NOTES:

set up

libraries and data sets

library(psych)
library(lme4)
## Loading required package: Matrix
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
library(lmSupport)
library(sjPlot)
## Registered S3 methods overwritten by 'parameters':
##   method                           from      
##   as.double.parameters_kurtosis    datawizard
##   as.double.parameters_skewness    datawizard
##   as.double.parameters_smoothness  datawizard
##   as.numeric.parameters_kurtosis   datawizard
##   as.numeric.parameters_skewness   datawizard
##   as.numeric.parameters_smoothness datawizard
##   print.parameters_distribution    datawizard
##   print.parameters_kurtosis        datawizard
##   print.parameters_skewness        datawizard
##   summary.parameters_kurtosis      datawizard
##   summary.parameters_skewness      datawizard
## Install package "strengejacke" from GitHub (`devtools::install_github("strengejacke/strengejacke")`) to load all sj-packages at once!
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble  3.1.3     v purrr   0.3.4
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   2.0.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x ggplot2::%+%()   masks psych::%+%()
## x ggplot2::alpha() masks psych::alpha()
## x tidyr::expand()  masks Matrix::expand()
## x dplyr::filter()  masks stats::filter()
## x dplyr::lag()     masks stats::lag()
## x tidyr::pack()    masks Matrix::pack()
## x tidyr::unpack()  masks Matrix::unpack()
library(irr)
## Loading required package: lpSolve
library(optimx)
## Warning: package 'optimx' was built under R version 4.1.2
library(parallel)
library(minqa)
library(dfoptim)
library(ggcorrplot)

#import wave 1
d1.1 <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/Covid-19_NSF_RAPID_US_Cleaned1.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

#import wave 2
d2.1 <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/Covid-19_NSF_RAPID_US_Wave2_Cleaned.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

#import LIWC csv
liwc <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/LIWC_w1w2_Dec_2021.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

LIWC wave 1 & wave 2

###################################
# Create LIWC rating averages for wave 1
###################################

#move over measures of interest
w1 <- data.frame(liwc[liwc$Wave == 1,])

w1 <- w1[,c("mediaOutlet", "analytic", "affect", "cogproc", "posemo", "negemo")]

# create wide data set for wave 2
w1w = w1 %>%
  group_by(mediaOutlet) %>% 
  mutate(Visit = 1:n()) %>% 
  gather("analytic",
         "affect",
         "cogproc",
         "posemo",
         "negemo",
         key = variable, 
         value = number) %>% 
  unite(combi, variable, Visit) %>%
  spread(combi, number)

##################
### calculate averages for each ratings
##################

#affect
affect <- cbind(w1w[paste0("affect_",1:21)])
AF <- apply(affect, MARGIN = 1, FUN = mean, na.rm = T)
#cognitive processing
cogproc <- data.frame(w1w[paste0("cogproc_",1:21)])
CP <- apply(cogproc, MARGIN = 1, FUN = mean, na.rm = T)
#positive emotions
pos <- data.frame(w1w[paste0("posemo_",1:21)])
PE <- apply(pos, MARGIN = 1, FUN = mean, na.rm = T)
#negative emotions
neg <- data.frame(w1w[paste0("negemo_",1:21)])
NE <- apply(neg, MARGIN = 1, FUN = mean, na.rm = T)
#analytic 
analytic <- data.frame(w1w[paste0("analytic_",1:21)])
AN <- apply(analytic, MARGIN = 1, FUN = mean, na.rm = T)

#add them all to new data.frame
w1 <- data.frame(w1w$mediaOutlet)
colnames(w1)[colnames(w1)=="w1w.mediaOutlet"] <- "mediaOutlet"
w1$affect <- AF
w1$cogproc <- CP
w1$analytic <- AN
w1$posemo <- PE
w1$negemo <- NE

##############################################
# Create LIWC rating averages for wave 2
##############################################

#move over measures of interest
w2 <- data.frame(liwc[liwc$Wave == 2,])

w2 <- w2[,c("mediaOutlet", "analytic", "affect", "cogproc", "posemo", "negemo")]

# create wide data set for wave 2
w2w = w2 %>% 
  group_by(mediaOutlet) %>% 
  mutate(Visit = 1:n()) %>% 
  gather("analytic",
         "affect",
         "cogproc",
         "posemo",
         "negemo",
         key = variable, 
         value = number) %>% 
  unite(combi, variable, Visit) %>%
  spread(combi, number)

##################
### calculate averages for each ratings
##################

#affect
affect <- cbind(w2w[paste0("affect_",1:22)])
AF <- apply(affect, MARGIN = 1, FUN = mean, na.rm = T)
#cognitive processing
cogproc <- data.frame(w2w[paste0("cogproc_",1:22)])
CP <- apply(cogproc, MARGIN = 1, FUN = mean, na.rm = T)
#positive emotions
pos <- data.frame(w2w[paste0("posemo_",1:22)])
PE <- apply(pos, MARGIN = 1, FUN = mean, na.rm = T)
#negative emotions
neg <- data.frame(w2w[paste0("negemo_",1:22)])
NE <- apply(neg, MARGIN = 1, FUN = mean, na.rm = T)
#analytic 
analytic <- data.frame(w2w[paste0("analytic_",1:22)])
AN <- apply(analytic, MARGIN = 1, FUN = mean, na.rm = T)

#add them all to new data.frame
w2 <- data.frame(w2w$mediaOutlet)
colnames(w2)[colnames(w2) == "w2w.mediaOutlet"] <- "mediaOutlet"
w2$affect   <- AF
w2$cogproc  <- CP
w2$analytic <- AN
w2$posemo   <- PE
w2$negemo   <- NE

prep wave 1 data

#delete any measures we don't want---exclude media exposure #3, #8, and #9
## missing Yahoo, Huff Post, Wash Post
d1 <- d1.1[,c("s3", "Wave", "vaxxAttitudes",
            "demStrength", "repStrength", "partyClose", 
            "mediaExposure_1", "mediaExposure_2", "mediaExposure_4",
            "mediaExposure_5", "mediaExposure_6", "mediaExposure_7", 
            "mediaExposure_10", "mediaExposure_11", "mediaExposure_12",
            "mediaExposure_13",  "mediaExposure_14", "mediaExposure_15")]

d1$ownvote_conf <- NA
d1$overallvote_conf <- NA
d1$election_timing <- NA

colnames(d1)[colnames(d1) == "s3"]  <- "participant"

#rename exposure
colnames(d1)[colnames(d1)=="mediaExposure_1"] <- "NYT_exp"
colnames(d1)[colnames(d1)=="mediaExposure_2"] <- "WSJ_exp"
colnames(d1)[colnames(d1)=="mediaExposure_4"] <- "USAT_exp"
colnames(d1)[colnames(d1)=="mediaExposure_5"] <- "Fox_exp"
colnames(d1)[colnames(d1)=="mediaExposure_6"] <- "CNN_exp"
colnames(d1)[colnames(d1)=="mediaExposure_7"] <- "MSNBC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_10"] <-"AOL_exp"
colnames(d1)[colnames(d1)=="mediaExposure_11"] <-"NPR_exp"
colnames(d1)[colnames(d1)=="mediaExposure_12"] <-"ABC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_13"] <-"NBC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_14"] <-"CBS_exp"
colnames(d1)[colnames(d1)=="mediaExposure_15"] <-"PBS_exp"

#change to 0-4 rating
d1$ABC_exp   <- d1$ABC_exp   - 1
d1$CBS_exp   <- d1$CBS_exp   - 1
d1$CNN_exp   <- d1$CNN_exp   - 1
d1$Fox_exp   <- d1$Fox_exp   - 1
d1$MSNBC_exp <- d1$MSNBC_exp - 1
d1$NBC_exp   <- d1$NBC_exp   - 1
d1$NPR_exp   <- d1$NPR_exp   - 1
d1$NYT_exp   <- d1$NYT_exp   - 1
d1$PBS_exp   <- d1$PBS_exp   - 1
d1$USAT_exp  <- d1$USAT_exp  - 1
d1$WSJ_exp   <- d1$WSJ_exp   - 1
d1$AOL_exp   <- d1$AOL_exp   - 1

x <- cbind(d1$ABC_exp, 
           d1$CBS_exp, 
           d1$CNN_exp, 
           d1$Fox_exp, 
           d1$MSNBC_exp, 
           d1$NBC_exp, 
           d1$NPR_exp, 
           d1$NYT_exp, 
           d1$PBS_exp, 
           d1$USAT_exp, 
           d1$WSJ_exp, 
           d1$AOL_exp)

d1$sum.media.exp <- rowSums(x, na.rm = T)

## affect
d1$ABC_AF   <- w1$affect[w1$mediaOutlet == "ABC"]
d1$CBS_AF   <- w1$affect[w1$mediaOutlet == "CBS"]
d1$CNN_AF   <- w1$affect[w1$mediaOutlet == "CNN"]
d1$Fox_AF   <- w1$affect[w1$mediaOutlet == "Fox"]
d1$MSNBC_AF <- w1$affect[w1$mediaOutlet == "MSNBC"]
d1$NBC_AF   <- w1$affect[w1$mediaOutlet == "NBC"]
d1$NPR_AF   <- w1$affect[w1$mediaOutlet == "NPR"]
d1$NYT_AF   <- w1$affect[w1$mediaOutlet == "NYT"]
d1$PBS_AF   <- w1$affect[w1$mediaOutlet == "PBS"]
d1$USAT_AF  <- w1$affect[w1$mediaOutlet == "USAToday"]
d1$WSJ_AF   <- w1$affect[w1$mediaOutlet == "WSJ"]
d1$AOL_AF   <- w1$affect[w1$mediaOutlet == "AOL"]

## analytic thinking
d1$ABC_AN   <- w1$analytic[w1$mediaOutlet == "ABC"]
d1$CBS_AN   <- w1$analytic[w1$mediaOutlet == "CBS"]
d1$CNN_AN   <- w1$analytic[w1$mediaOutlet == "CNN"]
d1$Fox_AN   <- w1$analytic[w1$mediaOutlet == "Fox"]
d1$MSNBC_AN <- w1$analytic[w1$mediaOutlet == "MSNBC"]
d1$NBC_AN   <- w1$analytic[w1$mediaOutlet == "NBC"]
d1$NPR_AN   <- w1$analytic[w1$mediaOutlet == "NPR"]
d1$NYT_AN   <- w1$analytic[w1$mediaOutlet == "NYT"]
d1$PBS_AN   <- w1$analytic[w1$mediaOutlet == "PBS"]
d1$USAT_AN  <- w1$analytic[w1$mediaOutlet == "USAToday"]
d1$WSJ_AN   <- w1$analytic[w1$mediaOutlet == "WSJ"]
d1$AOL_AN   <- w1$analytic[w1$mediaOutlet == "AOL"]

#individual media affect
d1$ABC_AFexp <- d1$ABC_AF * d1$ABC_exp
d1$CBS_AFexp <- d1$CBS_AF * d1$CBS_exp
d1$CNN_AFexp <- d1$CNN_AF * d1$CNN_exp
d1$Fox_AFexp <- d1$Fox_AF * d1$Fox_exp
d1$MSNBC_AFexp <- d1$MSNBC_AF * d1$MSNBC_exp
d1$NBC_AFexp <- d1$NBC_AF * d1$NBC_exp
d1$NPR_AFexp <- d1$NPR_AF * d1$NPR_exp
d1$NYT_AFexp <- d1$NYT_AF * d1$NYT_exp
d1$PBS_AFexp <- d1$PBS_AF * d1$PBS_exp
d1$USAT_AFexp <- d1$USAT_AF * d1$USAT_exp
d1$WSJ_AFexp <- d1$WSJ_AF * d1$WSJ_exp
d1$AOL_AFexp <- d1$AOL_AF * d1$AOL_exp

x <- cbind(d1$ABC_AFexp, 
           d1$CBS_AFexp, 
           d1$CNN_AFexp, 
           d1$Fox_AFexp, 
           d1$MSNBC_AFexp, 
           d1$NBC_AFexp, 
           d1$NPR_AFexp, 
           d1$NYT_AFexp, 
           d1$PBS_AFexp, 
           d1$USAT_AFexp, 
           d1$WSJ_AFexp, 
           d1$AOL_AFexp)

d1$index_AFexp <- rowMeans(x, na.rm = T)

#individual media affect
d1$ABC_ANexp <- d1$ABC_AN * d1$ABC_exp
d1$CBS_ANexp <- d1$CBS_AN * d1$CBS_exp
d1$CNN_ANexp <- d1$CNN_AN * d1$CNN_exp
d1$Fox_ANexp <- d1$Fox_AN * d1$Fox_exp
d1$MSNBC_ANexp <- d1$MSNBC_AN * d1$MSNBC_exp
d1$NBC_ANexp <- d1$NBC_AN * d1$NBC_exp
d1$NPR_ANexp <- d1$NPR_AN * d1$NPR_exp
d1$NYT_ANexp <- d1$NYT_AN * d1$NYT_exp
d1$PBS_ANexp <- d1$PBS_AN * d1$PBS_exp
d1$USAT_ANexp <- d1$USAT_AN * d1$USAT_exp
d1$WSJ_ANexp <- d1$WSJ_AN * d1$WSJ_exp
d1$AOL_ANexp <- d1$AOL_AN * d1$AOL_exp

x <- cbind(d1$ABC_ANexp, 
           d1$CBS_ANexp, 
           d1$CNN_ANexp, 
           d1$Fox_ANexp, 
           d1$MSNBC_ANexp, 
           d1$NBC_ANexp, 
           d1$NPR_ANexp, 
           d1$NYT_ANexp, 
           d1$PBS_ANexp, 
           d1$USAT_ANexp, 
           d1$WSJ_ANexp, 
           d1$AOL_ANexp)

d1$index_ANexp <- rowMeans(x, na.rm = T)

#################################################
# Election Timing 
#################################################

d1$election_timing[d1$election_timing == 'Pre-election'] <- NA
# Contrast codes
d1$tDur_Post <- NA
# Dummy codes
## During
d1$tDur <- NA
## Post
d1$tPost <- NA

d1$electiontiming <- NA

# Factor order
d1$election_timing <- factor(d1$election_timing, levels = c('During-election','Post-election'))

####################################################
# vote legitimacy
####################################################

d1$voteLegit <- NA

#####################################################
# codes for party
####################################################

d1$partyCont <- NA
d1$partyCont[d1$demStrength == 1] <- -3
d1$partyCont[d1$demStrength == 2] <- -2
d1$partyCont[d1$partyClose  == 1] <- -1
d1$partyCont[d1$partyClose  == 3] <- 0
d1$partyCont[d1$partyClose  == 2] <- 1
d1$partyCont[d1$repStrength == 2] <- 2
d1$partyCont[d1$repStrength == 1] <- 3

## party factor
d1$party_factor <- NA
d1$party_factor[d1$partyCont < 0]  <- 'Democrat'
d1$party_factor[d1$partyCont == 0] <- 'Independent'
d1$party_factor[d1$partyCont > 0]  <- 'Republican'

## Order of party variable
d1$party_factor <- factor(d1$party_factor, 
                          levels = c('Democrat', 'Republican', 'Independent'))

## contrast codes
d1$DvR <- NA
d1$DvR[d1$party_factor == 'Democrat']    <- -.5
d1$DvR[d1$party_factor == 'Independent'] <- 0
d1$DvR[d1$party_factor == 'Republican']  <- .5

d1$IvDR <- NA
d1$IvDR[d1$party_factor == 'Democrat']    <- .33
d1$IvDR[d1$party_factor == 'Independent'] <- -.67
d1$IvDR[d1$party_factor == 'Republican']  <- .33

## dummy codes
d1$Rep_1[d1$party_factor == 'Democrat']    <- 0
d1$Rep_1[d1$party_factor == 'Republican']  <- 1
d1$Rep_1[d1$party_factor == 'Independent'] <- 0

d1$Ind_1[d1$party_factor == 'Democrat']    <- 0
d1$Ind_1[d1$party_factor == 'Republican']  <- 0
d1$Ind_1[d1$party_factor == 'Independent'] <- 1

d1$Dem_1[d1$party_factor == 'Democrat']    <- 1
d1$Dem_1[d1$party_factor == 'Republican']  <- 0
d1$Dem_1[d1$party_factor == 'Independent'] <- 0

## delete unnecessary columns
d1$party <- NULL
d1$demStrength <- NULL
d1$repStrength <- NULL
d1$partyClose <- NULL

prep wave 2 data

# delete any measures we don't want---exclude media exposure #3, #8, and #9
# missing Yahoo, Huff Post, Wash Post
d2 <- d2.1[,c("s3", "Wave", "vaxxAttitudes", 
            "demStrength", "repStrength", "partyClose", 
            "mediaExposure_1", "mediaExposure_2", "mediaExposure_4",
            "mediaExposure_5", "mediaExposure_6", "mediaExposure_7", 
            "mediaExposure_10", "mediaExposure_11", "mediaExposure_12",
            "mediaExposure_13",  "mediaExposure_14", "mediaExposure_15",
             "ownvote_conf", "overallvote_conf", "election_timing")]

colnames(d2)[colnames(d2) == "s3"]  <- "participant"

