suppressPackageStartupMessages({
library(BiocFileCache)
library(scran)
library(scater)
library(tidyverse)
library(SingleCellExperiment)
library(DropletUtils)
library(ggplot2)
library(cowplot)
library(Seurat)
library(monocle3)
library(SeuratObject)
})
SNL_All<-readRDS("/scratch/Aireland/SNL for R01 Analysis/SNL_All tumor seurat object QC.rds")
SNL_Tumor<-subset(SNL_All,idents=c("SNL_CCSP","SNL_CCSP_Tx","SNL_CMV_Tx","SNL_CMV1"))
table(SNL_Tumor@meta.data$Cre)
##
## CCSP CMV
## 8704 6901
table(SNL_Tumor@meta.data$tx)
##
## Control CXCR2i
## 7335 8270
SNL_Tumor <- NormalizeData(SNL_Tumor, normalization.method = "LogNormalize", scale.factor = 10000)
SNL_Tumor
## An object of class Seurat
## 32454 features across 15605 samples within 1 assay
## Active assay: RNA (32454 features, 0 variable features)
SNL_Tumor <- FindVariableFeatures(SNL_Tumor, selection.method = "vst", nfeatures = 2000)
# Identify the 10 most highly variable genes
top10 <- head(VariableFeatures(SNL_Tumor), 50)
top10
## [1] "Sftpc" "Sftpa1" "Lyz2" "Scd1"
## [5] "Sftpb" "Gkn2" "Gkn1" "Cxcl15"
## [9] "Chil3" "S100a9" "Krt15" "Lcn2"
## [13] "Slc34a2" "Wfdc17" "Spp1" "Chil1"
## [17] "Chil4" "Ccl6" "Reg3g" "Ppbp"
## [21] "S100a8" "Crct1" "Cd74" "Napsa"
## [25] "Tyrobp" "Krt14" "Sprr2h" "Apoe"
## [29] "Scgb1a1" "Scgb3a1" "Prap1" "Hp"
## [33] "Ctss" "Cym" "Hc" "Fcer1g"
## [37] "Lyz1" "9130204L05Rik" "Krt17" "Cxcl3"
## [41] "AU040972" "Wfdc12" "Cxcl2" "Sprr1a"
## [45] "Ifitm1" "Ambp" "Krtap3-2" "Rgs13"
## [49] "AW112010" "Reg1"
all.genes <- rownames(SNL_Tumor)
SNL_Tumor <- ScaleData(SNL_Tumor, features = all.genes)
## Centering and scaling data matrix
SNL_Tumor <- RunPCA(SNL_Tumor, features = VariableFeatures(object = SNL_Tumor))
## PC_ 1
## Positive: Ptma, Krt8, Lgals4, Fabp5, Tagln2, Tff2, Wfdc2, Agr2, Gnb2l1, Gsta4
## Crip1, Gstm1, Prom1, Ftl1, Sepp1, Krt18, Cldn18, Car2, Tff1, Dpcr1
## Prdx6, Oat, Ctse, Sftpd, Anxa10, Wbp5, Tmem176b, Il18, Chchd10, Gpx2
## Negative: Clca3b, Psca, Gm9573, S100a14, Prss27, Cited2, Plpp1, Nccrp1, Mxd1, 2300002M23Rik
## Emp1, Tmprss11g, Ctsb, Irf7, Cdkn2b, Lpin2, Plet1, Arg1, Lgals3, Map2k3
## Mal, Gm42418, Slc6a14, Mall, Tcp11l2, Cnfn, Itgam, Ifit1bl1, Isg15, Ppp1r15a
## PC_ 2
## Positive: Dpcr1, Lgals4, Tff1, Anxa10, Agr2, Ctse, 2210407C18Rik, Tff2, Gnb2l1, Phgr1
## Il18, Gsta4, Sult1c2, Rgs17, Gsta1, Gm3336, Sptssb, Sepp1, Car2, Krt18
## Pglyrp1, Spink4, Csrp2, Prom1, Ccnd2, Hn1, Krt8, Iyd, Aldh3a1, Gmds
## Negative: Slc34a2, Sftpb, Napsa, Sftpa1, Lamp3, Lyz2, Hc, Dram1, H2-Aa, Scd1
## Lpcat1, Cxcl15, Chil1, Ager, Sftpc, H2-Ab1, Lgi3, Cd74, H2-Eb1, Apoe
## Egfl6, Lrp2, Ppp1r14c, Ptgs1, Itih4, Lrrk2, Lcn2, Sfta2, Mme, Mlc1
## PC_ 3
## Positive: