This document contains the models and results for the statistical analyses performed for Emo Distraction 1 - a collaborative project between the University of Louisville (Dr. Shae Morgan), Vanderbilt (Dr. Erin Picou), and the University of Utah (Dr. Sam Gustafson and Liz Young, M.S.).
The Experiment measures the ratings of arousal and valence for stimuli that were previously utilized in a behavioral distraction paradigm. This should allow us to identify whether the perceived arousal or valence of a stimulus has any effect on the extent to which that stimulus acts as a distraction in a separate behavioral paradigm. Further, we had questions about the duration of a stimulus (500 ms vs full) and scaling procedure (peakScaled vs RMS) and whether these methodological considerations have any effect on a listeners' perception of the stimulus. Data were collected via Gorilla, and online platform. Users adjusted their volume to a "comfortable level" and rated the stimuli.
#remove IADs control stimuli
datNoIADS <- subset(dat, `Stimuli Type` == 'Distractor')
#A loading delay of 10s = 3 stimuli discarded (5022738, response id: 10)
datClean <- subset(datNoIADS,Response != 10)
#do only quiet trials from Sam's data because ours was in quiet.
datDistClean <- subset(datDist,NoiseCond == 0 )
#separate Arousal and Valence Data
datA <- subset(datClean, `Zone Name` == "ArousalSlider")
datV <- subset(datClean, `Zone Name` != "ArousalSlider")
#clean stimuli names to make sure they all match between Gorilla and Sam's Data
dfA1 <- datA %>%
mutate(Stimuli = gsub("_RMS", "", Stimuli))
dfV1 <- datV %>%
mutate(Stimuli = gsub("_RMS", "", Stimuli))
dfA2 <- dfA1 %>%
mutate(Stimuli = gsub("-peak", "", Stimuli))
dfV2 <- dfV1 %>%
mutate(Stimuli = gsub("-peak", "", Stimuli))
dfA <- dfA2 %>%
mutate(Stimuli = gsub(".WAV", ".wav", Stimuli))
dfV <- dfV2 %>%
mutate(Stimuli = gsub(".WAV", ".wav", Stimuli))
dfDC <- datDistClean %>%
mutate(DistItem = gsub(".WAV",".wav",DistItem))
#data averaged across peakScaled and RMS responses
dfA2 <-summarise(group_by(dfA, Stimuli), MeanA=mean(Response), SDA=sd(Response))
dfV2 <-summarise(group_by(dfV, Stimuli), MeanV=mean(Response), SDV=sd(Response))
dfPC <-summarise(group_by(dfDC, DistItem), PC=mean(Response), RT=mean(VRT1))
#joined dataframes into a single frame
dfA2$MeanV <- dfV2$MeanV
dfA2$SDV <- dfV2$SDV
#sanity checks - all items in Sam's study appeared in ours
dfPC$DistItem[!(dfPC$DistItem %in% dfA2$Stimuli)] #number of items from Sam's NOT in ours
## character(0)
length(intersect(dfA2$Stimuli,dfPC$DistItem)) #total intersections between the two datasets
## [1] 78
#Obtain the reduced list of items with their mean V and A values, PC, and RT
dfMerged <- merge(dfA2,dfPC, by.x = "Stimuli", by.y = "DistItem")
#remove NA RT values that made it to this point
dfReduced <- na.omit(dfMerged)
I ran correlations between the four primary variables we had for each stimulus.
cor.test(dfReduced$MeanA, dfReduced$MeanV)
##
## Pearson's product-moment correlation
##
## data: dfReduced$MeanA and dfReduced$MeanV
## t = -11.107, df = 74, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8623435 -0.6877227
## sample estimates:
## cor
## -0.7905957
cor.test(dfReduced$MeanA, dfReduced$PC)
##
## Pearson's product-moment correlation
##
## data: dfReduced$MeanA and dfReduced$PC
## t = -0.19805, df = 74, p-value = 0.8435
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2471899 0.2034944
## sample estimates:
## cor
## -0.02301715
cor.test(dfReduced$MeanA, dfReduced$RT)
##
## Pearson's product-moment correlation
##
## data: dfReduced$MeanA and dfReduced$RT
## t = 1.1785, df = 74, p-value = 0.2424
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.09255916 0.35045995
## sample estimates:
## cor
## 0.1357288
cor.test(dfReduced$MeanV, dfReduced$PC)
##
## Pearson's product-moment correlation
##
## data: dfReduced$MeanV and dfReduced$PC
## t = 0.28683, df = 74, p-value = 0.775
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1935853 0.2568505
## sample estimates:
## cor
## 0.0333247
cor.test(dfReduced$MeanV, dfReduced$RT)
##
## Pearson's product-moment correlation
##
## data: dfReduced$MeanV and dfReduced$RT
## t = -0.92936, df = 74, p-value = 0.3557
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3249966 0.1209738
## sample estimates:
## cor
## -0.1074113
cor.test(dfReduced$PC, dfReduced$RT)
##
## Pearson's product-moment correlation
##
## data: dfReduced$PC and dfReduced$RT
## t = -2.9481, df = 74, p-value = 0.004276
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.5122127 -0.1065262
## sample estimates:
## cor
## -0.3241956
#create pairs plot
pairs.panels(dfReduced[, c('MeanA', 'MeanV','RT','PC')])
#show correlation table
cor(dfReduced[, c('MeanA', 'MeanV','PC','RT')])
## MeanA MeanV PC RT
## MeanA 1.00000000 -0.7905957 -0.02301715 0.1357288
## MeanV -0.79059569 1.0000000 0.03332470 -0.1074113
## PC -0.02301715 0.0333247 1.00000000 -0.3241956
## RT 0.13572876 -0.1074113 -0.32419560 1.0000000