\(~\) \(~\)
data <- read.table("./Week 2 - Exercise 1.txt", header = TRUE)
Reg <- lm(LogWage~Female, data = data)
Res <- Reg$residuals
Age <- data$Age
Edu <- data$Educ
Job <- data$Parttime
one <- lm(Res~Age)
two <- lm(Res~Edu)
three <- lm(Res~Job)
summary(Reg)
##
## Call:
## lm(formula = LogWage ~ Female, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.09562 -0.30262 -0.03683 0.30338 1.41397
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.73362 0.02434 194.453 < 2e-16 ***
## Female -0.25060 0.04013 -6.245 9.1e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4327 on 498 degrees of freedom
## Multiple R-squared: 0.07262, Adjusted R-squared: 0.07076
## F-statistic: 39 on 1 and 498 DF, p-value: 9.101e-10
summary(one)
##
## Call:
## lm(formula = Res ~ Age)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.00015 -0.26233 -0.02237 0.23252 1.02256
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.867051 0.062228 -13.93 <2e-16 ***
## Age 0.021671 0.001501 14.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3634 on 498 degrees of freedom
## Multiple R-squared: 0.295, Adjusted R-squared: 0.2936
## F-statistic: 208.4 on 1 and 498 DF, p-value: < 2.2e-16
summary(two)
##
## Call:
## lm(formula = Res ~ Edu)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.07863 -0.28052 -0.01422 0.25178 1.21315
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.45262 0.03614 -12.52 <2e-16 ***
## Edu 0.21782 0.01550 14.05 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3662 on 498 degrees of freedom
## Multiple R-squared: 0.2839, Adjusted R-squared: 0.2824
## F-statistic: 197.4 on 1 and 498 DF, p-value: < 2.2e-16
summary(three)
##
## Call:
## lm(formula = Res ~ Job)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.08732 -0.30532 -0.02769 0.30686 1.44241
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.02843 0.02281 -1.246 0.2132
## Job 0.09873 0.04251 2.323 0.0206 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4304 on 498 degrees of freedom
## Multiple R-squared: 0.01072, Adjusted R-squared: 0.008729
## F-statistic: 5.394 on 1 and 498 DF, p-value: 0.0206
\(~\)
df <- data.frame("Age" = one$coefficients, "Education" = two$coefficients, "Parttime" = three$coefficients)
row.names(df)[2] <- "Female"
print(df)
## Age Education Parttime
## (Intercept) -0.86705119 -0.4526212 -0.02843292
## Female 0.02167086 0.2178158 0.09872542
\(~\) \(~\) \(~\)