# rename exposure
colnames(d2)[colnames(d2) == "mediaExposure_1"]  <- "NYT_exp"
colnames(d2)[colnames(d2) == "mediaExposure_2"]  <- "WSJ_exp"
colnames(d2)[colnames(d2) == "mediaExposure_4"]  <- "USAT_exp"
colnames(d2)[colnames(d2) == "mediaExposure_5"]  <- "Fox_exp"
colnames(d2)[colnames(d2) == "mediaExposure_6"]  <- "CNN_exp"
colnames(d2)[colnames(d2) == "mediaExposure_7"]  <- "MSNBC_exp"
colnames(d2)[colnames(d2) == "mediaExposure_10"] <- "AOL_exp"
colnames(d2)[colnames(d2) == "mediaExposure_11"] <- "NPR_exp"
colnames(d2)[colnames(d2) == "mediaExposure_12"] <- "ABC_exp"
colnames(d2)[colnames(d2) == "mediaExposure_13"] <- "NBC_exp"
colnames(d2)[colnames(d2) == "mediaExposure_14"] <- "CBS_exp"
colnames(d2)[colnames(d2) == "mediaExposure_15"] <- "PBS_exp"

# change to 0-4 rating
d2$ABC_exp   <- d2$ABC_exp   - 1
d2$CBS_exp   <- d2$CBS_exp   - 1
d2$CNN_exp   <- d2$CNN_exp   - 1
d2$Fox_exp   <- d2$Fox_exp   - 1
d2$MSNBC_exp <- d2$MSNBC_exp - 1
d2$NBC_exp   <- d2$NBC_exp   - 1
d2$NPR_exp   <- d2$NPR_exp   - 1
d2$NYT_exp   <- d2$NYT_exp   - 1
d2$PBS_exp   <- d2$PBS_exp   - 1
d2$USAT_exp  <- d2$USAT_exp  - 1
d2$WSJ_exp   <- d2$WSJ_exp   - 1
d2$AOL_exp   <- d2$AOL_exp   - 1

x <- cbind(d2$ABC_exp, 
           d2$CBS_exp, 
           d2$CNN_exp, 
           d2$Fox_exp, 
           d2$MSNBC_exp, 
           d2$NBC_exp, 
           d2$NPR_exp, 
           d2$NYT_exp, 
           d2$PBS_exp, 
           d2$USAT_exp, 
           d2$WSJ_exp, 
           d2$AOL_exp)

d2$sum.media.exp <- rowSums(x, na.rm = T)

## affect
d2$ABC_AF   <- w2$affect[w2$mediaOutlet == "ABC"]
d2$CBS_AF   <- w2$affect[w2$mediaOutlet == "CBS"]
d2$CNN_AF   <- w2$affect[w2$mediaOutlet == "CNN"]
d2$Fox_AF   <- w2$affect[w2$mediaOutlet == "Fox"]
d2$MSNBC_AF <- w2$affect[w2$mediaOutlet == "MSNBC"]
d2$NBC_AF   <- w2$affect[w2$mediaOutlet == "NBC"]
d2$NPR_AF   <- w2$affect[w2$mediaOutlet == "NPR"]
d2$NYT_AF   <- w2$affect[w2$mediaOutlet == "NYT"]
d2$PBS_AF   <- w2$affect[w2$mediaOutlet == "PBS"]
d2$USAT_AF  <- w2$affect[w2$mediaOutlet == "USAToday"]
d2$WSJ_AF   <- w2$affect[w2$mediaOutlet == "WSJ"]
d2$AOL_AF   <- w2$affect[w2$mediaOutlet == "AOL"]

## analytic thinking
d2$ABC_AN   <- w2$analytic[w2$mediaOutlet == "ABC"]
d2$CBS_AN   <- w2$analytic[w2$mediaOutlet == "CBS"]
d2$CNN_AN   <- w2$analytic[w2$mediaOutlet == "CNN"]
d2$Fox_AN   <- w2$analytic[w2$mediaOutlet == "Fox"]
d2$MSNBC_AN <- w2$analytic[w2$mediaOutlet == "MSNBC"]
d2$NBC_AN   <- w2$analytic[w2$mediaOutlet == "NBC"]
d2$NPR_AN   <- w2$analytic[w2$mediaOutlet == "NPR"]
d2$NYT_AN   <- w2$analytic[w2$mediaOutlet == "NYT"]
d2$PBS_AN   <- w2$analytic[w2$mediaOutlet == "PBS"]
d2$USAT_AN  <- w2$analytic[w2$mediaOutlet == "USAToday"]
d2$WSJ_AN   <- w2$analytic[w2$mediaOutlet == "WSJ"]
d2$AOL_AN   <- w2$analytic[w2$mediaOutlet == "AOL"]

#individual media affect
d2$ABC_AFexp <- d2$ABC_AF * d2$ABC_exp
d2$CBS_AFexp <- d2$CBS_AF * d2$CBS_exp
d2$CNN_AFexp <- d2$CNN_AF * d2$CNN_exp
d2$Fox_AFexp <- d2$Fox_AF * d2$Fox_exp
d2$MSNBC_AFexp <- d2$MSNBC_AF * d2$MSNBC_exp
d2$NBC_AFexp <- d2$NBC_AF * d2$NBC_exp
d2$NPR_AFexp <- d2$NPR_AF * d2$NPR_exp
d2$NYT_AFexp <- d2$NYT_AF * d2$NYT_exp
d2$PBS_AFexp <- d2$PBS_AF * d2$PBS_exp
d2$USAT_AFexp <- d2$USAT_AF * d2$USAT_exp
d2$WSJ_AFexp <- d2$WSJ_AF * d2$WSJ_exp
d2$AOL_AFexp <- d2$AOL_AF * d2$AOL_exp

x <- cbind(d2$ABC_AFexp, 
           d2$CBS_AFexp, 
           d2$CNN_AFexp, 
           d2$Fox_AFexp, 
           d2$MSNBC_AFexp, 
           d2$NBC_AFexp, 
           d2$NPR_AFexp, 
           d2$NYT_AFexp, 
           d2$PBS_AFexp, 
           d2$USAT_AFexp, 
           d2$WSJ_AFexp, 
           d2$AOL_AFexp)

d2$index_AFexp <- rowMeans(x, na.rm = T)

#individual media affect
d2$ABC_ANexp <- d2$ABC_AN * d2$ABC_exp
d2$CBS_ANexp <- d2$CBS_AN * d2$CBS_exp
d2$CNN_ANexp <- d2$CNN_AN * d2$CNN_exp
d2$Fox_ANexp <- d2$Fox_AN * d2$Fox_exp
d2$MSNBC_ANexp <- d2$MSNBC_AN * d2$MSNBC_exp
d2$NBC_ANexp <- d2$NBC_AN * d2$NBC_exp
d2$NPR_ANexp <- d2$NPR_AN * d2$NPR_exp
d2$NYT_ANexp <- d2$NYT_AN * d2$NYT_exp
d2$PBS_ANexp <- d2$PBS_AN * d2$PBS_exp
d2$USAT_ANexp <- d2$USAT_AN * d2$USAT_exp
d2$WSJ_ANexp <- d2$WSJ_AN * d2$WSJ_exp
d2$AOL_ANexp <- d2$AOL_AN * d2$AOL_exp

x <- cbind(d2$ABC_ANexp, 
           d2$CBS_ANexp, 
           d2$CNN_ANexp, 
           d2$Fox_ANexp, 
           d2$MSNBC_ANexp, 
           d2$NBC_ANexp, 
           d2$NPR_ANexp, 
           d2$NYT_ANexp, 
           d2$PBS_ANexp, 
           d2$USAT_ANexp, 
           d2$WSJ_ANexp, 
           d2$AOL_ANexp)

d2$index_ANexp <- rowMeans(x, na.rm = T)

##################
# Election Timing 
##################

d2$election_timing[d2$election_timing == 'Pre-election'] <- NA

# Contrast codes
d2$tDur_Post <- NA
d2$tDur_Post[d2$election_timing == 'During-election'] <- -.5
d2$tDur_Post[d2$election_timing == 'Post-election'] <- .5

# Dummy codes

## During
d2$tDur <- NA
d2$tDur[d2$election_timing == 'During-election'] <- 0
d2$tDur[d2$election_timing == 'Post-election'] <- 1

## Post
d2$tPost <- NA
d2$tPost[d2$election_timing == 'During-election'] <- 1
d2$tPost[d2$election_timing == 'Post-election'] <- 0

# Factor order
d2$election_timing <- factor(d2$election_timing, levels = c('During-election','Post-election'))

# Renaming election factor to ms language
d2$electiontiming <- recode_factor(d2$election_timing, "During-election" = "Undeclared", "Post-election" = "Declared")


#####################################################
# vote legit
####################################################

x <- cbind(d2$ownvote_conf, 
           d2$overallvote_conf)

d2$voteLegit <- rowMeans(x, na.rm = T)

#####################################################
# codes for party
####################################################

d2$partyCont <- NA
d2$partyCont[d2$demStrength == 1] <- -3
d2$partyCont[d2$demStrength == 2] <- -2
d2$partyCont[d2$partyClose  == 1] <- -1
d2$partyCont[d2$partyClose  == 3] <- 0
d2$partyCont[d2$partyClose  == 2] <- 1
d2$partyCont[d2$repStrength == 2] <- 2
d2$partyCont[d2$repStrength == 1] <- 3

# party factor
d2$party_factor <- NA
d2$party_factor[d2$partyCont < 0]  <- 'Democrat'
d2$party_factor[d2$partyCont == 0] <- 'Independent'
d2$party_factor[d2$partyCont > 0]  <- 'Republican'

## Order of party variable
d2$party_factor <- factor(d2$party_factor, 
                          levels = c('Democrat', 'Republican','Independent'))

## Contrast codes
d2$DvR <- NA
d2$DvR[d2$party_factor == 'Democrat']    <- -.5
d2$DvR[d2$party_factor == 'Independent'] <-   0
d2$DvR[d2$party_factor == 'Republican']  <-  .5

d2$IvDR <- NA
d2$IvDR[d2$party_factor == 'Democrat']    <-  .33
d2$IvDR[d2$party_factor == 'Independent'] <- -.67
d2$IvDR[d2$party_factor == 'Republican']  <-  .33

## dummy codes 
d2$Rep_1[d2$party_factor == 'Democrat']    <- 0
d2$Rep_1[d2$party_factor == 'Republican']  <- 1
d2$Rep_1[d2$party_factor == 'Independent'] <- 0

d2$Ind_1[d2$party_factor == 'Democrat']    <- 0
d2$Ind_1[d2$party_factor == 'Republican']  <- 0
d2$Ind_1[d2$party_factor == 'Independent'] <- 1

d2$Dem_1[d2$party_factor == 'Democrat']    <- 1
d2$Dem_1[d2$party_factor == 'Republican']  <- 0
d2$Dem_1[d2$party_factor == 'Independent'] <- 0

## delete unnecessary columns
d2$party <- NULL
d2$demStrength <- NULL
d2$repStrength <- NULL
d2$partyClose <- NULL

LONG merged data

names(d1) == names(d2)
##  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [46] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [76] TRUE TRUE TRUE TRUE TRUE TRUE
dm <- rbind.data.frame(d1, d2)
dm$participant <- as.factor(dm$participant)

dm$W1vW2 <- NA
dm$W1vW2[dm$Wave == 1] <- -.5
dm$W1vW2[dm$Wave == 2] <- .5

dm$W1_0 <- NA
dm$W1_0[dm$Wave == 1] <- 0
dm$W1_0[dm$Wave == 2] <- 1

dm$W2_0 <- NA
dm$W2_0[dm$Wave == 1] <- 1
dm$W2_0[dm$Wave == 2] <- 0

WIDE merged data

#d1 = x; d2 = y
dw <- merge(d1, d2, by = c("participant"), all.x = T, all.y = T)

dw$party_match <- TRUE
dw$party_match[dw$party_factor.y == 'Democrat' & dw$party_factor.x == 'Republican'] <- FALSE
dw$party_match[dw$party_factor.y == 'Republican' & dw$party_factor.x == 'Democrat']<- FALSE

#make weak leaners
dw$party_factor.y[dw$party_factor.y == 'Democrat' & dw$party_factor.x == 'Independent']<- 'Democrat'
dw$party_factor.y[dw$party_factor.y == 'Independent' & dw$party_factor.x == 'Republican']<- 'Republican'
dw$party_factor.x[dw$party_factor.y == 'Independent' & dw$party_factor.x == 'Democrat']<- 'Democrat'
dw$party_factor.x[dw$party_factor.y == 'Republican' & dw$party_factor.x == 'Independent']<- 'Republican'

dw$partyCont.y[dw$party_factor.y == 'Democrat' & dw$party_factor.x == 'Independent']<- -1
dw$partyCont.y[dw$party_factor.y == 'Independent' & dw$party_factor.x == 'Republican']<- 1
dw$partyCont.x[dw$party_factor.y == 'Independent' & dw$party_factor.x == 'Democrat']<- -1
dw$partyCont.x[dw$party_factor.y == 'Republican' & dw$party_factor.x == 'Independent']<- 1


#get rid of party swaps
dw <- dw[dw$party_match,]

colnames(dw)[colnames(dw) == "vaxxAttitudes.x"]  <- "vaxxAttitudes.w1"
colnames(dw)[colnames(dw) == "vaxxAttitudes.y"]  <- "vaxxAttitudes.w2"

dw$vaxxAttitudes.c.w1 <- dw$vaxxAttitudes.w1 - mean(dw$vaxxAttitudes.w1, na.rm = T)

colnames(dw)[colnames(dw) == "party_factor.x"]  <- "party_factor"
dw$party_factor.y <- NULL
colnames(dw)[colnames(dw) == "partyCont.x"]  <- "partyCont.w1"
colnames(dw)[colnames(dw) == "partyCont.y"]  <- "partyCont.w2"

colnames(dw)[colnames(dw) == "index_AFexp.x"]  <- "index_AFexp.w1"
colnames(dw)[colnames(dw) == "index_AFexp.y"]  <- "index_AFexp.w2"

colnames(dw)[colnames(dw) == "index_ANexp.x"]  <- "index_ANexp.w1"
colnames(dw)[colnames(dw) == "index_ANexp.y"]  <- "index_ANexp.w2"

colnames(dw)[colnames(dw) == "DvR.x"]  <- "DvR"
colnames(dw)[colnames(dw) == "IvDR.x"]  <- "IvDR"

colnames(dw)[colnames(dw) == "Ind_1.x"]  <- "Ind_1"
colnames(dw)[colnames(dw) == "Rep_1.x"]  <- "Rep_1"
colnames(dw)[colnames(dw) == "Dem_1.x"]  <- "Dem_1"

#get averages
x <- cbind(dw$vaxxAttitudes.w1, dw$vaxxAttitudes.w2)
dw$avgVaxxAttitudes <- rowMeans(x, na.rm = T)

x <- cbind(dw$index_AFexp.w1, dw$index_AFexp.w2)
dw$avg_AFexp <- rowMeans(x, na.rm = T)

x <- cbind(dw$index_ANexp.w1, dw$index_ANexp.w2)
dw$avg_ANexp <- rowMeans(x, na.rm = T)

x <- cbind(dw$sum.media.exp.x, dw$sum.media.exp.y)
dw$avg.sum.media.exp <- rowMeans(x, na.rm = T)

descriptives

sum(table(d1$vaxxAttitudes)) #3051 responses for vaxxAttitudes in wave 1
## [1] 3051
sum(table(d2$vaxxAttitudes)) #2419 responses for vaxxAttitudes in wave 2
## [1] 2419
print("wave 1")
## [1] "wave 1"
sum(table(d1$ABC_exp)) #3051
## [1] 3051
sum(table(d1$CBS_exp)) #3051
## [1] 3051
sum(table(d1$CNN_exp)) #3053
## [1] 3053
sum(table(d1$Fox_exp))#3053
## [1] 3053
sum(table(d1$MSNBC_exp)) #3052
## [1] 3052
sum(table(d1$NBC_exp)) #3053
## [1] 3053
sum(table(d1$NPR_exp)) #3052
## [1] 3052
sum(table(d1$NYT_exp)) #3052
## [1] 3052
sum(table(d1$PBS_exp)) #3053
## [1] 3053
sum(table(d1$USAT_exp)) #3053
## [1] 3053
sum(table(d1$WSJ_exp)) #3052
## [1] 3052
sum(table(d1$AOL_exp)) #3053
## [1] 3053
print("wave 2")
## [1] "wave 2"
sum(table(d2$ABC_exp)) #2412
## [1] 2412
sum(table(d2$CBS_exp)) #2413
## [1] 2413
sum(table(d2$CNN_exp))#2411
## [1] 2411
sum(table(d2$Fox_exp)) #2414
## [1] 2414
sum(table(d2$MSNBC_exp)) #2413
## [1] 2413
sum(table(d2$NBC_exp)) #2412
## [1] 2412
sum(table(d2$NPR_exp)) #2413
## [1] 2413
sum(table(d2$NYT_exp)) #2412
## [1] 2412
sum(table(d2$PBS_exp))#2412
## [1] 2412
sum(table(d2$USAT_exp))#2413
## [1] 2413
sum(table(d2$WSJ_exp)) #2413
## [1] 2413
sum(table(d2$AOL_exp)) #2411
## [1] 2411
sum(table(d1$party_factor))
## [1] 3147
sum(table(d2$party_factor))
## [1] 2426
tapply(d1$index_AFexp, d1$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##    5.469034    3.406757    3.935891
tapply(d1$index_ANexp, d1$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##   108.65344    65.97917    78.10298
tapply(d2$index_AFexp, d2$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##    5.095026    2.902290    3.173599
tapply(d2$index_ANexp, d2$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##   102.32919    57.04594    63.54699