Basp1, Tpm2, Tnfrsf11b, Nupr1, Gapdh, Tacstd2, Anxa8, Cldn3, Cldn4, Pmepa1
## Srd5a1, Krt20, Serpinb6b, Jpt1, Phlda1, Prss12, Muc4, Cwh43, Fam213a, Rack1
## Junb, H2afz, Plat, Tnip3, Adam28, Akr1b8, Dhrs1, Urah, Nectin2, Hk2
## Negative: Sepp1, Tcp11l2, Glrx, Lrg1, Gas6, Tff2, Chil1, Dclk1, Klk14, Cxcl15
## Car2, Nkd1, Pla2g1b, Rgs13, Cnfn, Ly6g6f, Selm, Napsa, Cfi, Sftpb
## Sox9, Espn, Sh2d6, 2300002M23Rik, Hepacam2, Slc34a2, Lamp3, Hc, AU021092, Aqp5
## PC_ 4
## Positive: Slc34a2, Sftpb, Napsa, Lamp3, Cxcl15, Hc, Sftpa1, Sftpc, Lgi3, Ager
## Sfta2, Sftpd, Lpcat1, Egfl6, Scd1, Lrp2, Itih4, Mme, Fasn, Wfdc2
## Mlc1, Rbpjl, Tspan11, Dram1, Lcn2, Ppp1r14c, Clip4, Etv5, Apoc1, Enpep
## Negative: Alox5ap, Ltc4s, Rgs13, Dclk1, Fyb, Ly6g6f, Hck, Sh2d6, Hepacam2, Rac2
## Gng13, Rgs2, Cd300lf, Sh2d7, Trpm5, Matk, Pik3r5, Selm, Kctd12, Lrmp
## Hpgds, Vav1, Espn, Nrgn, Hmx2, Dpysl2, Ptpn6, Mctp1, Etv1, Bmx
## PC_ 5
## Positive: Lyz2, Fxyd5, Tyrobp, Lgals1, Fcer1g, Ctss, Cd302, Wfdc17, Cd53, Cybb
## Vim, Atp6v0d2, Gngt2, Ccl6, Bcl2a1b, Mpeg1, Emp3, Gpnmb, Chil3, Trem2
## Lilrb4a, Fabp4, Plek, Apoe, Cd52, Mcemp1, Hebp1, Cd84, Sirpa, Dab2
## Negative: Ccdc153, 1110017D15Rik, Dynlrb2, AU040972, Tmem212, Cfap126, Fam183b, Mlf1, Sec14l3, Sntn
## 1700016K19Rik, Dnah12, 1700007K13Rik, Rsph1, Ccdc113, Riiad1, Calml4, Tctex1d4, Meig1, Tuba1a
## Gm867, Efcab10, Arhgdig, Foxj1, 1700001C02Rik, Dnah5, Prr29, Nme5, Cfap45, Ccdc78
# PCA plot of PC1, PC2
DimPlot(SNL_Tumor, reduction = "pca", group.by='tx')+ggtitle("PCA of all CCSP and CMV cells captured")
DimPlot(SNL_Tumor, reduction = "pca", group.by='Cre')+ggtitle("PCA of all CCSP and CMV cells captured by Cre")
DimPlot(SNL_Tumor, reduction = "pca", group.by='gnomex')+ggtitle("PCA of all CCSP and CMV cells captured by experiment")
# Use elbow plot to visualize dimensions that encompass most of variance
ElbowPlot(SNL_Tumor, ndims=50)
# Choosing 25 PCs for dimensionality
SNL_Tumor <- FindNeighbors(SNL_Tumor, dims = 1:25)
## Computing nearest neighbor graph
## Computing SNN
SNL_Tumor<- FindClusters(SNL_Tumor, resolution = 0.5)
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 15605
## Number of edges: 513661
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8882
## Number of communities: 15
## Elapsed time: 2 seconds
SNL_Tumor <- RunUMAP(SNL_Tumor, dims = 1:25)
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
