity Employees
## Mitsubishi 60927.89 7258.008 23861.94
## Mitsui 68770.90 5553.900 80000.00
## Itochu 65708.90 4271.100 7182.00
## General Motors 217123.40 23345.500 709000.00
## Sumitomo 50268.90 6681.000 6193.00
## Marubeni 56548.35 5092.230 6514.12
## Ford Motor 179340.03 18095.221 255789.34
## Toyota Motor 55605.31 18536.593 77033.91
## Exxon 91296.00 40436.000 82000.00
## Royal Dutch/Shell Group 97428.49 43152.149 87508.07
## Wal-Mart 37871.00 14762.000 675000.00
## Hitachi 35370.91 10456.238 128113.87
## Nippon Life Insurance 364762.50 2241.900 89690.00
## Nippon Telegraph & Telephone 44296.33 14723.963 80660.92
## AT&T 24032.61 3338.645 12922.98
##
## $target_output
## Revenue Profit
## Mitsubishi 184365.2 346.2
## Mitsui 181518.7 314.8
## Itochu 169164.6 121.2
## General Motors 168828.6 6880.7
## Sumitomo 167530.7 210.5
## Marubeni 161057.4 156.6
## Ford Motor 137137.0 4139.0
## Toyota Motor 111052.0 2662.4
## Exxon 110009.0 6470.0
## Royal Dutch/Shell Group 117398.5 6904.6
## Wal-Mart 93627.0 2740.0
## Hitachi 84167.1 1468.8
## Nippon Life Insurance 83206.7 2426.6
## Nippon Telegraph & Telephone 81937.2 2209.1
## AT&T 79609.0 139.0
Commenting on targets section:
plot(result_ccr_f500)
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## Press [enter] to continue
## Press [enter] to continue