LIWC means

wave 1

##    mediaOutlet   affect   cogproc analytic   posemo   negemo
## 1          ABC 3.920000  7.787500 79.10750 2.635000 1.232500
## 2          AOL 3.504762  6.856667 95.42000 2.103810 1.355238
## 3          CBS 3.890000  8.275000 78.76000 2.500000 1.330000
## 4          CNN 3.800000  9.780000 73.61000 2.280000 1.460000
## 5          Fox 4.390000 10.480000 60.43000 2.690000 1.650000
## 6        MSNBC 3.880000  9.930000 70.52000 2.360000 1.450000
## 7          NBC 6.590000  6.870000 80.54500 2.730000 3.810000
## 8          NPR 3.425000  9.825000 71.83000 2.125000 1.240000
## 9          NYT 3.537222  7.912222 93.49444 1.941111 1.535556
## 10         PBS 3.830000  8.970000 78.86000 2.320000 1.460000
## 11    USAToday 3.653333  8.883333 91.28000 2.206667 1.390000
## 12         WSJ 1.846000  4.416000 96.59800 1.014000 0.800000

wave 2

##    mediaOutlet   affect   cogproc analytic   posemo   negemo
## 1          ABC 3.870000  8.015000 75.97750 2.750000 1.077500
## 2          AOL 3.715455  7.033182 95.29773 2.212727 1.451364
## 3          CBS 3.760000  7.620000 84.05500 2.325000 1.395000
## 4          CNN 3.678000  9.964000 64.72000 2.404000 1.226000
## 5          Fox 4.135000 10.445000 61.09500 2.775000 1.315000
## 6        MSNBC 3.660000  9.900000 69.56000 2.380000 1.220000
## 7          NBC 6.190000  7.150000 78.12000 2.665000 3.490000
## 8          NPR 3.595000  9.865000 70.81500 2.385000 1.145000
## 9          NYT 3.607895  7.792105 93.36368 2.074737 1.466842
## 10         PBS 3.680000  9.080000 77.06000 2.410000 1.230000
## 11    USAToday 3.830000  8.490000 91.85500 2.390000 1.390000
## 12         WSJ 1.628000  4.020000 96.43200 1.002000 0.582000

corr matrix

x <- cbind.data.frame(dw$index_ANexp.w1, dw$index_ANexp.w2, 
                      dw$index_AFexp.w1, dw$index_AFexp.w2, 
                      dw$avg_ANexp, dw$avg_AFexp, 
                      dw$partyCont.w1, dw$partyCont.w2)


cor <- cor(x, use = "complete.obs")

ggcorrplot(cor, type = "lower",
   lab = TRUE, title = "general correlations")

x1 <- cbind.data.frame(w1$affect, w2$affect,
                       w1$analytic, w2$analytic)

cor1 <- cor(x1, use = "complete.obs")

ggcorrplot(cor1, type = "lower",
   lab = TRUE, title = "media analytic + affect correlations wave 1 & wave 2")

I. AVG Wave 1 + Wave 2

1. avg_vaxxAttitudes ~ (avg_ANALYTIC + avg_AFFECT) * party

a. contrast model

model1.cc <- lm(avgVaxxAttitudes ~ (DvR + IvDR) * (avg_AFexp + avg_ANexp) + avg.sum.media.exp, data = dw)
summary(model1.cc)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (DvR + IvDR) * (avg_AFexp + avg_ANexp) + 
##     avg.sum.media.exp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5653 -1.4627  0.2175  1.6419  3.9552 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.163290   0.063304  -2.579  0.00994 ** 
## DvR               -1.176575   0.142533  -8.255 2.25e-16 ***
## IvDR               0.600460   0.144195   4.164 3.21e-05 ***
## avg_AFexp          0.251521   0.107015   2.350  0.01882 *  
## avg_ANexp         -0.013215   0.005924  -2.231  0.02577 *  
## avg.sum.media.exp  0.048202   0.028362   1.700  0.08932 .  
## DvR:avg_AFexp      1.013395   0.215098   4.711 2.57e-06 ***
## DvR:avg_ANexp     -0.043847   0.010313  -4.252 2.19e-05 ***
## IvDR:avg_AFexp    -0.220338   0.254223  -0.867  0.38617    
## IvDR:avg_ANexp     0.010831   0.012316   0.879  0.37921    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.943 on 2996 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.0919, Adjusted R-squared:  0.08917 
## F-statistic: 33.69 on 9 and 2996 DF,  p-value: < 2.2e-16

plot

b. simple effects Dem

model1.dem <- lm(avgVaxxAttitudes ~ (Rep_1 + Ind_1) *
                   (avg_AFexp + avg_ANexp) + avg.sum.media.exp, data = dw)
summary(model1.dem)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Rep_1 + Ind_1) * (avg_AFexp + 
##     avg_ANexp) + avg.sum.media.exp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5653 -1.4627  0.2175  1.6419  3.9552 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.623149   0.107436   5.800 7.32e-09 ***
## Rep_1             -1.176575   0.142533  -8.255 2.25e-16 ***
## Ind_1             -1.188747   0.165003  -7.204 7.34e-13 ***
## avg_AFexp         -0.327888   0.133160  -2.462  0.01386 *  
## avg_ANexp          0.012283   0.006841   1.796  0.07267 .  
## avg.sum.media.exp  0.048202   0.028362   1.700  0.08932 .  
## Rep_1:avg_AFexp    1.013395   0.215098   4.711 2.57e-06 ***
## Rep_1:avg_ANexp   -0.043847   0.010313  -4.252 2.19e-05 ***
## Ind_1:avg_AFexp    0.727035   0.264750   2.746  0.00607 ** 
## Ind_1:avg_ANexp   -0.032755   0.012806  -2.558  0.01059 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.943 on 2996 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.0919, Adjusted R-squared:  0.08917 
## F-statistic: 33.69 on 9 and 2996 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <- lm(avgVaxxAttitudes ~ (Dem_1 + Ind_1) *
                   (avg_AFexp + avg_ANexp) + avg.sum.media.exp, data = dw)
summary(model1.rep)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Dem_1 + Ind_1) * (avg_AFexp + 
##     avg_ANexp) + avg.sum.media.exp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5653 -1.4627  0.2175  1.6419  3.9552 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.553426   0.094024  -5.886 4.40e-09 ***
## Dem_1              1.176575   0.142533   8.255 2.25e-16 ***
## Ind_1             -0.012172   0.156576  -0.078 0.938039    
## avg_AFexp          0.685507   0.171847   3.989 6.79e-05 ***
## avg_ANexp         -0.031564   0.008841  -3.570 0.000363 ***
## avg.sum.media.exp  0.048202   0.028362   1.700 0.089324 .  
## Dem_1:avg_AFexp   -1.013395   0.215098  -4.711 2.57e-06 ***
## Dem_1:avg_ANexp    0.043847   0.010313   4.252 2.19e-05 ***
## Ind_1:avg_AFexp   -0.286360   0.286879  -0.998 0.318268    
## Ind_1:avg_ANexp    0.011093   0.013875   0.799 0.424090    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.943 on 2996 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.0919, Adjusted R-squared:  0.08917 
## F-statistic: 33.69 on 9 and 2996 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <- lm(avgVaxxAttitudes ~ (Rep_1 + Dem_1) *
                   (avg_AFexp + avg_ANexp) + avg.sum.media.exp, data = dw)
summary(model1.ind)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Rep_1 + Dem_1) * (avg_AFexp + 
##     avg_ANexp) + avg.sum.media.exp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5653 -1.4627  0.2175  1.6419  3.9552 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.56560    0.12528  -4.515 6.58e-06 ***
## Rep_1              0.01217    0.15658   0.078  0.93804    
## Dem_1              1.18875    0.16500   7.204 7.34e-13 ***
## avg_AFexp          0.39915    0.23132   1.725  0.08454 .  
## avg_ANexp         -0.02047    0.01162  -1.761  0.07828 .  
## avg.sum.media.exp  0.04820    0.02836   1.700  0.08932 .  
## Rep_1:avg_AFexp    0.28636    0.28688   0.998  0.31827    
## Rep_1:avg_ANexp   -0.01109    0.01388  -0.799  0.42409    
## Dem_1:avg_AFexp   -0.72704    0.26475  -2.746  0.00607 ** 
## Dem_1:avg_ANexp    0.03275    0.01281   2.558  0.01059 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.943 on 2996 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.0919, Adjusted R-squared:  0.08917 
## F-statistic: 33.69 on 9 and 2996 DF,  p-value: < 2.2e-16

2. avg_vaxxAttitudes ~ avg_AFFECT * party

a. contrast model

model1.cc <- lm(avgVaxxAttitudes ~ (DvR + IvDR) * avg_AFexp + avg.sum.media.exp, data = dw)
summary(model1.cc)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (DvR + IvDR) * avg_AFexp + avg.sum.media.exp, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5835 -1.4660  0.2051  1.6555  3.5264 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.1296062  0.0615146  -2.107   0.0352 *  
## DvR               -1.0010529  0.1368788  -7.313 3.33e-13 ***
## IvDR               0.5922333  0.1410635   4.198 2.77e-05 ***
## avg_AFexp          0.0487198  0.0726431   0.671   0.5025    
## avg.sum.media.exp  0.0254917  0.0236508   1.078   0.2812    
## DvR:avg_AFexp      0.1056871  0.0266707   3.963 7.58e-05 ***
## IvDR:avg_AFexp     0.0007336  0.0279732   0.026   0.9791    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.949 on 2999 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.0855, Adjusted R-squared:  0.08367 
## F-statistic: 46.73 on 6 and 2999 DF,  p-value: < 2.2e-16

plot

b. simple effects Dem

model1.dem <- lm(avgVaxxAttitudes ~ (Rep_1 + Ind_1) * avg_AFexp + avg.sum.media.exp, data = dw)
summary(model1.dem)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Rep_1 + Ind_1) * avg_AFexp + 
##     avg.sum.media.exp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5835 -1.4660  0.2051  1.6555  3.5264 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.566357   0.104697   5.409 6.82e-08 ***
## Rep_1             -1.001053   0.136879  -7.313 3.33e-13 ***
## Ind_1             -1.092760   0.161684  -6.759 1.67e-11 ***
## avg_AFexp         -0.003882   0.074089  -0.052   0.9582    
## avg.sum.media.exp  0.025492   0.023651   1.078   0.2812    
## Rep_1:avg_AFexp    0.105687   0.026671   3.963 7.58e-05 ***
## Ind_1:avg_AFexp    0.052110   0.029836   1.747   0.0808 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.949 on 2999 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.0855, Adjusted R-squared:  0.08367 
## F-statistic: 46.73 on 6 and 2999 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <- lm(avgVaxxAttitudes ~ (Dem_1 + Ind_1) * avg_AFexp + avg.sum.media.exp, data = dw)
summary(model1.rep)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Dem_1 + Ind_1) * avg_AFexp + 
##     avg.sum.media.exp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5835 -1.4660  0.2051  1.6555  3.5264 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.43470    0.08846  -4.914 9.41e-07 ***
## Dem_1              1.00105    0.13688   7.313 3.33e-13 ***
## Ind_1             -0.09171    0.15174  -0.604   0.5456    
## avg_AFexp          0.10181    0.07449   1.367   0.1719    
## avg.sum.media.exp  0.02549    0.02365   1.078   0.2812    
## Dem_1:avg_AFexp   -0.10569    0.02667  -3.963 7.58e-05 ***
## Ind_1:avg_AFexp   -0.05358    0.03210  -1.669   0.0952 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.949 on 2999 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.0855, Adjusted R-squared:  0.08367 
## F-statistic: 46.73 on 6 and 2999 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <- lm(avgVaxxAttitudes ~ (Rep_1 + Dem_1) * avg_AFexp + avg.sum.media.exp, data = dw)
summary(model1.ind)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Rep_1 + Dem_1) * avg_AFexp + 
##     avg.sum.media.exp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5835 -1.4660  0.2051  1.6555  3.5264 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.52640    0.12344  -4.265 2.07e-05 ***
## Rep_1              0.09171    0.15174   0.604   0.5456    
## Dem_1              1.09276    0.16168   6.759 1.67e-11 ***
## avg_AFexp          0.04823    0.07530   0.640   0.5219    
## avg.sum.media.exp  0.02549    0.02365   1.078   0.2812    
## Rep_1:avg_AFexp    0.05358    0.03210   1.669   0.0952 .  
## Dem_1:avg_AFexp   -0.05211    0.02984  -1.747   0.0808 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.949 on 2999 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.0855, Adjusted R-squared:  0.08367 
## F-statistic: 46.73 on 6 and 2999 DF,  p-value: < 2.2e-16

3. avg_vaxxAttitudes ~ avg_ANALYTIC * party

a. contrast model

model1.cc <- lm(avgVaxxAttitudes ~ (DvR + IvDR) * avg_ANexp + avg.sum.media.exp, data = dw)
summary(model1.cc)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (DvR + IvDR) * avg_ANexp + avg.sum.media.exp, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6426 -1.4758  0.2057  1.6449  3.5074 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.1226627  0.0603775  -2.032 0.042282 *  
## DvR               -0.9245308  0.1322568  -6.990 3.36e-12 ***
## IvDR               0.5742146  0.1381944   4.155 3.34e-05 ***
## avg_ANexp         -0.0012690  0.0040775  -0.311 0.755659    
## avg.sum.media.exp  0.0492535  0.0275911   1.785 0.074343 .  
## DvR:avg_ANexp      0.0043829  0.0012793   3.426 0.000621 ***
## IvDR:avg_ANexp     0.0001313  0.0013549   0.097 0.922819    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.951 on 2999 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.08419,    Adjusted R-squared:  0.08236 
## F-statistic: 45.95 on 6 and 2999 DF,  p-value: < 2.2e-16

plot

b. simple effects Dem

model1.dem <- lm(avgVaxxAttitudes ~ (Rep_1 + Ind_1) * avg_ANexp + avg.sum.media.exp, data = dw)
summary(model1.dem)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Rep_1 + Ind_1) * avg_ANexp + 
##     avg.sum.media.exp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6426 -1.4758  0.2057  1.6449  3.5074 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.529093   0.101785   5.198 2.15e-07 ***
## Rep_1             -0.924531   0.132257  -6.990 3.36e-12 ***
## Ind_1             -1.036480   0.157940  -6.562 6.21e-11 ***
## avg_ANexp         -0.003417   0.004116  -0.830 0.406530    
## avg.sum.media.exp  0.049253   0.027591   1.785 0.074343 .  
## Rep_1:avg_ANexp    0.004383   0.001279   3.426 0.000621 ***
## Ind_1:avg_ANexp    0.002060   0.001442   1.429 0.153163    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.951 on 2999 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.08419,    Adjusted R-squared:  0.08236 
## F-statistic: 45.95 on 6 and 2999 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <- lm(avgVaxxAttitudes ~ (Dem_1 + Ind_1) * avg_ANexp + avg.sum.media.exp, data = dw)
summary(model1.rep)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Dem_1 + Ind_1) * avg_ANexp + 
##     avg.sum.media.exp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6426 -1.4758  0.2057  1.6449  3.5074 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.3954373  0.0860708  -4.594 4.52e-06 ***
## Dem_1              0.9245308  0.1322568   6.990 3.36e-12 ***
## Ind_1             -0.1119492  0.1483113  -0.755 0.450413    
## avg_ANexp          0.0009658  0.0041480   0.233 0.815905    
## avg.sum.media.exp  0.0492535  0.0275911   1.785 0.074343 .  
## Dem_1:avg_ANexp   -0.0043829  0.0012793  -3.426 0.000621 ***
## Ind_1:avg_ANexp   -0.0023227  0.0015527  -1.496 0.134766    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.951 on 2999 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.08419,    Adjusted R-squared:  0.08236 
## F-statistic: 45.95 on 6 and 2999 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <- lm(avgVaxxAttitudes ~ (Rep_1 + Dem_1) * avg_ANexp + avg.sum.media.exp, data = dw)
summary(model1.ind)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Rep_1 + Dem_1) * avg_ANexp + 
##     avg.sum.media.exp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6426 -1.4758  0.2057  1.6449  3.5074 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.507387   0.121174  -4.187 2.90e-05 ***
## Rep_1              0.111949   0.148311   0.755   0.4504    
## Dem_1              1.036480   0.157940   6.562 6.21e-11 ***
## avg_ANexp         -0.001357   0.004216  -0.322   0.7476    
## avg.sum.media.exp  0.049253   0.027591   1.785   0.0743 .  
## Rep_1:avg_ANexp    0.002323   0.001553   1.496   0.1348    
## Dem_1:avg_ANexp   -0.002060   0.001442  -1.429   0.1532    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.951 on 2999 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.08419,    Adjusted R-squared:  0.08236 
## F-statistic: 45.95 on 6 and 2999 DF,  p-value: < 2.2e-16