## 15:32:24 UMAP embedding parameters a = 0.9922 b = 1.112
## 15:32:24 Read 15605 rows and found 25 numeric columns
## 15:32:24 Using Annoy for neighbor search, n_neighbors = 30
## 15:32:24 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 15:32:27 Writing NN index file to temp file /tmp/RtmpCk0sii/file902035e77a40
## 15:32:27 Searching Annoy index using 1 thread, search_k = 3000
## 15:32:33 Annoy recall = 100%
## 15:32:34 Commencing smooth kNN distance calibration using 1 thread
## 15:32:36 Initializing from normalized Laplacian + noise
## 15:32:37 Commencing optimization for 200 epochs, with 642628 positive edges
## 15:33:00 Optimization finished
# Plot UMAP
DimPlot(SNL_Tumor, reduction = "umap",label=TRUE,pt.size=.1)+ggtitle("All cells by cluster ID")
DimPlot(SNL_Tumor, reduction = "umap", group.by = "tx",label=FALSE,pt.size=0.1)+ggtitle("All cells by treatment")
DimPlot(SNL_Tumor, reduction = "umap", group.by = "Cre",label=FALSE,pt.size=0.1)+ggtitle("All cells by Cre")
DimPlot(SNL_Tumor, reduction = "umap", group.by = "gnomex",label=FALSE,pt.size=0.1)+ggtitle("All cells by experiment")
Many outlying clusters, lets do some cell type ID.
### Assign cell types per cluster using Dotplots of common cell markers
more_types<-c("GFP","Sox2", "Nkx2-1", "Trp63", "Krt5","Krt13","Krt4",
"Myc","Yap1","Sox9","Runx2","Sox6","Sp7",
"Vcam1","Fgf10","Dcn","Clec3b","Fbln1", # rpma
"Col14a1", # matrix fibroblast/osteoclastic
"Acta2","Myh11","Tagln","Mustn1", #myofibroblast
"Lpl","Lipa","Pparg","Plin2","Ear1","Fabp1","Spp1", #lipofibroblast/osteoblastic
"Mertk","Marco","Mrc1","Ly75","Adgre1","Itgax","Cd68","Csf1r","Mafb","Msr1","Arg1","Adgre4","Clec4a1", #Macs/Myeloid
"Cx3cr1","Itgam","Cd14", #Monocytes
"S100a9","S100a8","Mmp9","Csf3r","Cxcr2","Ly6g", #Neuts
"Batf3","Xcr1","Clec9a","Ccl17","Ccl22", #DC
"Cd3d","Cd3e","Cd3g","Cd28","Cd8a","Cd4","Foxp3", # Tcell
"Gzma","Ncr1","Gzmb", #NK
"Fcmr","Cd19","Fcer2a","Pax5","Cd22","Cd79b","Cd79a", #B cells
"Slamf7", "Prdm1","Mzb1", #Plasma
"Mcam","Pecam1","Icam2","Cd36","Cd93", #Endothelial
"Scd1","Lamp3","Sftpb","Sftpa1","Aqp5", #Alveolar
"Scgb1a1","Cyp2f2","Scgb3a2","Scgb3a1","Lypd2", #club
"Foxj1","Rfx2","Rfx3","Trp73", #ciliated
"Muc5b","Muc5ac", #goblet
"Krt17","Perp", #basal
"Pou2f3","Ascl2","Rgs13","Il25","Tslp", #tuft
"Foxi1","Cftr","Ascl3", #ionocyte
"Epgn","Slc16a14","Grhl1", #Eosinophils
"Cpa3","Fcer1a","Ms4a2", #Basophils
"Cma1","Tpsb2", #Mast
"Cd200r3" #Combined with Mast, Baso, Eosinophil
)
DotPlot(SNL_Tumor,features = more_types, group.by="seurat_clusters")+theme(axis.text.x=element_text(angle=90, hjust=1,size=8), axis.text.y=element_text(hjust=1,size=10))
Cluster 9 is tuft
Cluster 10 is normal AT2/Club cells
Cluster 12 is endothelial cells
Cluster 13 is myeloid/macs
Cluster 14 is ciliated
SNL_Tumor<-subset(SNL_Tumor, idents=c("0","1","2","3","4","5","6", "7","8","11"))
#Check new cell numbers
table(SNL_Tumor@meta.data$tx)
##
## Control CXCR2i
## 7050 8014
table(SNL_Tumor@meta.data$Cre)