4. avg_ANALYTIC ~ avg_AFFECT * party

a. contrast model

model1.cc <- lm(avg_ANexp ~ (DvR + IvDR) * avg_AFexp + avg.sum.media.exp, data = dw)
summary(model1.cc)
## 
## Call:
## lm(formula = avg_ANexp ~ (DvR + IvDR) * avg_AFexp + avg.sum.media.exp, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.475  -3.734   0.463   3.365  70.165 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -2.780e+00  2.055e-01 -13.530  < 2e-16 ***
## DvR                2.530e-02  4.571e-01   0.055 0.955867    
## IvDR              -1.809e+00  4.714e-01  -3.838 0.000126 ***
## avg_AFexp          1.189e+01  2.427e-01  48.974  < 2e-16 ***
## avg.sum.media.exp  2.886e+00  7.903e-02  36.521  < 2e-16 ***
## DvR:avg_AFexp     -4.813e-05  8.908e-02  -0.001 0.999569    
## IvDR:avg_AFexp     1.387e-01  9.348e-02   1.484 0.137838    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.514 on 3002 degrees of freedom
##   (408 observations deleted due to missingness)
## Multiple R-squared:  0.9907, Adjusted R-squared:  0.9906 
## F-statistic: 5.307e+04 on 6 and 3002 DF,  p-value: < 2.2e-16

plot

b. simple effects Dem

model1.dem <- lm(avg_ANexp ~ (Rep_1 + Ind_1) * avg_AFexp + avg.sum.media.exp, data = dw)
summary(model1.dem)
## 
## Call:
## lm(formula = avg_ANexp ~ (Rep_1 + Ind_1) * avg_AFexp + avg.sum.media.exp, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.475  -3.734   0.463   3.365  70.165 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -3.390e+00  3.499e-01  -9.688  < 2e-16 ***
## Rep_1              2.530e-02  4.571e-01   0.055 0.955867    
## Ind_1              1.822e+00  5.404e-01   3.372 0.000756 ***
## avg_AFexp          1.193e+01  2.475e-01  48.205  < 2e-16 ***
## avg.sum.media.exp  2.886e+00  7.903e-02  36.521  < 2e-16 ***
## Rep_1:avg_AFexp   -4.813e-05  8.908e-02  -0.001 0.999569    
## Ind_1:avg_AFexp   -1.388e-01  9.971e-02  -1.392 0.164115    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.514 on 3002 degrees of freedom
##   (408 observations deleted due to missingness)
## Multiple R-squared:  0.9907, Adjusted R-squared:  0.9906 
## F-statistic: 5.307e+04 on 6 and 3002 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <- lm(avg_ANexp ~ (Dem_1 + Ind_1) * avg_AFexp + avg.sum.media.exp, data = dw)
summary(model1.rep)
## 
## Call:
## lm(formula = avg_ANexp ~ (Dem_1 + Ind_1) * avg_AFexp + avg.sum.media.exp, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.475  -3.734   0.463   3.365  70.165 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -3.365e+00  2.951e-01 -11.403  < 2e-16 ***
## Dem_1             -2.530e-02  4.571e-01  -0.055 0.955867    
## Ind_1              1.797e+00  5.068e-01   3.545 0.000398 ***
## avg_AFexp          1.193e+01  2.489e-01  47.943  < 2e-16 ***
## avg.sum.media.exp  2.886e+00  7.903e-02  36.521  < 2e-16 ***
## Dem_1:avg_AFexp    4.813e-05  8.908e-02   0.001 0.999569    
## Ind_1:avg_AFexp   -1.387e-01  1.072e-01  -1.294 0.195920    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.514 on 3002 degrees of freedom
##   (408 observations deleted due to missingness)
## Multiple R-squared:  0.9907, Adjusted R-squared:  0.9906 
## F-statistic: 5.307e+04 on 6 and 3002 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <- lm(avg_ANexp ~ (Rep_1 + Dem_1) * avg_AFexp + avg.sum.media.exp, data = dw)
summary(model1.ind)
## 
## Call:
## lm(formula = avg_ANexp ~ (Rep_1 + Dem_1) * avg_AFexp + avg.sum.media.exp, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.475  -3.734   0.463   3.365  70.165 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -1.56816    0.41255  -3.801 0.000147 ***
## Rep_1             -1.79670    0.50680  -3.545 0.000398 ***
## Dem_1             -1.82200    0.54038  -3.372 0.000756 ***
## avg_AFexp         11.79415    0.25162  46.872  < 2e-16 ***
## avg.sum.media.exp  2.88619    0.07903  36.521  < 2e-16 ***
## Rep_1:avg_AFexp    0.13872    0.10724   1.294 0.195920    
## Dem_1:avg_AFexp    0.13877    0.09971   1.392 0.164115    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.514 on 3002 degrees of freedom
##   (408 observations deleted due to missingness)
## Multiple R-squared:  0.9907, Adjusted R-squared:  0.9906 
## F-statistic: 5.307e+04 on 6 and 3002 DF,  p-value: < 2.2e-16

II. WAVE 1

1. vaxxAttitudes ~ (AFFECT + ANALYTIC) * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * (index_AFexp + index_ANexp) + sum.media.exp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * (index_AFexp + index_ANexp) + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7814 -1.5854  0.2658  1.7978  3.8167 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.017886   0.065554  -0.273 0.784993    
## DvR              -1.395220   0.146930  -9.496  < 2e-16 ***
## IvDR              0.589510   0.149672   3.939 8.38e-05 ***
## index_AFexp       0.400071   0.131402   3.045 0.002350 ** 
## index_ANexp       0.003505   0.011179   0.314 0.753868    
## sum.media.exp    -0.116321   0.095976  -1.212 0.225615    
## DvR:index_AFexp   0.782035   0.199563   3.919 9.10e-05 ***
## DvR:index_ANexp  -0.031875   0.009577  -3.328 0.000884 ***
## IvDR:index_AFexp -0.249645   0.244603  -1.021 0.307521    
## IvDR:index_ANexp  0.012590   0.011872   1.060 0.289009    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.058 on 3032 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.09379,    Adjusted R-squared:  0.0911 
## F-statistic: 34.87 on 9 and 3032 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * (index_AFexp + index_ANexp), data = d1)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(vaxxAttitudes ~ party_factor * (index_AFexp + index_ANexp), data = d1)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * (index_AFexp + index_ANexp) + sum.media.exp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * (index_AFexp + 
##     index_ANexp) + sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7814 -1.5854  0.2658  1.7978  3.8167 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.874263   0.109222   8.004 1.69e-15 ***
## Rep_1             -1.395220   0.146930  -9.496  < 2e-16 ***
## Ind_1             -1.287121   0.169887  -7.576 4.69e-14 ***
## index_AFexp       -0.073329   0.147142  -0.498 0.618268    
## index_ANexp        0.023597   0.011660   2.024 0.043083 *  
## sum.media.exp     -0.116321   0.095976  -1.212 0.225615    
## Rep_1:index_AFexp  0.782035   0.199563   3.919 9.10e-05 ***
## Rep_1:index_ANexp -0.031875   0.009577  -3.328 0.000884 ***
## Ind_1:index_AFexp  0.640662   0.253752   2.525 0.011629 *  
## Ind_1:index_ANexp -0.028527   0.012292  -2.321 0.020360 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.058 on 3032 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.09379,    Adjusted R-squared:  0.0911 
## F-statistic: 34.87 on 9 and 3032 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * (index_AFexp + index_ANexp) + sum.media.exp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * (index_AFexp + 
##     index_ANexp) + sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7814 -1.5854  0.2658  1.7978  3.8167 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.520958   0.098994  -5.263 1.52e-07 ***
## Dem_1              1.395220   0.146930   9.496  < 2e-16 ***
## Ind_1              0.108100   0.163511   0.661 0.508589    
## index_AFexp        0.708705   0.181177   3.912 9.37e-05 ***
## index_ANexp       -0.008277   0.012615  -0.656 0.511763    
## sum.media.exp     -0.116321   0.095976  -1.212 0.225615    
## Dem_1:index_AFexp -0.782035   0.199563  -3.919 9.10e-05 ***
## Dem_1:index_ANexp  0.031875   0.009577   3.328 0.000884 ***
## Ind_1:index_AFexp -0.141373   0.274197  -0.516 0.606180    
## Ind_1:index_ANexp  0.003347   0.013291   0.252 0.801176    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.058 on 3032 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.09379,    Adjusted R-squared:  0.0911 
## F-statistic: 34.87 on 9 and 3032 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * (index_AFexp + index_ANexp) + sum.media.exp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * (index_AFexp + 
##     index_ANexp) + sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7814 -1.5854  0.2658  1.7978  3.8167 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.412858   0.130118  -3.173  0.00152 ** 
## Rep_1             -0.108100   0.163511  -0.661  0.50859    
## Dem_1              1.287121   0.169887   7.576 4.69e-14 ***
## index_AFexp        0.567333   0.239422   2.370  0.01787 *  
## index_ANexp       -0.004930   0.014836  -0.332  0.73970    
## sum.media.exp     -0.116321   0.095976  -1.212  0.22561    
## Rep_1:index_AFexp  0.141373   0.274197   0.516  0.60618    
## Rep_1:index_ANexp -0.003347   0.013291  -0.252  0.80118    
## Dem_1:index_AFexp -0.640662   0.253752  -2.525  0.01163 *  
## Dem_1:index_ANexp  0.028527   0.012292   2.321  0.02036 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.058 on 3032 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.09379,    Adjusted R-squared:  0.0911 
## F-statistic: 34.87 on 9 and 3032 DF,  p-value: < 2.2e-16

2. vaxxAttitudes ~ ANALYTIC * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_ANexp + sum.media.exp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_ANexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7145 -1.6353  0.2294  1.8119  3.3982 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.0214020  0.0646780   0.331 0.740743    
## DvR              -1.1985609  0.1354453  -8.849  < 2e-16 ***
## IvDR              0.5444572  0.1434898   3.794 0.000151 ***
## index_ANexp       0.0008956  0.0102429   0.087 0.930333    
## sum.media.exp     0.0313584  0.0691544   0.453 0.650254    
## DvR:index_ANexp   0.0054004  0.0012366   4.367  1.3e-05 ***
## IvDR:index_ANexp  0.0005394  0.0013426   0.402 0.687907    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08719,    Adjusted R-squared:  0.08539 
## F-statistic: 48.32 on 6 and 3035 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_ANexp, data = d1)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_ANexp + sum.media.exp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_ANexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7145 -1.6353  0.2294  1.8119  3.3982 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.800353   0.104572   7.654 2.61e-14 ***
## Rep_1             -1.198561   0.135445  -8.849  < 2e-16 ***
## Ind_1             -1.143738   0.162294  -7.047 2.25e-12 ***
## index_ANexp       -0.001627   0.010218  -0.159    0.874    
## sum.media.exp      0.031358   0.069154   0.453    0.650    
## Rep_1:index_ANexp  0.005400   0.001237   4.367 1.30e-05 ***
## Ind_1:index_ANexp  0.002161   0.001428   1.513    0.130    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08719,    Adjusted R-squared:  0.08539 
## F-statistic: 48.32 on 6 and 3035 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_ANexp + sum.media.exp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_ANexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7145 -1.6353  0.2294  1.8119  3.3982 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.398208   0.093225  -4.271  2.0e-05 ***
## Dem_1              1.198561   0.135445   8.849  < 2e-16 ***
## Ind_1              0.054823   0.154958   0.354   0.7235    
## index_ANexp        0.003774   0.010251   0.368   0.7128    
## sum.media.exp      0.031358   0.069154   0.453   0.6503    
## Dem_1:index_ANexp -0.005400   0.001237  -4.367  1.3e-05 ***
## Ind_1:index_ANexp -0.003240   0.001527  -2.122   0.0339 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08719,    Adjusted R-squared:  0.08539 
## F-statistic: 48.32 on 6 and 3035 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_ANexp + sum.media.exp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_ANexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7145 -1.6353  0.2294  1.8119  3.3982 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.3433843  0.1259344  -2.727  0.00643 ** 
## Rep_1             -0.0548233  0.1549581  -0.354  0.72352    
## Dem_1              1.1437376  0.1622940   7.047 2.25e-12 ***
## index_ANexp        0.0005342  0.0103558   0.052  0.95886    
## sum.media.exp      0.0313584  0.0691544   0.453  0.65025    
## Rep_1:index_ANexp  0.0032396  0.0015267   2.122  0.03393 *  
## Dem_1:index_ANexp -0.0021608  0.0014278  -1.513  0.13029    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08719,    Adjusted R-squared:  0.08539 
## F-statistic: 48.32 on 6 and 3035 DF,  p-value: < 2.2e-16

3. vaxxAttitudes ~ AFFECT * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_AFexp + sum.media.exp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6788 -1.6072  0.2408  1.7900  3.4642 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.014933   0.064350  -0.232 0.816509    
## DvR              -1.260312   0.140485  -8.971  < 2e-16 ***
## IvDR              0.548277   0.145924   3.757 0.000175 ***
## index_AFexp       0.236597   0.114366   2.069 0.038651 *  
## sum.media.exp    -0.038836   0.037171  -1.045 0.296195    
## DvR:index_AFexp   0.122999   0.025748   4.777 1.86e-06 ***
## IvDR:index_AFexp  0.009522   0.027589   0.345 0.730012    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.061 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08965,    Adjusted R-squared:  0.08785 
## F-statistic: 49.81 on 6 and 3035 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_AFexp, data = d1)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_AFexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6788 -1.6072  0.2408  1.7900  3.4642 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.79615    0.10712   7.432 1.38e-13 ***
## Rep_1             -1.26031    0.14048  -8.971  < 2e-16 ***
## Ind_1             -1.17843    0.16611  -7.094 1.61e-12 ***
## index_AFexp        0.17824    0.11543   1.544   0.1227    
## sum.media.exp     -0.03884    0.03717  -1.045   0.2962    
## Rep_1:index_AFexp  0.12300    0.02575   4.777 1.86e-06 ***
## Ind_1:index_AFexp  0.05198    0.02942   1.766   0.0774 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.061 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08965,    Adjusted R-squared:  0.08785 
## F-statistic: 49.81 on 6 and 3035 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_AFexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6788 -1.6072  0.2408  1.7900  3.4642 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.46416    0.09284  -5.000 6.07e-07 ***
## Dem_1              1.26031    0.14048   8.971  < 2e-16 ***
## Ind_1              0.08188    0.15768   0.519  0.60361    
## index_AFexp        0.30124    0.11533   2.612  0.00904 ** 
## sum.media.exp     -0.03884    0.03717  -1.045  0.29619    
## Dem_1:index_AFexp -0.12300    0.02575  -4.777 1.86e-06 ***
## Ind_1:index_AFexp -0.07102    0.03143  -2.260  0.02392 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.061 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08965,    Adjusted R-squared:  0.08785 
## F-statistic: 49.81 on 6 and 3035 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_AFexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6788 -1.6072  0.2408  1.7900  3.4642 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.38228    0.12820  -2.982  0.00289 ** 
## Rep_1             -0.08188    0.15768  -0.519  0.60361    
## Dem_1              1.17843    0.16611   7.094 1.61e-12 ***
## index_AFexp        0.23022    0.11599   1.985  0.04725 *  
## sum.media.exp     -0.03884    0.03717  -1.045  0.29619    
## Rep_1:index_AFexp  0.07102    0.03143   2.260  0.02392 *  
## Dem_1:index_AFexp -0.05198    0.02942  -1.766  0.07742 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.061 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08965,    Adjusted R-squared:  0.08785 
## F-statistic: 49.81 on 6 and 3035 DF,  p-value: < 2.2e-16

4. ANALYTIC ~ AFFECT * party

a. contrast model

model1.cc <- lm(index_ANexp ~ (DvR + IvDR) * index_AFexp + sum.media.exp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = index_ANexp ~ (DvR + IvDR) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.526  -1.874   0.297   1.799  99.938 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -1.1408600  0.1063953 -10.723  < 2e-16 ***
## DvR              -0.9263582  0.2322042  -3.989 6.78e-05 ***
## IvDR             -1.2068607  0.2413420  -5.001 6.04e-07 ***
## index_AFexp      -4.1379970  0.1890828 -21.885  < 2e-16 ***
## sum.media.exp     8.0838849  0.0614576 131.536  < 2e-16 ***
## DvR:index_AFexp   0.0004984  0.0425651   0.012  0.99066    
## IvDR:index_AFexp  0.1308585  0.0456307   2.868  0.00416 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.41 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9978, Adjusted R-squared:  0.9978 
## F-statistic: 2.256e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

plot

m1 <- lm(index_ANexp ~ party_factor * index_AFexp, data = d1)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("media analytic thinking ") + 
  xlim(0, 15) +
  theme_minimal()+ 
  labs(color ='partisan identity') 
## Warning: Removed 3 row(s) containing missing values (geom_path).

b. simple effects Dem

model1.dem <-  lm(index_ANexp ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = index_ANexp ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.526  -1.874   0.297   1.799  99.938 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -1.0759449  0.1772003  -6.072 1.42e-09 ***
## Rep_1             -0.9263582  0.2322042  -3.989 6.78e-05 ***
## Ind_1              0.7436816  0.2747792   2.706  0.00684 ** 
## index_AFexp       -4.0950629  0.1908416 -21.458  < 2e-16 ***
## sum.media.exp      8.0838849  0.0614576 131.536  < 2e-16 ***
## Rep_1:index_AFexp  0.0004984  0.0425651   0.012  0.99066    
## Ind_1:index_AFexp -0.1306093  0.0486721  -2.683  0.00733 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.41 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9978, Adjusted R-squared:  0.9978 
## F-statistic: 2.256e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(index_ANexp ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = index_ANexp ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.526  -1.874   0.297   1.799  99.938 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -2.0023031  0.1532743 -13.064  < 2e-16 ***
## Dem_1              0.9263582  0.2322042   3.989 6.78e-05 ***
## Ind_1              1.6700398  0.2606678   6.407 1.72e-10 ***
## index_AFexp       -4.0945644  0.1906671 -21.475  < 2e-16 ***
## sum.media.exp      8.0838849  0.0614576 131.536  < 2e-16 ***
## Dem_1:index_AFexp -0.0004984  0.0425651  -0.012   0.9907    
## Ind_1:index_AFexp -0.1311077  0.0519734  -2.523   0.0117 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.41 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9978, Adjusted R-squared:  0.9978 
## F-statistic: 2.256e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(index_ANexp ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = index_ANexp ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.526  -1.874   0.297   1.799  99.938 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.33226    0.21206  -1.567  0.11726    
## Rep_1             -1.67004    0.26067  -6.407 1.72e-10 ***
## Dem_1             -0.74368    0.27478  -2.706  0.00684 ** 
## index_AFexp       -4.22567    0.19178 -22.034  < 2e-16 ***
## sum.media.exp      8.08388    0.06146 131.536  < 2e-16 ***
## Rep_1:index_AFexp  0.13111    0.05197   2.523  0.01170 *  
## Dem_1:index_AFexp  0.13061    0.04867   2.683  0.00733 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.41 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9978, Adjusted R-squared:  0.9978 
## F-statistic: 2.256e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

III. WAVE 2

1. vaxxAttitudes ~ (AFFECT + ANALYTIC) * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * (index_AFexp + index_ANexp) + sum.media.exp, data = d2)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * (index_AFexp + index_ANexp) + 
##     sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5047 -1.5467  0.1081  1.6937  3.5544 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.171731   0.072521  -2.368  0.01796 *  
## DvR              -0.657304   0.156453  -4.201 2.75e-05 ***
## IvDR              0.484129   0.169175   2.862  0.00425 ** 
## index_AFexp       0.173546   0.158001   1.098  0.27215    
## index_ANexp       0.005042   0.011172   0.451  0.65179    
## sum.media.exp    -0.052964   0.086093  -0.615  0.53848    
## DvR:index_AFexp   0.792943   0.249857   3.174  0.00152 ** 
## DvR:index_ANexp  -0.035920   0.011865  -3.027  0.00249 ** 
## IvDR:index_AFexp  0.084393   0.348676   0.242  0.80877    
## IvDR:index_ANexp -0.005050   0.016735  -0.302  0.76286    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.057 on 2396 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05416,    Adjusted R-squared:  0.05061 
## F-statistic: 15.25 on 9 and 2396 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * (index_AFexp + index_ANexp), data = d2)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(vaxxAttitudes ~ party_factor * (index_AFexp + index_ANexp), data = d2)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * (index_AFexp + index_ANexp) + sum.media.exp, data = d2)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * (index_AFexp + 
##     index_ANexp) + sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5047 -1.5467  0.1081  1.6937  3.5544 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.31668    0.11937   2.653  0.00803 ** 
## Rep_1             -0.65730    0.15645  -4.201 2.75e-05 ***
## Ind_1             -0.81278    0.19143  -4.246 2.26e-05 ***
## index_AFexp       -0.19508    0.18116  -1.077  0.28166    
## index_ANexp        0.02134    0.01122   1.902  0.05731 .  
## sum.media.exp     -0.05296    0.08609  -0.615  0.53848    
## Rep_1:index_AFexp  0.79294    0.24986   3.174  0.00152 ** 
## Rep_1:index_ANexp -0.03592    0.01187  -3.027  0.00249 ** 
## Ind_1:index_AFexp  0.31208    0.36116   0.864  0.38763    
## Ind_1:index_ANexp -0.01291    0.01731  -0.746  0.45589    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.057 on 2396 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05416,    Adjusted R-squared:  0.05061 
## F-statistic: 15.25 on 9 and 2396 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * (index_AFexp + index_ANexp) + sum.media.exp, data = d2)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * (index_AFexp + 
##     index_ANexp) + sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5047 -1.5467  0.1081  1.6937  3.5544 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.34062    0.10239  -3.327 0.000892 ***
## Dem_1              0.65730    0.15645   4.201 2.75e-05 ***
## Ind_1             -0.15548    0.18120  -0.858 0.390968    
## index_AFexp        0.59787    0.20627   2.898 0.003785 ** 
## index_ANexp       -0.01458    0.01331  -1.096 0.273167    
## sum.media.exp     -0.05296    0.08609  -0.615 0.538480    
## Dem_1:index_AFexp -0.79294    0.24986  -3.174 0.001525 ** 
## Dem_1:index_ANexp  0.03592    0.01187   3.027 0.002493 ** 
## Ind_1:index_AFexp -0.48086    0.37937  -1.268 0.205092    
## Ind_1:index_ANexp  0.02301    0.01819   1.265 0.205976    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.057 on 2396 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05416,    Adjusted R-squared:  0.05061 
## F-statistic: 15.25 on 9 and 2396 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * (index_AFexp + index_ANexp) + sum.media.exp, data = d2)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * (index_AFexp + 
##     index_ANexp) + sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5047 -1.5467  0.1081  1.6937  3.5544 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.496097   0.149761  -3.313 0.000938 ***
## Rep_1              0.155477   0.181205   0.858 0.390968    
## Dem_1              0.812781   0.191427   4.246 2.26e-05 ***
## index_AFexp        0.117002   0.335087   0.349 0.726993    
## index_ANexp        0.008426   0.018162   0.464 0.642736    
## sum.media.exp     -0.052964   0.086093  -0.615 0.538480    
## Rep_1:index_AFexp  0.480865   0.379374   1.268 0.205092    
## Rep_1:index_ANexp -0.023010   0.018189  -1.265 0.205976    
## Dem_1:index_AFexp -0.312078   0.361165  -0.864 0.387626    
## Dem_1:index_ANexp  0.012910   0.017311   0.746 0.455886    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.057 on 2396 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05416,    Adjusted R-squared:  0.05061 
## F-statistic: 15.25 on 9 and 2396 DF,  p-value: < 2.2e-16

2. vaxxAttitudes ~ ANALYTIC * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_ANexp + sum.media.exp, data = d2)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_ANexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6103 -1.5707  0.1347  1.7494  3.4840 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.151720   0.070910  -2.140 0.032486 *  
## DvR              -0.477310   0.144442  -3.305 0.000965 ***
## IvDR              0.495896   0.161408   3.072 0.002148 ** 
## index_ANexp       0.009690   0.010405   0.931 0.351800    
## sum.media.exp    -0.028923   0.069352  -0.417 0.676676    
## DvR:index_ANexp   0.001514   0.001423   1.064 0.287509    
## IvDR:index_ANexp -0.001062   0.001715  -0.619 0.535922    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2399 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.0498, Adjusted R-squared:  0.04742 
## F-statistic: 20.95 on 6 and 2399 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_ANexp, data = d2)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_ANexp + sum.media.exp, data = d2)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_ANexp + 
##     sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6103 -1.5707  0.1347  1.7494  3.4840 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.250581   0.113972   2.199 0.028001 *  
## Rep_1             -0.477310   0.144442  -3.305 0.000965 ***
## Ind_1             -0.734551   0.181933  -4.037 5.57e-05 ***
## index_ANexp        0.008583   0.010394   0.826 0.409019    
## sum.media.exp     -0.028923   0.069352  -0.417 0.676676    
## Rep_1:index_ANexp  0.001514   0.001423   1.064 0.287509    
## Ind_1:index_ANexp  0.001819   0.001798   1.012 0.311793    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2399 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.0498, Adjusted R-squared:  0.04742 
## F-statistic: 20.95 on 6 and 2399 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_ANexp + sum.media.exp, data = d2)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_ANexp + 
##     sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6103 -1.5707  0.1347  1.7494  3.4840 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.2267295  0.0962763  -2.355 0.018603 *  
## Dem_1              0.4773101  0.1444423   3.305 0.000965 ***
## Ind_1             -0.2572408  0.1715729  -1.499 0.133925    
## index_ANexp        0.0100965  0.0104058   0.970 0.332006    
## sum.media.exp     -0.0289234  0.0693517  -0.417 0.676676    
## Dem_1:index_ANexp -0.0015135  0.0014227  -1.064 0.287509    
## Ind_1:index_ANexp  0.0003051  0.0019144   0.159 0.873374    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2399 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.0498, Adjusted R-squared:  0.04742 
## F-statistic: 20.95 on 6 and 2399 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_ANexp + sum.media.exp, data = d2)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_ANexp + 
##     sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6103 -1.5707  0.1347  1.7494  3.4840 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.4839703  0.1438261  -3.365 0.000778 ***
## Rep_1              0.2572408  0.1715729   1.499 0.133925    
## Dem_1              0.7345509  0.1819332   4.037 5.57e-05 ***
## index_ANexp        0.0104017  0.0105589   0.985 0.324669    
## sum.media.exp     -0.0289234  0.0693517  -0.417 0.676676    
## Rep_1:index_ANexp -0.0003051  0.0019144  -0.159 0.873374    
## Dem_1:index_ANexp -0.0018187  0.0017977  -1.012 0.311793    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2399 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.0498, Adjusted R-squared:  0.04742 
## F-statistic: 20.95 on 6 and 2399 DF,  p-value: < 2.2e-16

3. vaxxAttitudes ~ AFFECT * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_AFexp + sum.media.exp, data = d2)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_AFexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6556 -1.5841  0.1218  1.7638  3.5047 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.181704   0.070384  -2.582 0.009893 ** 
## DvR              -0.517549   0.149558  -3.461 0.000549 ***
## IvDR              0.482096   0.164126   2.937 0.003342 ** 
## index_AFexp       0.132683   0.140331   0.946 0.344497    
## sum.media.exp    -0.006192   0.044558  -0.139 0.889491    
## DvR:index_AFexp   0.042568   0.029966   1.421 0.155581    
## IvDR:index_AFexp -0.018689   0.035703  -0.523 0.600698    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2399 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05018,    Adjusted R-squared:  0.0478 
## F-statistic: 21.12 on 6 and 2399 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_AFexp, data = d2)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, data = d2)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_AFexp + 
##     sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6556 -1.5841  0.1218  1.7638  3.5047 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.236162   0.115604   2.043 0.041176 *  
## Rep_1             -0.517549   0.149558  -3.461 0.000549 ***
## Ind_1             -0.740870   0.185755  -3.988 6.85e-05 ***
## index_AFexp        0.105232   0.141535   0.744 0.457251    
## sum.media.exp     -0.006192   0.044558  -0.139 0.889491    
## Rep_1:index_AFexp  0.042568   0.029966   1.421 0.155581    
## Ind_1:index_AFexp  0.039973   0.037507   1.066 0.286639    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2399 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05018,    Adjusted R-squared:  0.0478 
## F-statistic: 21.12 on 6 and 2399 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, data = d2)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_AFexp + 
##     sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6556 -1.5841  0.1218  1.7638  3.5047 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.281387   0.096298  -2.922 0.003510 ** 
## Dem_1              0.517549   0.149558   3.461 0.000549 ***
## Ind_1             -0.223321   0.174797  -1.278 0.201512    
## index_AFexp        0.147800   0.141035   1.048 0.294761    
## sum.media.exp     -0.006192   0.044558  -0.139 0.889491    
## Dem_1:index_AFexp -0.042568   0.029966  -1.421 0.155581    
## Ind_1:index_AFexp -0.002595   0.039895  -0.065 0.948146    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2399 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05018,    Adjusted R-squared:  0.0478 
## F-statistic: 21.12 on 6 and 2399 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, data = d2)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_AFexp + 
##     sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6556 -1.5841  0.1218  1.7638  3.5047 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.504708   0.146399  -3.447 0.000576 ***
## Rep_1              0.223321   0.174797   1.278 0.201512    
## Dem_1              0.740870   0.185755   3.988 6.85e-05 ***
## index_AFexp        0.145205   0.143026   1.015 0.310098    
## sum.media.exp     -0.006192   0.044558  -0.139 0.889491    
## Rep_1:index_AFexp  0.002595   0.039895   0.065 0.948146    
## Dem_1:index_AFexp -0.039973   0.037507  -1.066 0.286639    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2399 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05018,    Adjusted R-squared:  0.0478 
## F-statistic: 21.12 on 6 and 2399 DF,  p-value: < 2.2e-16

4. ANALYTIC ~ AFFECT * party

a. contrast model

model1.cc <- lm(index_ANexp ~ (DvR + IvDR) * index_AFexp + sum.media.exp, data = d2)
summary(model1.cc)
## 
## Call:
## lm(formula = index_ANexp ~ (DvR + IvDR) * index_AFexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.842  -2.197   0.514   2.101 114.644 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -1.63006    0.13776 -11.833  < 2e-16 ***
## DvR              -0.11590    0.29266  -0.396   0.6921    
## IvDR             -1.36072    0.32139  -4.234 2.38e-05 ***
## index_AFexp      -1.21173    0.27428  -4.418 1.04e-05 ***
## sum.media.exp     7.04138    0.08709  80.849  < 2e-16 ***
## DvR:index_AFexp   0.05721    0.05867   0.975   0.3296    
## IvDR:index_AFexp  0.15009    0.06992   2.147   0.0319 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.035 on 2401 degrees of freedom
##   (55 observations deleted due to missingness)
## Multiple R-squared:  0.9967, Adjusted R-squared:  0.9966 
## F-statistic: 1.191e+05 on 6 and 2401 DF,  p-value: < 2.2e-16

plot

m1 <- lm(index_ANexp ~ party_factor * index_AFexp, data = d2)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("media analytic thinking") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(index_ANexp ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, data = d2)
summary(model1.dem)
## 
## Call:
## lm(formula = index_ANexp ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.842  -2.197   0.514   2.101 114.644 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -2.02114    0.22615  -8.937  < 2e-16 ***
## Rep_1             -0.11590    0.29266  -0.396 0.692111    
## Ind_1              1.30277    0.36367   3.582 0.000347 ***
## index_AFexp       -1.19080    0.27659  -4.305 1.73e-05 ***
## sum.media.exp      7.04138    0.08709  80.849  < 2e-16 ***
## Rep_1:index_AFexp  0.05721    0.05867   0.975 0.329578    
## Ind_1:index_AFexp -0.12148    0.07345  -1.654 0.098262 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.035 on 2401 degrees of freedom
##   (55 observations deleted due to missingness)
## Multiple R-squared:  0.9967, Adjusted R-squared:  0.9966 
## F-statistic: 1.191e+05 on 6 and 2401 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(index_ANexp ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, data = d2)
summary(model1.rep)
## 
## Call:
## lm(formula = index_ANexp ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.842  -2.197   0.514   2.101 114.644 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -2.13705    0.18846 -11.339  < 2e-16 ***
## Dem_1              0.11590    0.29266   0.396   0.6921    
## Ind_1              1.41867    0.34227   4.145 3.52e-05 ***
## index_AFexp       -1.13359    0.27568  -4.112 4.06e-05 ***
## sum.media.exp      7.04138    0.08709  80.849  < 2e-16 ***
## Dem_1:index_AFexp -0.05721    0.05867  -0.975   0.3296    
## Ind_1:index_AFexp -0.17869    0.07813  -2.287   0.0223 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.035 on 2401 degrees of freedom
##   (55 observations deleted due to missingness)
## Multiple R-squared:  0.9967, Adjusted R-squared:  0.9966 
## F-statistic: 1.191e+05 on 6 and 2401 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(index_ANexp ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, data = d2)
summary(model1.ind)
## 
## Call:
## lm(formula = index_ANexp ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.842  -2.197   0.514   2.101 114.644 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.71838    0.28672  -2.505 0.012294 *  
## Rep_1             -1.41867    0.34227  -4.145 3.52e-05 ***
## Dem_1             -1.30277    0.36367  -3.582 0.000347 ***
## index_AFexp       -1.31229    0.27959  -4.694 2.83e-06 ***
## sum.media.exp      7.04138    0.08709  80.849  < 2e-16 ***
## Rep_1:index_AFexp  0.17869    0.07813   2.287 0.022272 *  
## Dem_1:index_AFexp  0.12148    0.07345   1.654 0.098262 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.035 on 2401 degrees of freedom
##   (55 observations deleted due to missingness)
## Multiple R-squared:  0.9967, Adjusted R-squared:  0.9966 
## F-statistic: 1.191e+05 on 6 and 2401 DF,  p-value: < 2.2e-16