##
## CCSP CMV
## 8516 6548
#Perform linear dimension reduction/ PCA
SNL_Tumor <- RunPCA(SNL_Tumor, features = VariableFeatures(object = SNL_Tumor))
## Warning in PrepDR(object = object, features = features, verbose = verbose): The
## following 86 features requested have zero variance (running reduction without
## them): Osm, Gm21149, Foxf1, Il7r, C3ar1, Clec4a2, Penk, Ccdc121, Sirpb1c, Dpt,
## 1700012B09Rik, Drc7, Rgs22, Jam3, Slamf7, Loxl1, Elmod1, Speer4c, Gm34059,
## Gm21541, Ear6, Gm281, Fcgr4, Cd200r4, Ccr1, Slc36a2, Nek10, Fpr1, Ccdc13, Wif1,
## Dthd1, Fendrr, Zfp474, 4933406B17Rik, Pdgfrb, Mlana, Ptx3, Ms4a4b, Dnah11,
## Col5a2, Tfec, Gm47969, Cd300ld, Gm14461, Syt10, T2, Lrrc43, Fpr2, Gm5483, Wdr95,
## Frmpd2, Zbbx, D830026I12Rik, Cd3d, Gpm6a, Dydc2, Gm13571, AC126280.1, Nkg7,
## 5330413P13Rik, Gm7361, Speer4b, Tbx3os1, Gm28729, Ptpn7, Ptger3, Adcy4, Fam150a,
## Siglecf, Tmem252, Msr1, Scimp, Hgf, Irg1, F630028O10Rik, Gm9733, Klra3, Xrra1,
## Spag11b, Zfp366, Adamts20, Ccbe1, Ankub1, Pramef12, H2-Eb2, Fam181a
## PC_ 1
## Positive: Clca3b, Psca, Gm9573, S100a14, Prss27, Cited2, Plpp1, Nccrp1, Mxd1, 2300002M23Rik
## Tmprss11g, Emp1, Ctsb, Irf7, Lpin2, Cdkn2b, Plet1, Arg1, Gm42418, Map2k3
## Lgals3, Mal, Slc6a14, Mall, Tcp11l2, Itgam, Cnfn, Ifit1bl1, Isg15, Ppp1r15a
## Negative: Ptma, Lgals4, Krt8, Fabp5, Tff2, Tagln2, Wfdc2, Agr2, Gsta4, Gnb2l1
## Prom1, Gstm1, Krt18, Dpcr1, Tff1, Sepp1, Crip1, Car2, Ctse, Cldn18
## Ftl1, Oat, Anxa10, Prdx6, Sftpd, Wbp5, Il18, Gpx2, 2210407C18Rik, Ccnd2
## PC_ 2
## Positive: Basp1, Tpm2, Tnfrsf11b, Cldn3, Nupr1, Gapdh, Cldn4, Pmepa1, Tacstd2, Srd5a1
## Rack1, Jpt1, Anxa8, Muc4, Serpinb6b, Nectin2, Prss12, Cwh43, Phlda1, Selenof
## Krt20, Tnip3, Plat, Cebpd, Junb, Hk2, Urah, Rtraf, Adam28, Rex1bd
## Negative: Sepp1, Tcp11l2, Glrx, Tff2, Car2, Cnfn, Klk14, Gas6, Gstm1, 2300002M23Rik
## Cfi, Plpp1, Pbp2, Lrg1, AU021092, Gm44275, Dusp14, Sult1c2, Csta1, Gbp4
## Crybg2, Cnst, Pla2g1b, Spns3, Gm3336, Nccrp1, Fam84a, Ihh, Klk13, Dmbt1
## PC_ 3
## Positive: Birc5, Ube2c, Cenpa, 2810417H13Rik, Cdca3, Mki67, Cenpf, Ccna2, Cdca8, Tpx2
## Ccnb2, Stmn1, Cdc20, Knstrn, Hmmr, Pbk, Racgap1, Cenpe, Cks2, Top2a
## Ccnb1, Lockd, Cdkn3, Prc1, Cdk1, Spc24, Nusap1, Spc25, Ckap2, Cenpm
## Negative: 5330417C22Rik, Cbr2, mt-Nd2, AC149090.1, Btg2, Rack1, Lrg1, Pmepa1, Selenop, Ces1d
## Cfi, Chad, Igfbp5, Gda, Ces1f, Tff2, Cebpd, Muc4, Txnip, Gas6
## Lars2, Car8, Selenof, Vegfa, Nectin2, Mettl26, mt-Nd3, Sox2, Mfsd4a, Pla2g1b
## PC_ 4
## Positive: Pkib, Tm4sf1, Eif4ebp1, Mthfd2, Areg, Tnfrsf12a, Fst, Serpinb9, Il33, Rhoc
## Ffar4, Phgdh, Asns, Ly6g6c, Plaur, Gldc, Zfos1, Ptrh1, 8430408G22Rik, Dhrs1