5. vote legitimacy ~ ANALYTIC * party

a. contrast model

model1.cc <- lm(voteLegit ~ (DvR + IvDR) * index_ANexp + sum.media.exp, data = d2)
summary(model1.cc)
## 
## Call:
## lm(formula = voteLegit ~ (DvR + IvDR) * index_ANexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2821 -0.7710  0.1512  0.8232  2.3654 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.083889   0.053612  57.522  < 2e-16 ***
## DvR              -1.331036   0.109212 -12.188  < 2e-16 ***
## IvDR              0.655348   0.123784   5.294 1.42e-07 ***
## index_ANexp       0.001512   0.006992   0.216   0.8288    
## sum.media.exp     0.013901   0.046579   0.298   0.7654    
## DvR:index_ANexp   0.002251   0.001054   2.136   0.0329 *  
## IvDR:index_ANexp -0.001499   0.001232  -1.217   0.2238    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 1201 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2657, Adjusted R-squared:  0.262 
## F-statistic: 72.42 on 6 and 1201 DF,  p-value: < 2.2e-16

plot

m1 <- lm(voteLegit ~ party_factor * index_ANexp + sum.media.exp, data = d2)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking") + 
  ylab("vote leigitimacy") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(voteLegit ~ (Rep_1 + Ind_1) * index_ANexp + sum.media.exp, data = d2)
summary(model1.dem)
## 
## Call:
## lm(formula = voteLegit ~ (Rep_1 + Ind_1) * index_ANexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2821 -0.7710  0.1512  0.8232  2.3654 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        3.9656722  0.0852520  46.517   <2e-16 ***
## Rep_1             -1.3310365  0.1092120 -12.188   <2e-16 ***
## Ind_1             -1.3208660  0.1389551  -9.506   <2e-16 ***
## index_ANexp       -0.0001078  0.0070056  -0.015   0.9877    
## sum.media.exp      0.0139005  0.0465793   0.298   0.7654    
## Rep_1:index_ANexp  0.0022507  0.0010536   2.136   0.0329 *  
## Ind_1:index_ANexp  0.0026247  0.0013092   2.005   0.0452 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 1201 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2657, Adjusted R-squared:  0.262 
## F-statistic: 72.42 on 6 and 1201 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(voteLegit ~ (Dem_1 + Ind_1) * index_ANexp + sum.media.exp, data = d2)
summary(model1.rep)
## 
## Call:
## lm(formula = voteLegit ~ (Dem_1 + Ind_1) * index_ANexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2821 -0.7710  0.1512  0.8232  2.3654 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2.634636   0.072439  36.370   <2e-16 ***
## Dem_1              1.331036   0.109212  12.188   <2e-16 ***
## Ind_1              0.010171   0.131529   0.077   0.9384    
## index_ANexp        0.002143   0.007005   0.306   0.7597    
## sum.media.exp      0.013900   0.046579   0.298   0.7654    
## Dem_1:index_ANexp -0.002251   0.001054  -2.136   0.0329 *  
## Ind_1:index_ANexp  0.000374   0.001370   0.273   0.7849    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 1201 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2657, Adjusted R-squared:  0.262 
## F-statistic: 72.42 on 6 and 1201 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(voteLegit ~ (Rep_1 + Dem_1) * index_ANexp + sum.media.exp, data = d2)
summary(model1.ind)
## 
## Call:
## lm(formula = voteLegit ~ (Rep_1 + Dem_1) * index_ANexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2821 -0.7710  0.1512  0.8232  2.3654 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2.644806   0.111018  23.823   <2e-16 ***
## Rep_1             -0.010171   0.131529  -0.077   0.9384    
## Dem_1              1.320866   0.138955   9.506   <2e-16 ***
## index_ANexp        0.002517   0.007077   0.356   0.7222    
## sum.media.exp      0.013900   0.046579   0.298   0.7654    
## Rep_1:index_ANexp -0.000374   0.001370  -0.273   0.7849    
## Dem_1:index_ANexp -0.002625   0.001309  -2.005   0.0452 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 1201 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2657, Adjusted R-squared:  0.262 
## F-statistic: 72.42 on 6 and 1201 DF,  p-value: < 2.2e-16

6. voteLegit ~ ANALYTIC * party * election timing + sum.media.exp

a. contrast model

model1.cc <- lm(voteLegit ~ (DvR + IvDR) * index_ANexp * tDur_Post + sum.media.exp, data = d2)
summary(model1.cc)
## 
## Call:
## lm(formula = voteLegit ~ (DvR + IvDR) * index_ANexp * tDur_Post + 
##     sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3579 -0.8196  0.1284  0.7145  2.5680 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 3.080e+00  5.338e-02  57.702  < 2e-16 ***
## DvR                        -1.304e+00  1.086e-01 -12.017  < 2e-16 ***
## IvDR                        6.417e-01  1.236e-01   5.194 2.42e-07 ***
## index_ANexp                 3.689e-03  6.940e-03   0.532  0.59517    
## tDur_Post                   8.941e-03  1.031e-01   0.087  0.93089    
## sum.media.exp              -4.282e-05  4.621e-02  -0.001  0.99926    
## DvR:index_ANexp             2.355e-03  1.054e-03   2.235  0.02560 *  
## IvDR:index_ANexp           -1.466e-03  1.226e-03  -1.196  0.23189    
## DvR:tDur_Post              -9.745e-01  2.173e-01  -4.485 8.00e-06 ***
## IvDR:tDur_Post              1.899e-01  2.466e-01   0.770  0.44153    
## index_ANexp:tDur_Post       1.919e-03  1.017e-03   1.887  0.05934 .  
## DvR:index_ANexp:tDur_Post   5.472e-03  2.112e-03   2.592  0.00967 ** 
## IvDR:index_ANexp:tDur_Post -1.187e-03  2.452e-03  -0.484  0.62841    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.103 on 1195 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2859, Adjusted R-squared:  0.2787 
## F-statistic: 39.86 on 12 and 1195 DF,  p-value: < 2.2e-16

plot

m1 <- lm(voteLegit ~ party_factor * index_ANexp * election_timing + sum.media.exp, data = d2)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking") + 
  ylab("vote leigitimacy") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(voteLegit ~ party_factor * index_ANexp * election_timing + sum.media.exp, data = d2)

plot_model(m1, type = "pred", terms = c("index_ANexp", "election_timing"), 
           color = c("green", "orange")) + 
  ggtitle("") + 
  xlab("media analytic thinking") + 
  ylab("vote leigitimacy") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='election timing') 

m1 <- lm(voteLegit ~ party_factor * index_ANexp * election_timing + sum.media.exp, data = d2)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor", "election_timing"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking") + 
  ylab("vote leigitimacy") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(voteLegit ~ (Rep_1 + Ind_1) * index_ANexp * tDur_Post + sum.media.exp, data = d2)
summary(model1.dem)
## 
## Call:
## lm(formula = voteLegit ~ (Rep_1 + Ind_1) * index_ANexp * tDur_Post + 
##     sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3579 -0.8196  0.1284  0.7145  2.5680 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  3.944e+00  8.490e-02  46.458  < 2e-16 ***
## Rep_1                       -1.304e+00  1.086e-01 -12.017  < 2e-16 ***
## Ind_1                       -1.294e+00  1.387e-01  -9.327  < 2e-16 ***
## index_ANexp                  2.027e-03  6.953e-03   0.292 0.770690    
## tDur_Post                    5.589e-01  1.665e-01   3.356 0.000815 ***
## sum.media.exp               -4.282e-05  4.621e-02  -0.001 0.999261    
## Rep_1:index_ANexp            2.355e-03  1.054e-03   2.235 0.025596 *  
## Ind_1:index_ANexp            2.644e-03  1.304e-03   2.028 0.042802 *  
## Rep_1:tDur_Post             -9.745e-01  2.173e-01  -4.485    8e-06 ***
## Ind_1:tDur_Post             -6.771e-01  2.771e-01  -2.443 0.014693 *  
## index_ANexp:tDur_Post       -1.209e-03  1.379e-03  -0.876 0.380989    
## Rep_1:index_ANexp:tDur_Post  5.472e-03  2.112e-03   2.592 0.009671 ** 
## Ind_1:index_ANexp:tDur_Post  3.923e-03  2.611e-03   1.503 0.133172    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.103 on 1195 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2859, Adjusted R-squared:  0.2787 
## F-statistic: 39.86 on 12 and 1195 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(voteLegit ~ (Dem_1 + Ind_1) * index_ANexp * tDur_Post + sum.media.exp, data = d2)
summary(model1.rep)
## 
## Call:
## lm(formula = voteLegit ~ (Dem_1 + Ind_1) * index_ANexp * tDur_Post + 
##     sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3579 -0.8196  0.1284  0.7145  2.5680 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  2.640e+00  7.166e-02  36.839  < 2e-16 ***
## Dem_1                        1.304e+00  1.086e-01  12.017  < 2e-16 ***
## Ind_1                        1.054e-02  1.311e-01   0.080  0.93593    
## index_ANexp                  4.383e-03  6.957e-03   0.630  0.52884    
## tDur_Post                   -4.157e-01  1.395e-01  -2.980  0.00294 ** 
## sum.media.exp               -4.282e-05  4.621e-02  -0.001  0.99926    
## Dem_1:index_ANexp           -2.355e-03  1.054e-03  -2.235  0.02560 *  
## Ind_1:index_ANexp            2.885e-04  1.364e-03   0.212  0.83252    
## Dem_1:tDur_Post              9.745e-01  2.173e-01   4.485    8e-06 ***
## Ind_1:tDur_Post              2.974e-01  2.616e-01   1.137  0.25587    
## index_ANexp:tDur_Post        4.263e-03  1.597e-03   2.670  0.00768 ** 
## Dem_1:index_ANexp:tDur_Post -5.472e-03  2.112e-03  -2.592  0.00967 ** 
## Ind_1:index_ANexp:tDur_Post -1.549e-03  2.728e-03  -0.568  0.57023    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.103 on 1195 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2859, Adjusted R-squared:  0.2787 
## F-statistic: 39.86 on 12 and 1195 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(voteLegit ~ (Rep_1 + Dem_1) * index_ANexp * tDur_Post + sum.media.exp, data = d2)
summary(model1.ind)
## 
## Call:
## lm(formula = voteLegit ~ (Rep_1 + Dem_1) * index_ANexp * tDur_Post + 
##     sum.media.exp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3579 -0.8196  0.1284  0.7145  2.5680 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  2.650e+00  1.110e-01  23.883   <2e-16 ***
## Rep_1                       -1.054e-02  1.311e-01  -0.080   0.9359    
## Dem_1                        1.294e+00  1.387e-01   9.327   <2e-16 ***
## index_ANexp                  4.671e-03  7.023e-03   0.665   0.5061    
## tDur_Post                   -1.183e-01  2.214e-01  -0.534   0.5933    
## sum.media.exp               -4.282e-05  4.621e-02  -0.001   0.9993    
## Rep_1:index_ANexp           -2.885e-04  1.364e-03  -0.212   0.8325    
## Dem_1:index_ANexp           -2.644e-03  1.304e-03  -2.028   0.0428 *  
## Rep_1:tDur_Post             -2.974e-01  2.616e-01  -1.137   0.2559    
## Dem_1:tDur_Post              6.771e-01  2.771e-01   2.443   0.0147 *  
## index_ANexp:tDur_Post        2.714e-03  2.215e-03   1.225   0.2206    
## Rep_1:index_ANexp:tDur_Post  1.549e-03  2.728e-03   0.568   0.5702    
## Dem_1:index_ANexp:tDur_Post -3.923e-03  2.611e-03  -1.503   0.1332    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.103 on 1195 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2859, Adjusted R-squared:  0.2787 
## F-statistic: 39.86 on 12 and 1195 DF,  p-value: < 2.2e-16

7. voteLegit ~ ANALYTIC * party * election timing

a. contrast model

model1.cc <- lm(voteLegit ~ (DvR + IvDR) * index_ANexp * tDur_Post, data = d2)
summary(model1.cc)
## 
## Call:
## lm(formula = voteLegit ~ (DvR + IvDR) * index_ANexp * tDur_Post, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3579 -0.8196  0.1284  0.7145  2.5680 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 3.0803101  0.0515162  59.793  < 2e-16 ***
## DvR                        -1.3044705  0.1085065 -12.022  < 2e-16 ***
## IvDR                        0.6416896  0.1232093   5.208 2.24e-07 ***
## index_ANexp                 0.0036824  0.0005077   7.253 7.32e-13 ***
## tDur_Post                   0.0089411  0.1030325   0.087  0.93086    
## DvR:index_ANexp             0.0023555  0.0010534   2.236  0.02553 *  
## IvDR:index_ANexp           -0.0014662  0.0012252  -1.197  0.23164    
## DvR:tDur_Post              -0.9745097  0.2170131  -4.491 7.79e-06 ***
## IvDR:tDur_Post              0.1898532  0.2464186   0.770  0.44119    
## index_ANexp:tDur_Post       0.0019191  0.0010155   1.890  0.05902 .  
## DvR:index_ANexp:tDur_Post   0.0054721  0.0021068   2.597  0.00951 ** 
## IvDR:index_ANexp:tDur_Post -0.0011871  0.0024504  -0.484  0.62816    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.103 on 1196 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2859, Adjusted R-squared:  0.2793 
## F-statistic: 43.52 on 11 and 1196 DF,  p-value: < 2.2e-16

plot

m1 <- lm(voteLegit ~ party_factor * index_ANexp * election_timing, data = d2)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking") + 
  ylab("vote leigitimacy") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(voteLegit ~ party_factor * index_ANexp * election_timing, data = d2)

plot_model(m1, type = "pred", terms = c("index_ANexp", "election_timing"), 
           color = c("green", "orange")) + 
  ggtitle("") + 
  xlab("media analytic thinking") + 
  ylab("vote leigitimacy") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='election timing') 

m1 <- lm(voteLegit ~ party_factor * index_ANexp * election_timing, data = d2)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor", "election_timing"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking") + 
  ylab("vote leigitimacy") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(voteLegit ~ (Rep_1 + Ind_1) * index_ANexp * tDur_Post, data = d2)
summary(model1.dem)
## 
## Call:
## lm(formula = voteLegit ~ (Rep_1 + Ind_1) * index_ANexp * tDur_Post, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3579 -0.8196  0.1284  0.7145  2.5680 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  3.944303   0.083155  47.433  < 2e-16 ***
## Rep_1                       -1.304471   0.108507 -12.022  < 2e-16 ***
## Ind_1                       -1.293925   0.138390  -9.350  < 2e-16 ***
## index_ANexp                  0.002021   0.000689   2.933 0.003422 ** 
## tDur_Post                    0.558848   0.166310   3.360 0.000803 ***
## Rep_1:index_ANexp            0.002355   0.001053   2.236 0.025530 *  
## Ind_1:index_ANexp            0.002644   0.001303   2.029 0.042701 *  
## Rep_1:tDur_Post             -0.974510   0.217013  -4.491 7.79e-06 ***
## Ind_1:tDur_Post             -0.677108   0.276781  -2.446 0.014574 *  
## index_ANexp:tDur_Post       -0.001209   0.001378  -0.877 0.380575    
## Rep_1:index_ANexp:tDur_Post  0.005472   0.002107   2.597 0.009509 ** 
## Ind_1:index_ANexp:tDur_Post  0.003923   0.002606   1.505 0.132548    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.103 on 1196 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2859, Adjusted R-squared:  0.2793 
## F-statistic: 43.52 on 11 and 1196 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(voteLegit ~ (Dem_1 + Ind_1) * index_ANexp * tDur_Post, data = d2)
summary(model1.rep)
## 
## Call:
## lm(formula = voteLegit ~ (Dem_1 + Ind_1) * index_ANexp * tDur_Post, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3579 -0.8196  0.1284  0.7145  2.5680 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  2.6398324  0.0697058  37.871  < 2e-16 ***
## Dem_1                        1.3044705  0.1085065  12.022  < 2e-16 ***
## Ind_1                        0.0105456  0.1307517   0.081  0.93573    
## index_ANexp                  0.0043763  0.0007968   5.492 4.84e-08 ***
## tDur_Post                   -0.4156622  0.1394116  -2.982  0.00293 ** 
## Dem_1:index_ANexp           -0.0023555  0.0010534  -2.236  0.02553 *  
## Ind_1:index_ANexp            0.0002885  0.0013633   0.212  0.83244    
## Dem_1:tDur_Post              0.9745097  0.2170131   4.491 7.79e-06 ***
## Ind_1:tDur_Post              0.2974017  0.2615035   1.137  0.25565    
## index_ANexp:tDur_Post        0.0042634  0.0015936   2.675  0.00757 ** 
## Dem_1:index_ANexp:tDur_Post -0.0054721  0.0021068  -2.597  0.00951 ** 
## Ind_1:index_ANexp:tDur_Post -0.0015490  0.0027266  -0.568  0.57007    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.103 on 1196 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2859, Adjusted R-squared:  0.2793 
## F-statistic: 43.52 on 11 and 1196 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(voteLegit ~ (Rep_1 + Dem_1) * index_ANexp * tDur_Post, data = d2)
summary(model1.ind)
## 
## Call:
## lm(formula = voteLegit ~ (Rep_1 + Dem_1) * index_ANexp * tDur_Post, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3579 -0.8196  0.1284  0.7145  2.5680 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  2.6503780  0.1106215  23.959  < 2e-16 ***
## Rep_1                       -0.0105456  0.1307517  -0.081   0.9357    
## Dem_1                        1.2939249  0.1383904   9.350  < 2e-16 ***
## index_ANexp                  0.0046648  0.0011062   4.217 2.66e-05 ***
## tDur_Post                   -0.1182605  0.2212430  -0.535   0.5931    
## Rep_1:index_ANexp           -0.0002885  0.0013633  -0.212   0.8324    
## Dem_1:index_ANexp           -0.0026440  0.0013032  -2.029   0.0427 *  
## Rep_1:tDur_Post             -0.2974017  0.2615035  -1.137   0.2557    
## Dem_1:tDur_Post              0.6771081  0.2767807   2.446   0.0146 *  
## index_ANexp:tDur_Post        0.0027144  0.0022124   1.227   0.2201    
## Rep_1:index_ANexp:tDur_Post  0.0015490  0.0027266   0.568   0.5701    
## Dem_1:index_ANexp:tDur_Post -0.0039231  0.0026065  -1.505   0.1325    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.103 on 1196 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2859, Adjusted R-squared:  0.2793 
## F-statistic: 43.52 on 11 and 1196 DF,  p-value: < 2.2e-16