## Msln, Anxa10, F3, Ugp2, Tgif1, H2afz, Serpinb6b, Upk3bl, Krt7, 1810011O10Rik
## Negative: Birc5, Mki67, Cenpf, Ccna2, Cenpa, Tpx2, Selenop, Ube2c, 2810417H13Rik, Top2a
## Cenpe, Rack1, AC149090.1, Gm42418, Cdc20, Racgap1, Cdca8, Cdca3, Hmmr, Pbk
## mt-Nd2, Txnip, Ccnb1, Lars2, Nusap1, 5330417C22Rik, mt-Nd3, Atp5o.1, Prc1, Selenof
## PC_ 5
## Positive: Rack1, Selenop, Gm47283, Mettl26, AC149090.1, Tceal9, Selenow, Gm42418, Pdia4, Cenpx
## Cavin1, Rflnb, Lars2, Atp5o.1, Selenos, Tcim, Selenof, Mrpl58, Kmt5a, Gm26917
## AY036118, Erg28, Bex3, Wtip, Mfsd4a, Sqor, Kit, Fam241a, Selenoh, Myof
## Negative: Sepp1, Srd5a1, Wbp5, Gnb2l1, Ifit3, Plat, Plet1, Ifit3b, Pla2g1b, Marcksl1
## Cxcl3, Akr1b8, Urah, Prss22, Tacstd2, Duoxa2, Vnn1, Ttr, Cd14, Ifi204
## Hn1, Sprr2f, Trim15, Ifit1, Ifit1bl1, Tnfrsf11b, Hilpda, Jun, Slfn2, Junb
# PCA plot of PC1, PC2
DimPlot(SNL_Tumor, reduction = "pca", group.by='tx')+ggtitle("PCA of tumor cells by treatment")
DimPlot(SNL_Tumor, reduction = "pca", group.by='Cre')+ggtitle("PCA of tumor cells by Cre")
# Determine the dimensionality for clustering
# Use elbow plot to visualize dimensions that encompass most of variance
ElbowPlot(SNL_Tumor, ndims=50)
# shows ~15 dims captures most of variance
SNL_Tumor <- FindNeighbors(SNL_Tumor, dims = 1:15)
## Computing nearest neighbor graph
## Computing SNN
SNL_Tumor<- FindClusters(SNL_Tumor, resolution = 0.5)
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 15064
## Number of edges: 482325
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8790
## Number of communities: 11
## Elapsed time: 2 seconds
SNL_Tumor <- RunUMAP(SNL_Tumor, dims = 1:15)
## 15:33:39 UMAP embedding parameters a = 0.9922 b = 1.112
## 15:33:39 Read 15064 rows and found 15 numeric columns
## 15:33:39 Using Annoy for neighbor search, n_neighbors = 30
## 15:33:39 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 15:33:41 Writing NN index file to temp file /tmp/RtmpCk0sii/file902015c2f8a4
## 15:33:41 Searching Annoy index using 1 thread, search_k = 3000
## 15:33:48 Annoy recall = 100%
## 15:33:49 Commencing smooth kNN distance calibration using 1 thread
## 15:33:52 Initializing from normalized Laplacian + noise
## 15:33:52 Commencing optimization for 200 epochs, with 608568 positive edges
## 15:34:16 Optimization finished
# Plot UMAP
x<-DimPlot(SNL_Tumor, reduction = "umap",label=TRUE,pt.size=.1)+ggtitle("Tumor cells by cluster ID")
y<-DimPlot(SNL_Tumor, reduction = "umap", group.by = "tx",label=FALSE,pt.size=0.1)+ggtitle("Tumor cells by treatment")
z<-DimPlot(SNL_Tumor, reduction = "umap", group.by = "Cre",label=FALSE,pt.size=0.1)+ggtitle("Tumor cells by Cre")
multiplot(x,y,z,cols=3)
Differences are mainly driven by Cre.