8. voteLegit ~ ANALYTIC * party + sum.media.exposure

a. contrast model

model1.cc <- lm(voteLegit ~ (DvR + IvDR) * index_ANexp + sum.media.exp, data = d2)
summary(model1.cc)
## 
## Call:
## lm(formula = voteLegit ~ (DvR + IvDR) * index_ANexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2821 -0.7710  0.1512  0.8232  2.3654 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.083889   0.053612  57.522  < 2e-16 ***
## DvR              -1.331036   0.109212 -12.188  < 2e-16 ***
## IvDR              0.655348   0.123784   5.294 1.42e-07 ***
## index_ANexp       0.001512   0.006992   0.216   0.8288    
## sum.media.exp     0.013901   0.046579   0.298   0.7654    
## DvR:index_ANexp   0.002251   0.001054   2.136   0.0329 *  
## IvDR:index_ANexp -0.001499   0.001232  -1.217   0.2238    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 1201 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2657, Adjusted R-squared:  0.262 
## F-statistic: 72.42 on 6 and 1201 DF,  p-value: < 2.2e-16

plot

m1 <- lm(voteLegit ~ party_factor * index_ANexp + sum.media.exp, data = d2)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking") + 
  ylab("vote leigitimacy") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(voteLegit ~ (Rep_1 + Ind_1) * index_ANexp + sum.media.exp, data = d2)
summary(model1.dem)
## 
## Call:
## lm(formula = voteLegit ~ (Rep_1 + Ind_1) * index_ANexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2821 -0.7710  0.1512  0.8232  2.3654 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        3.9656722  0.0852520  46.517   <2e-16 ***
## Rep_1             -1.3310365  0.1092120 -12.188   <2e-16 ***
## Ind_1             -1.3208660  0.1389551  -9.506   <2e-16 ***
## index_ANexp       -0.0001078  0.0070056  -0.015   0.9877    
## sum.media.exp      0.0139005  0.0465793   0.298   0.7654    
## Rep_1:index_ANexp  0.0022507  0.0010536   2.136   0.0329 *  
## Ind_1:index_ANexp  0.0026247  0.0013092   2.005   0.0452 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 1201 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2657, Adjusted R-squared:  0.262 
## F-statistic: 72.42 on 6 and 1201 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(voteLegit ~ (Dem_1 + Ind_1) * index_ANexp + sum.media.exp, data = d2)
summary(model1.rep)
## 
## Call:
## lm(formula = voteLegit ~ (Dem_1 + Ind_1) * index_ANexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2821 -0.7710  0.1512  0.8232  2.3654 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2.634636   0.072439  36.370   <2e-16 ***
## Dem_1              1.331036   0.109212  12.188   <2e-16 ***
## Ind_1              0.010171   0.131529   0.077   0.9384    
## index_ANexp        0.002143   0.007005   0.306   0.7597    
## sum.media.exp      0.013900   0.046579   0.298   0.7654    
## Dem_1:index_ANexp -0.002251   0.001054  -2.136   0.0329 *  
## Ind_1:index_ANexp  0.000374   0.001370   0.273   0.7849    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 1201 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2657, Adjusted R-squared:  0.262 
## F-statistic: 72.42 on 6 and 1201 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(voteLegit ~ (Rep_1 + Dem_1) * index_ANexp + sum.media.exp, data = d2)
summary(model1.ind)
## 
## Call:
## lm(formula = voteLegit ~ (Rep_1 + Dem_1) * index_ANexp + sum.media.exp, 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2821 -0.7710  0.1512  0.8232  2.3654 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2.644806   0.111018  23.823   <2e-16 ***
## Rep_1             -0.010171   0.131529  -0.077   0.9384    
## Dem_1              1.320866   0.138955   9.506   <2e-16 ***
## index_ANexp        0.002517   0.007077   0.356   0.7222    
## sum.media.exp      0.013900   0.046579   0.298   0.7654    
## Rep_1:index_ANexp -0.000374   0.001370  -0.273   0.7849    
## Dem_1:index_ANexp -0.002625   0.001309  -2.005   0.0452 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 1201 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2657, Adjusted R-squared:  0.262 
## F-statistic: 72.42 on 6 and 1201 DF,  p-value: < 2.2e-16

9. voteLegit ~ ANALYTIC * party

a. contrast model

model1.cc <- lm(voteLegit ~ (DvR + IvDR) * index_ANexp, data = d2)
summary(model1.cc)
## 
## Call:
## lm(formula = voteLegit ~ (DvR + IvDR) * index_ANexp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2860 -0.7731  0.1563  0.8329  2.3604 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.0881180  0.0516863  59.747  < 2e-16 ***
## DvR              -1.3312559  0.1091681 -12.195  < 2e-16 ***
## IvDR              0.6580432  0.1234070   5.332 1.16e-07 ***
## index_ANexp       0.0035934  0.0005093   7.056 2.90e-12 ***
## DvR:index_ANexp   0.0022471  0.0010532   2.134   0.0331 *  
## IvDR:index_ANexp -0.0015063  0.0012313  -1.223   0.2214    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 1202 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2656, Adjusted R-squared:  0.2626 
## F-statistic: 86.95 on 5 and 1202 DF,  p-value: < 2.2e-16

plot

m1 <- lm(voteLegit ~ party_factor * index_ANexp, data = d2)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking") + 
  ylab("vote leigitimacy") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(voteLegit ~ (Rep_1 + Ind_1) * index_ANexp, data = d2)
summary(model1.dem)
## 
## Call:
## lm(formula = voteLegit ~ (Rep_1 + Ind_1) * index_ANexp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2860 -0.7731  0.1563  0.8329  2.3604 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        3.9709002  0.0834009  47.612  < 2e-16 ***
## Rep_1             -1.3312559  0.1091681 -12.195  < 2e-16 ***
## Ind_1             -1.3236712  0.1385842  -9.551  < 2e-16 ***
## index_ANexp        0.0019728  0.0006882   2.867  0.00422 ** 
## Rep_1:index_ANexp  0.0022471  0.0010532   2.134  0.03307 *  
## Ind_1:index_ANexp  0.0026299  0.0013086   2.010  0.04469 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 1202 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2656, Adjusted R-squared:  0.2626 
## F-statistic: 86.95 on 5 and 1202 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(voteLegit ~ (Dem_1 + Ind_1) * index_ANexp, data = d2)
summary(model1.rep)
## 
## Call:
## lm(formula = voteLegit ~ (Dem_1 + Ind_1) * index_ANexp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2860 -0.7731  0.1563  0.8329  2.3604 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2.6396443  0.0704412  37.473  < 2e-16 ***
## Dem_1              1.3312559  0.1091681  12.195  < 2e-16 ***
## Ind_1              0.0075847  0.1311939   0.058   0.9539    
## index_ANexp        0.0042199  0.0007972   5.293 1.43e-07 ***
## Dem_1:index_ANexp -0.0022471  0.0010532  -2.134   0.0331 *  
## Ind_1:index_ANexp  0.0003828  0.0013691   0.280   0.7798    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 1202 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2656, Adjusted R-squared:  0.2626 
## F-statistic: 86.95 on 5 and 1202 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(voteLegit ~ (Rep_1 + Dem_1) * index_ANexp, data = d2)
summary(model1.ind)
## 
## Call:
## lm(formula = voteLegit ~ (Rep_1 + Dem_1) * index_ANexp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2860 -0.7731  0.1563  0.8329  2.3604 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2.6472290  0.1106791  23.918  < 2e-16 ***
## Rep_1             -0.0075847  0.1311939  -0.058   0.9539    
## Dem_1              1.3236712  0.1385842   9.551  < 2e-16 ***
## index_ANexp        0.0046027  0.0011131   4.135 3.79e-05 ***
## Rep_1:index_ANexp -0.0003828  0.0013691  -0.280   0.7798    
## Dem_1:index_ANexp -0.0026299  0.0013086  -2.010   0.0447 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 1202 degrees of freedom
##   (1255 observations deleted due to missingness)
## Multiple R-squared:  0.2656, Adjusted R-squared:  0.2626 
## F-statistic: 86.95 on 5 and 1202 DF,  p-value: < 2.2e-16

IV. LONGITUDINAL MODELS

1. vaxxAttitudes.w2 ~ party * (ANALYTIC.w1 + ANALYTIC.w2) + vaxxAttitudes.w1

a. contrast coded model

model3.cc <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 +  index_ANexp.w2) * (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)

summary(model3.cc)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * 
##     (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0993 -0.8189  0.0449  0.9365  5.4289 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.775e-01  5.269e-02   3.368  0.00077 ***
## index_ANexp.w1      -8.643e-04  6.609e-04  -1.308  0.19111    
## index_ANexp.w2       2.003e-03  6.868e-04   2.917  0.00357 ** 
## DvR                  2.968e-01  1.141e-01   2.602  0.00934 ** 
## IvDR                 2.567e-01  1.228e-01   2.090  0.03671 *  
## vaxxAttitudes.c.w1   7.204e-01  1.489e-02  48.398  < 2e-16 ***
## index_ANexp.w1:DvR  -1.973e-03  1.458e-03  -1.354  0.17598    
## index_ANexp.w1:IvDR -1.061e-03  1.524e-03  -0.696  0.48654    
## index_ANexp.w2:DvR   1.031e-03  1.549e-03   0.666  0.50560    
## index_ANexp.w2:IvDR  6.892e-05  1.565e-03   0.044  0.96489    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5477, Adjusted R-squared:  0.5458 
## F-statistic:   289 on 9 and 2148 DF,  p-value: < 2.2e-16

- plots

m1 <- lm(vaxxAttitudes.w2 ~  (index_ANexp.w1 +  index_ANexp.w2) * party_factor + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_ANexp.w2", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking wave 2") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(vaxxAttitudes.w2 ~  (index_ANexp.w1 +  index_ANexp.w2) * party_factor + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_ANexp.w1", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking wave 1") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects for Dem

model2.dem <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)

summary(model2.dem)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * 
##     (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0993 -0.8189  0.0449  0.9365  5.4289 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.1137476  0.0871526   1.305  0.19198    
## index_ANexp.w1       -0.0002277  0.0008545  -0.266  0.78992    
## index_ANexp.w2        0.0015106  0.0008737   1.729  0.08394 .  
## Ind_1                -0.1082906  0.1403182  -0.772  0.44035    
## Rep_1                 0.2968434  0.1141037   2.602  0.00934 ** 
## vaxxAttitudes.c.w1    0.7204229  0.0148853  48.398  < 2e-16 ***
## index_ANexp.w1:Ind_1  0.0000740  0.0015892   0.047  0.96287    
## index_ANexp.w1:Rep_1 -0.0019734  0.0014578  -1.354  0.17598    
## index_ANexp.w2:Ind_1  0.0004467  0.0016162   0.276  0.78229    
## index_ANexp.w2:Rep_1  0.0010312  0.0015487   0.666  0.50560    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5477, Adjusted R-squared:  0.5458 
## F-statistic:   289 on 9 and 2148 DF,  p-value: < 2.2e-16

c. simple effects for Rep

model2.rep <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)

summary(model2.rep)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * 
##     (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0993 -0.8189  0.0449  0.9365  5.4289 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.4105909  0.0730136   5.623 2.12e-08 ***
## index_ANexp.w1       -0.0022010  0.0011827  -1.861  0.06287 .  
## index_ANexp.w2        0.0025418  0.0012792   1.987  0.04704 *  
## Ind_1                -0.4051340  0.1303350  -3.108  0.00191 ** 
## Dem_1                -0.2968434  0.1141037  -2.602  0.00934 ** 
## vaxxAttitudes.c.w1    0.7204229  0.0148853  48.398  < 2e-16 ***
## index_ANexp.w1:Ind_1  0.0020474  0.0017840   1.148  0.25125    
## index_ANexp.w1:Dem_1  0.0019734  0.0014578   1.354  0.17598    
## index_ANexp.w2:Ind_1 -0.0005845  0.0018677  -0.313  0.75434    
## index_ANexp.w2:Dem_1 -0.0010312  0.0015487  -0.666  0.50560    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5477, Adjusted R-squared:  0.5458 
## F-statistic:   289 on 9 and 2148 DF,  p-value: < 2.2e-16

d. simple effects for Indep

model2.ind <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)

summary(model2.ind)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * 
##     (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0993 -0.8189  0.0449  0.9365  5.4289 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.0054570  0.1095614   0.050  0.96028    
## index_ANexp.w1       -0.0001537  0.0013408  -0.115  0.90876    
## index_ANexp.w2        0.0019573  0.0013612   1.438  0.15059    
## Dem_1                 0.1082906  0.1403182   0.772  0.44035    
## Rep_1                 0.4051340  0.1303350   3.108  0.00191 ** 
## vaxxAttitudes.c.w1    0.7204229  0.0148853  48.398  < 2e-16 ***
## index_ANexp.w1:Dem_1 -0.0000740  0.0015892  -0.047  0.96287    
## index_ANexp.w1:Rep_1 -0.0020474  0.0017840  -1.148  0.25125    
## index_ANexp.w2:Dem_1 -0.0004467  0.0016162  -0.276  0.78229    
## index_ANexp.w2:Rep_1  0.0005845  0.0018677   0.313  0.75434    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5477, Adjusted R-squared:  0.5458 
## F-statistic:   289 on 9 and 2148 DF,  p-value: < 2.2e-16

2. vaxxAttitudes.w2 ~ party * (AFFECT.w1 + AFFECT.w2) + vaxxAttitudes.w1

a. contrast coded model

model3.cc <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 +  index_AFexp.w2) * (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)

summary(model3.cc)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * 
##     (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0617 -0.8126  0.0416  0.9384  5.4207 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.1794202  0.0543672   3.300 0.000982 ***
## index_AFexp.w1      -0.0154658  0.0137346  -1.126 0.260272    
## index_AFexp.w2       0.0384976  0.0144351   2.667 0.007712 ** 
## DvR                  0.2768726  0.1185634   2.335 0.019623 *  
## IvDR                 0.2720531  0.1259446   2.160 0.030875 *  
## vaxxAttitudes.c.w1   0.7204464  0.0149108  48.317  < 2e-16 ***
## index_AFexp.w1:DvR  -0.0383700  0.0304108  -1.262 0.207185    
## index_AFexp.w1:IvDR -0.0222708  0.0315830  -0.705 0.480792    
## index_AFexp.w2:DvR   0.0243595  0.0326008   0.747 0.455020    
## index_AFexp.w2:IvDR -0.0009634  0.0328450  -0.029 0.976602    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5473, Adjusted R-squared:  0.5454 
## F-statistic: 288.5 on 9 and 2148 DF,  p-value: < 2.2e-16