DotPlot(SNL_Tumor,features = more_types, group.by="seurat_clusters")+ theme(axis.text.x=element_text(angle=90, hjust=1,size=8), axis.text.y=element_text(hjust=1,size=10))
Looks good, moving on. Cell of origin make it quite different!
Idents(SNL_Tumor)<-"Cre"
Cre.Markers <- FindAllMarkers(SNL_Tumor, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
## Calculating cluster CCSP
## Calculating cluster CMV
test<-as.data.frame(Cre.Markers)
write.csv(test, "~/Cre.Markers SNL All Tumor cells.csv")
top100 <- Cre.Markers %>% group_by(cluster) %>% top_n(n = 100, wt = avg_log2FC)
top100_names<-top100$gene
top100_names
## [1] "Gm42418" "Clca3b" "Ecm1" "Sprr2d"
## [5] "Ltf" "2300002M23Rik" "Ly6a" "Gm9573"
## [9] "Sprr2f" "Psca" "Arg1" "Fth1"
## [13] "Cnfn" "Emp1" "Slc6a14" "AY036118"
## [17] "Lars2" "Prss27" "Ifit1bl1" "Trp53inp2"
## [21] "Cited2" "Selenok" "Hopx" "Nccrp1"
## [25] "AA467197" "S100a14" "Slc39a4" "Mxd1"
## [29] "Elob" "Spns2" "Plat" "Tmprss11g"
## [33] "Krt13" "Plpp1" "Lpin2" "Mal"
## [37] "Csta1" "Glrx" "Ctsb" "Prss22"
## [41] "Lgals3" "Srgn" "Cdkn2b" "Isg15"
## [45] "Plet1" "AI661453" "Rack1" "Map1lc3b"
## [49] "Zfand5" "Upk1b" "Irf7" "Map2k3"
## [53] "Gadd45b" "Malat1" "Klk13" "Duoxa2"
## [57] "Gsto1" "Malt1" "Pglyrp1" "Neat1"
## [61] "Trim25" "Cysrt1" "Tcp11l2" "Krt7"
## [65] "Timp2" "Krt80" "Dusp5" "Krt6a"
## [69] "Mall" "Calml3" "Rdh10" "Slc16a11"
## [73] "Arid5b" "Gbp4" "Herpud1" "Epha2"
## [77] "Prss8" "Hist1h2bc" "Tuba1c" "Itgam"
## [81] "Txnrd1" "Irf1" "Tspan1" "Fam84a"
## [85] "Dap" "Ndrg1" "Mbp" "Prdx5"
## [89] "Elf3" "Spns3" "Sem1" "Gde1"
## [93] "Dusp1" "Ppp1r15a" "Pmaip1" "Tmbim4"
## [97] "Jdp2" "Ttc9" "Hist1h1c" "S100a10"
## [101] "Rpl13a" "Tff1" "Sepp1" "Gkn1"
## [105] "Tff2" "Gnb2l1" "Gkn2" "Agr2"
## [109] "Rps6" "Rps19" "2210407C18Rik" "Fabp5"
## [113] "Rpl3" "Rps18" "Cldn18" "Tceb2"
## [117] "Rpl14" "Prdx1" "Crip1" "Rps17"
## [121] "Dpcr1" "Cd63" "H2afz" "Rpl4"
## [125] "Ppia" "Smim6" "Rpl31" "Clu"
## [129] "Shfm1" "Ptma" "Car2" "Tmsb10"
## [133] "Lgals4" "Rps4x" "Rpl36a" "Wfdc1"
## [137] "Rps5" "Rpl32" "Rpl35" "Tm4sf1"
## [141] "Selk" "Rps15a" "Gstm1" "Rpl18a"
## [145] "Rps23" "Rps25" "Rpl10" "Tagln2"
## [149] "Rpl36al" "Spink4" "Gsta4" "Rps14"
## [153] "Cxcl17" "Rps15" "Rpl22l1" "Wbp5"
## [157] "Rpl37a" "Rps11" "Rplp2" "Rps3"
## [161] "Dbi" "Rps2" "Il33" "Atp5o"
## [165] "Rpl39" "Rpl8" "Rps16" "Eef1a1"
## [169] "Anxa10" "Sep15" "Rpl13" "Wfdc2"
## [173] "Rpl23a" "Eef1g" "Krt8" "Xist"
## [177] "Rpl26" "Rps8" "Cox6a1" "Slc25a5"
## [181] "Uqcrb" "Rps3a1" "Lrg1" "Rpl10a"
## [185] "Rps27l" "Gsta1" "Rps27" "Rps27a"
## [189] "Aqp5" "Rpl21" "Rpl37" "Rps28"
## [193] "Rpl35a" "Rpl11" "Gas6" "Krt18"
## [197] "Dynll1" "Gltscr2" "Phgr1" "Tspan8"
DoHeatmap(subset(SNL_Tumor, downsample = 3000), features = top100_names, size = 3)
DT::datatable(
Cre.Markers %>%
mutate(gene=rownames(.)) %>%
group_by(cluster) %>%
top_n(n = 100, wt = avg_log2FC) %>%
select(gene, everything())
)
saveRDS(SNL_Tumor,“/scratch/Aireland/SNL for R01 Analysis/SNL_All_Tumor processed seurat.rds”)
library(viridis)
## Loading required package: viridisLite
SNL_tumor<-SNL_Tumor
nsclc <-read.csv(file="~/NSCLC_sigs.csv")
muc_adeno<-nsclc$Mucinous.Adeno
library(hciR)
library(hciRdata)
muc_adeno_mus<-subset(mouse94, mouse94$human_homolog %in% muc_adeno)
muc_adeno_mus<-(muc_adeno_mus$gene_name)
muc_adeno_mus
## [1] "Mmp11" "Mnx1" "Hnf4a" "Barx1" "Pitx1" "Tff1" "Spdef"
## [8] "Col17a1" "Slc15a1" "Tm4sf4" "Car9" "Spp1" "Ern2" "B3gnt3"
## [15] "Barx2" "Tmprss4" "Gcnt3" "Rhov" "Krt17" "Entpd8" "Muc5ac"
## [22] "Dnajc22" "Col10a1" "Foxa3" "Mmp1b" "Gpx2" "Mmp1a" "Bcl2l15"
## [29] "Gjb2" "C2cd4a" "Mmp12" "Fam83a" "Atp10b" "Fut2" "Muc5b"
## [36] "Tmem28" "B3gnt6" "Grem1"
#
SNL_tumor<-AddModuleScore(
object = SNL_tumor,
features = list(muc_adeno_mus),
name = 'Mucinous_Adeno_Signature')
luad<-nsclc$Adeno[1:10]
luad_mus<-subset(mouse94, mouse94$human_homolog %in% luad)
luad_mus<-(luad_mus$gene_name)
luad_mus
## [1] "Nkx2-1" "Gpr39" "Rorc" "Tmc5" "Abcc6" "Atp11a" "Limch1"
## [8] "Tmem125" "Sfta2"
lscc<-nsclc$Squamous[1:10]
lscc_mus<-subset(mouse94, mouse94$human_homolog %in% lscc)
lscc_mus<-(lscc_mus$gene_name)
lscc_mus
## [1] "Trp63" "Dst" "Clca2" "Serpinb13" "Dsg3" "Dsc3"
## [7] "Krt5" "Serpinb5"
#
SNL_tumor<-AddModuleScore(
object = SNL_tumor,
features = list(muc_adeno_mus),
name = 'Mucinous_Adeno_Signature')
SNL_tumor<-AddModuleScore(
object = SNL_tumor,
features = list(luad_mus),
name = 'LUAD_Signature')
SNL_tumor<-AddModuleScore(
object = SNL_tumor,
features = list(lscc_mus),
name = 'LSCC_Signature')
x<-FeaturePlot(SNL_tumor, features = c("Mucinous_Adeno_Signature1"), pt.size=1)+scale_color_viridis(option="magma",alpha=0.5)+ggtitle("Mucinous Adeno Signature")
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
y<-FeaturePlot(SNL_tumor, features = c("LUAD_Signature1"), pt.size=1)+scale_color_viridis(option="magma",alpha=0.5)+ggtitle("LUAD Signature")
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
z<-FeaturePlot(SNL_tumor, features = c("LSCC_Signature1"), pt.size=1)+scale_color_viridis(option="magma",alpha=0.5)+ggtitle("Squamous Cell Signature")
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
multiplot(x,y,z,cols=3)
The Mucinous adeno signature is great. Ref is Guo et al., EMBO Mol Med, 2017. “Gene signature driving invasive mucinous adenocarcinoma of the lung”, Corresponding author = Yutaka Maeda (includes Snyder mucinoous adeno signature among others).
Need better signatures for LUAD and LSCC (work in progress).
hillock <-read.csv(file="~/hillock_sigs_011021.csv")
hillock_montoro<-hillock$Hillock.Montoro.Mouse
hillock_plasschaert<-hillock$Hillock.Plasschaert.Mouse
hillock_combined<-hillock$Overlap.Mouse
hillock_combined<-hillock_combined[1:65]
hillock_plasschaert<-hillock_plasschaert[1:139]
hillock_combined
## [1] "2200002D01Rik" "2300002M23Rik" "Adh7" "Ahnak"
## [5] "Alcam" "Alox12e" "Alox15" "Anxa1"
## [9] "Anxa2" "Anxa3" "Aqp5" "Calml3"
## [13] "Capg" "Cav1" "Cd44" "Ces1d"
## [17] "Ces1h" "Clca3b" "Cldn3" "Clic3"
## [21] "Cwh43" "Ecm1" "Esd" "Fam129b"
## [25] "Ffar4" "Foxq1" "Gabrp" "Gprc5a"
## [29] "Gsta4" "Kctd14" "Krt13" "Krt15"
## [33] "Krt19" "Krt4" "Krt7" "Lgals3"
## [37] "Lmo7" "Ltf" "Ly6g6c" "Ly6g6e"
## [41] "Mal" "Mall" "Mfge8" "Muc4"
## [45] "Pdlim1" "Pdlim2" "Pdzk1ip1" "Pllp"
## [49] "Pmm1" "Pmp22" "Porcn" "Ppap2c"
## [53] "Ptgr1" "Ptgs2" "S100a14" "S100a6"
## [57] "S100g" "Serpinb2" "Socs2" "St3gal4"
## [61] "Tacstd2" "Tspo" "Ttc36" "Upk1b"
## [65] "Upk3bl"
#
SNL_tumor<-AddModuleScore(
object = SNL_tumor,
features = list(hillock_montoro),
name = 'hillock_montoro')
SNL_tumor<-AddModuleScore(
object = SNL_tumor,
features = list(hillock_plasschaert),
name = 'hillock_plasschaert')
SNL_tumor<-AddModuleScore(
object = SNL_tumor,
features = list(hillock_combined),
name = 'hillock_combined')
Plasschaert and Montoro signatures overlap by ~48% or 65 genes. Use of the overlapping/conserved hillock gene marker signature is justified.
x<-FeaturePlot(SNL_tumor, features = c("hillock_montoro1"), pt.size=1)+scale_color_viridis(option="magma",alpha=0.5)+ggtitle("Hillock Montoro et al")
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
y<-FeaturePlot(SNL_tumor, features = c("hillock_plasschaert1"), pt.size=1)+scale_color_viridis(option="magma",alpha=0.5)+ggtitle("Hillock Plasschaert et al")
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
z<-FeaturePlot(SNL_tumor, features = c("hillock_combined1"), pt.size=1)+scale_color_viridis(option="magma",alpha=0.5)+ggtitle("Hillock Overlapping Sig")
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
multiplot(x,y,z,cols=3)
saveRDS(SNL_Tumor,“/scratch/Aireland/SNL for R01 Analysis/SNL_All_Tumor processed seurat.rds”)