- plots

m1 <- lm(vaxxAttitudes.w2 ~  (index_AFexp.w1 +  index_AFexp.w2) * party_factor + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_AFexp.w2", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect wave 2") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(vaxxAttitudes.w2 ~  (index_AFexp.w1 +  index_AFexp.w2) * party_factor + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_AFexp.w1", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect wave 1") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects for Dem

model2.dem <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)

summary(model2.dem)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * 
##     (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0617 -0.8126  0.0416  0.9384  5.4207 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.130761   0.090357   1.447   0.1480    
## index_AFexp.w1       -0.003630   0.018210  -0.199   0.8420    
## index_AFexp.w2        0.026000   0.018740   1.387   0.1655    
## Ind_1                -0.133617   0.144220  -0.926   0.3543    
## Rep_1                 0.276873   0.118563   2.335   0.0196 *  
## vaxxAttitudes.c.w1    0.720446   0.014911  48.317   <2e-16 ***
## index_AFexp.w1:Ind_1  0.003086   0.033165   0.093   0.9259    
## index_AFexp.w1:Rep_1 -0.038370   0.030411  -1.262   0.2072    
## index_AFexp.w2:Ind_1  0.013143   0.034108   0.385   0.7000    
## index_AFexp.w2:Rep_1  0.024360   0.032601   0.747   0.4550    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5473, Adjusted R-squared:  0.5454 
## F-statistic: 288.5 on 9 and 2148 DF,  p-value: < 2.2e-16

c. simple effects for Rep

model2.rep <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)

summary(model2.rep)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * 
##     (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0617 -0.8126  0.0416  0.9384  5.4207 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.40763    0.07614   5.354 9.53e-08 ***
## index_AFexp.w1       -0.04200    0.02438  -1.722  0.08514 .  
## index_AFexp.w2        0.05036    0.02669   1.887  0.05935 .  
## Ind_1                -0.41049    0.13399  -3.064  0.00221 ** 
## Dem_1                -0.27687    0.11856  -2.335  0.01962 *  
## vaxxAttitudes.c.w1    0.72045    0.01491  48.317  < 2e-16 ***
## index_AFexp.w1:Ind_1  0.04146    0.03684   1.125  0.26064    
## index_AFexp.w1:Dem_1  0.03837    0.03041   1.262  0.20719    
## index_AFexp.w2:Ind_1 -0.01122    0.03906  -0.287  0.77402    
## index_AFexp.w2:Dem_1 -0.02436    0.03260  -0.747  0.45502    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5473, Adjusted R-squared:  0.5454 
## F-statistic: 288.5 on 9 and 2148 DF,  p-value: < 2.2e-16

d. simple effects for Indep

model2.ind <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)

summary(model2.ind)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * 
##     (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0617 -0.8126  0.0416  0.9384  5.4207 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -0.0028554  0.1120111  -0.025  0.97966    
## index_AFexp.w1       -0.0005444  0.0277329  -0.020  0.98434    
## index_AFexp.w2        0.0391431  0.0285284   1.372  0.17018    
## Dem_1                 0.1336168  0.1442204   0.926  0.35430    
## Rep_1                 0.4104894  0.1339896   3.064  0.00221 ** 
## vaxxAttitudes.c.w1    0.7204464  0.0149108  48.317  < 2e-16 ***
## index_AFexp.w1:Dem_1 -0.0030858  0.0331647  -0.093  0.92588    
## index_AFexp.w1:Rep_1 -0.0414558  0.0368440  -1.125  0.26064    
## index_AFexp.w2:Dem_1 -0.0131432  0.0341080  -0.385  0.70002    
## index_AFexp.w2:Rep_1  0.0112163  0.0390594   0.287  0.77402    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5473, Adjusted R-squared:  0.5454 
## F-statistic: 288.5 on 9 and 2148 DF,  p-value: < 2.2e-16

3. vaxxAttitudes.w2 ~ party * (ANALYTIC.w2 + ANALYTIC.w1 + AFFECT.w2 + AFFECT.w1) + vaxxAttitudes.w1

a. contrast coded model

model3.cc <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) * 
                  (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)

summary(model3.cc)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + 
##     index_ANexp.w2 + index_AFexp.w2) * (DvR + IvDR) + vaxxAttitudes.c.w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2807 -0.8117  0.0350  0.9206  5.4001 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.188275   0.056482   3.333 0.000873 ***
## index_ANexp.w1      -0.007988   0.005118  -1.561 0.118770    
## index_AFexp.w1       0.150442   0.106175   1.417 0.156649    
## index_ANexp.w2       0.011498   0.005679   2.025 0.043032 *  
## index_AFexp.w2      -0.201747   0.119350  -1.690 0.091101 .  
## DvR                  0.198983   0.124391   1.600 0.109823    
## IvDR                 0.307677   0.129918   2.368 0.017961 *  
## vaxxAttitudes.c.w1   0.719638   0.014939  48.172  < 2e-16 ***
## index_ANexp.w1:DvR  -0.006047   0.010218  -0.592 0.554002    
## index_ANexp.w1:IvDR  0.004676   0.012619   0.371 0.711015    
## index_AFexp.w1:DvR   0.078136   0.212917   0.367 0.713673    
## index_AFexp.w1:IvDR -0.115727   0.261061  -0.443 0.657597    
## index_ANexp.w2:DvR  -0.012351   0.011664  -1.059 0.289750    
## index_ANexp.w2:IvDR  0.005426   0.013797   0.393 0.694178    
## index_AFexp.w2:DvR   0.290564   0.245520   1.183 0.236756    
## index_AFexp.w2:IvDR -0.117359   0.289591  -0.405 0.685329    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.416 on 2142 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5499, Adjusted R-squared:  0.5468 
## F-statistic: 174.5 on 15 and 2142 DF,  p-value: < 2.2e-16

- plots

m1 <- lm(vaxxAttitudes.w2 ~  (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) * 
                  (party_factor) + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_ANexp.w2", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking wave 2") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

plot_model(m1, type = "pred", terms = c("index_ANexp.w1", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking wave 1") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(vaxxAttitudes.w2 ~  (index_ANexp.w1 + index_AFexp.w1 + 
                                      index_ANexp.w2 + index_AFexp.w2) * 
                  (party_factor) + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_AFexp.w2", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect wave 2") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(vaxxAttitudes.w2 ~  (index_ANexp.w1 + index_AFexp.w1 + 
                                      index_ANexp.w2 + index_AFexp.w2) * 
                  (party_factor) + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_AFexp.w1", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect wave 1") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects for Dem

model3.dem <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) * 
                   (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)

summary(model3.dem)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + 
##     index_ANexp.w2 + index_AFexp.w2) * (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2807 -0.8117  0.0350  0.9206  5.4001 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.190317   0.093459   2.036  0.04184 *  
## index_ANexp.w1       -0.003421   0.005825  -0.587  0.55708    
## index_AFexp.w1        0.073184   0.124092   0.590  0.55542    
## index_ANexp.w2        0.019464   0.006693   2.908  0.00367 ** 
## index_AFexp.w2       -0.385757   0.143278  -2.692  0.00715 ** 
## Ind_1                -0.208186   0.148609  -1.401  0.16139    
## Rep_1                 0.198983   0.124391   1.600  0.10982    
## vaxxAttitudes.c.w1    0.719638   0.014939  48.172  < 2e-16 ***
## index_ANexp.w1:Ind_1 -0.007699   0.012925  -0.596  0.55145    
## index_ANexp.w1:Rep_1 -0.006047   0.010218  -0.592  0.55400    
## index_AFexp.w1:Ind_1  0.154795   0.268775   0.576  0.56473    
## index_AFexp.w1:Rep_1  0.078136   0.212917   0.367  0.71367    
## index_ANexp.w2:Ind_1 -0.011601   0.014179  -0.818  0.41332    
## index_ANexp.w2:Rep_1 -0.012351   0.011664  -1.059  0.28975    
## index_AFexp.w2:Ind_1  0.262641   0.298782   0.879  0.37948    
## index_AFexp.w2:Rep_1  0.290564   0.245520   1.183  0.23676    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.416 on 2142 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5499, Adjusted R-squared:  0.5468 
## F-statistic: 174.5 on 15 and 2142 DF,  p-value: < 2.2e-16

c. simple effects for Rep

model3.rep <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) * 
                   (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)

summary(model3.rep)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + 
##     index_ANexp.w2 + index_AFexp.w2) * (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2807 -0.8117  0.0350  0.9206  5.4001 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.3893005  0.0813476   4.786 1.82e-06 ***
## index_ANexp.w1       -0.0094684  0.0083951  -1.128  0.25951    
## index_AFexp.w1        0.1513201  0.1730095   0.875  0.38187    
## index_ANexp.w2        0.0071131  0.0095518   0.745  0.45654    
## index_AFexp.w2       -0.0951931  0.1994256  -0.477  0.63317    
## Ind_1                -0.4071687  0.1393172  -2.923  0.00351 ** 
## Dem_1                -0.1989831  0.1243914  -1.600  0.10982    
## vaxxAttitudes.c.w1    0.7196384  0.0149388  48.172  < 2e-16 ***
## index_ANexp.w1:Ind_1 -0.0016520  0.0142687  -0.116  0.90784    
## index_ANexp.w1:Dem_1  0.0060474  0.0102175   0.592  0.55400    
## index_AFexp.w1:Ind_1  0.0766592  0.2945035   0.260  0.79466    
## index_AFexp.w1:Dem_1 -0.0781357  0.2129174  -0.367  0.71367    
## index_ANexp.w2:Ind_1  0.0007499  0.0157393   0.048  0.96200    
## index_ANexp.w2:Dem_1  0.0123514  0.0116640   1.059  0.28975    
## index_AFexp.w2:Ind_1 -0.0279231  0.3295373  -0.085  0.93248    
## index_AFexp.w2:Dem_1 -0.2905640  0.2455195  -1.183  0.23676    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.416 on 2142 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5499, Adjusted R-squared:  0.5468 
## F-statistic: 174.5 on 15 and 2142 DF,  p-value: < 2.2e-16

d. simple effects for Indep

model3.ind <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) * 
                   (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)

summary(model3.ind)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + 
##     index_ANexp.w2 + index_AFexp.w2) * (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2807 -0.8117  0.0350  0.9206  5.4001 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -0.0178683  0.1150875  -0.155  0.87663    
## index_ANexp.w1       -0.0111204  0.0115356  -0.964  0.33515    
## index_AFexp.w1        0.2279793  0.2383603   0.956  0.33895    
## index_ANexp.w2        0.0078630  0.0124998   0.629  0.52938    
## index_AFexp.w2       -0.1231163  0.2621772  -0.470  0.63869    
## Dem_1                 0.2081856  0.1486093   1.401  0.16139    
## Rep_1                 0.4071687  0.1393172   2.923  0.00351 ** 
## vaxxAttitudes.c.w1    0.7196384  0.0149388  48.172  < 2e-16 ***
## index_ANexp.w1:Dem_1  0.0076995  0.0129253   0.596  0.55145    
## index_ANexp.w1:Rep_1  0.0016520  0.0142687   0.116  0.90784    
## index_AFexp.w1:Dem_1 -0.1547950  0.2687755  -0.576  0.56473    
## index_AFexp.w1:Rep_1 -0.0766592  0.2945035  -0.260  0.79466    
## index_ANexp.w2:Dem_1  0.0116015  0.0141789   0.818  0.41332    
## index_ANexp.w2:Rep_1 -0.0007499  0.0157393  -0.048  0.96200    
## index_AFexp.w2:Dem_1 -0.2626409  0.2987825  -0.879  0.37948    
## index_AFexp.w2:Rep_1  0.0279231  0.3295373   0.085  0.93248    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.416 on 2142 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5499, Adjusted R-squared:  0.5468 
## F-statistic: 174.5 on 15 and 2142 DF,  p-value: < 2.2e-16

V. long by W1 + W2 models

1. vaxxAttitudes ~ W1vW2 + ANALYTIC * party + (1 | participant)

a. contrast model

model1.cc <- lmer(vaxxAttitudes ~ W1vW2 + (DvR + IvDR) *
                   (index_ANexp) +
                   (1 | participant), data = dm)

summary(model1.cc)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## vaxxAttitudes ~ W1vW2 + (DvR + IvDR) * (index_ANexp) + (1 | participant)
##    Data: dm
## 
## REML criterion at convergence: 21879.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07085 -0.45918  0.03003  0.47244  2.99335 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.035    1.742   
##  Residual                1.241    1.114   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       9.121e-03  4.934e-02  4.721e+03   0.185 0.853332    
## W1vW2            -2.754e-01  3.274e-02  2.459e+03  -8.411  < 2e-16 ***
## DvR              -8.157e-01  1.037e-01  5.201e+03  -7.865 4.47e-15 ***
## IvDR              3.912e-01  1.033e-01  5.413e+03   3.785 0.000155 ***
## index_ANexp       4.244e-03  4.267e-04  5.410e+03   9.947  < 2e-16 ***
## DvR:index_ANexp   3.772e-03  8.779e-04  5.281e+03   4.297 1.76e-05 ***
## IvDR:index_ANexp  9.206e-04  9.491e-04  5.060e+03   0.970 0.332096    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  DvR    IvDR   ind_AN DR:_AN
## W1vW2        0.006                                   
## DvR         -0.045 -0.017                            
## IvDR        -0.237 -0.024 -0.059                     
## index_ANexp -0.667  0.091 -0.009  0.168              
## DvR:ndx_ANx  0.011  0.031 -0.713  0.018  0.159       
## IvDR:ndx_AN  0.159 -0.007  0.022 -0.688 -0.278  0.092

- plot

m1 <- lmer(vaxxAttitudes ~  W1vW2 + index_ANexp * party_factor + 
                   (1 | participant), data = dm)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <- lmer(vaxxAttitudes ~ W1vW2 + 
                     index_ANexp * 
                     (Rep_1 + Ind_1) + 
                     (1 | participant), data = dm)
summary(model1.dem)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + index_ANexp * (Rep_1 + Ind_1) + (1 |  
##     participant)
##    Data: dm
## 
## REML criterion at convergence: 21879.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07085 -0.45918  0.03003  0.47244  2.99335 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.035    1.742   
##  Residual                1.241    1.114   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        5.461e-01  7.698e-02  5.301e+03   7.093 1.48e-12 ***
## W1vW2             -2.754e-01  3.274e-02  2.459e+03  -8.411  < 2e-16 ***
## index_ANexp        2.662e-03  5.600e-04  5.303e+03   4.754 2.05e-06 ***
## Rep_1             -8.157e-01  1.037e-01  5.201e+03  -7.865 4.47e-15 ***
## Ind_1             -7.991e-01  1.183e-01  5.439e+03  -6.753 1.60e-11 ***
## index_ANexp:Rep_1  3.772e-03  8.779e-04  5.281e+03   4.297 1.76e-05 ***
## index_ANexp:Ind_1  9.654e-04  1.008e-03  5.087e+03   0.957    0.338    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AN Rep_1  Ind_1  i_AN:R
## W1vW2        0.004                                   
## index_ANexp -0.774  0.041                            
## Rep_1       -0.729 -0.017  0.564                     
## Ind_1       -0.608  0.014  0.484  0.490              
## indx_AN:R_1  0.495  0.031 -0.611 -0.713 -0.328       
## indx_AN:I_1  0.420  0.020 -0.525 -0.331 -0.717  0.349

c. simple effects Rep

model1.rep <- lmer(vaxxAttitudes ~ W1vW2 + 
                     index_ANexp * 
                     (Dem_1 + Ind_1) + 
                     (1 | participant), data = dm)
summary(model1.rep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + index_ANexp * (Dem_1 + Ind_1) + (1 |  
##     participant)
##    Data: dm
## 
## REML criterion at convergence: 21879.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07085 -0.45918  0.03003  0.47244  2.99335 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.035    1.742   
##  Residual                1.241    1.114   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       -2.696e-01  7.106e-02  4.697e+03  -3.795  0.00015 ***
## W1vW2             -2.754e-01  3.274e-02  2.459e+03  -8.411  < 2e-16 ***
## index_ANexp        6.434e-03  6.954e-04  5.389e+03   9.253  < 2e-16 ***
## Dem_1              8.157e-01  1.037e-01  5.201e+03   7.865 4.47e-15 ***
## Ind_1              1.664e-02  1.129e-01  5.441e+03   0.147  0.88278    
## index_ANexp:Dem_1 -3.772e-03  8.779e-04  5.281e+03  -4.297 1.76e-05 ***
## index_ANexp:Ind_1 -2.806e-03  1.082e-03  5.120e+03  -2.595  0.00949 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AN Dem_1  Ind_1  i_AN:D
## W1vW2       -0.020                                   
## index_ANexp -0.649  0.073                            
## Dem_1       -0.670  0.017  0.446                     
## Ind_1       -0.557  0.030  0.384  0.406              
## indx_AN:D_1  0.504 -0.031 -0.770 -0.713 -0.311       
## indx_AN:I_1  0.383 -0.007 -0.609 -0.270 -0.670  0.486

d. simple effects Indep

model1.ind <- lmer(vaxxAttitudes ~ W1vW2 +
                     index_ANexp * 
                     (Dem_1 + Rep_1) + 
                     (1 | participant), data = dm)
summary(model1.ind)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + index_ANexp * (Dem_1 + Rep_1) + (1 |  
##     participant)
##    Data: dm
## 
## REML criterion at convergence: 21879.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07085 -0.45918  0.03003  0.47244  2.99335 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.035    1.742   
##  Residual                1.241    1.114   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       -2.530e-01  9.408e-02  5.422e+03  -2.689  0.00718 ** 
## W1vW2             -2.754e-01  3.274e-02  2.459e+03  -8.411  < 2e-16 ***
## index_ANexp        3.628e-03  8.585e-04  5.148e+03   4.225 2.43e-05 ***
## Dem_1              7.991e-01  1.183e-01  5.439e+03   6.753 1.60e-11 ***
## Rep_1             -1.664e-02  1.129e-01  5.441e+03  -0.147  0.88278    
## index_ANexp:Dem_1 -9.654e-04  1.008e-03  5.087e+03  -0.957  0.33846    
## index_ANexp:Rep_1  2.806e-03  1.082e-03  5.120e+03   2.595  0.00949 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AN Dem_1  Rep_1  i_AN:D
## W1vW2        0.021                                   
## index_ANexp -0.672  0.051                            
## Dem_1       -0.760 -0.014  0.527                     
## Rep_1       -0.779 -0.030  0.533  0.598              
## indx_AN:D_1  0.558 -0.020 -0.832 -0.717 -0.448       
## indx_AN:R_1  0.514  0.007 -0.766 -0.402 -0.670  0.649

2. vaxxAttitudes ~ W1vW2 + AFFECT * party + (1 | participant)

a. contrast model

model1.cc <- lmer(vaxxAttitudes ~ W1vW2 + (DvR + IvDR) * index_AFexp + (1 | participant), data = dm)

summary(model1.cc)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + (DvR + IvDR) * index_AFexp + (1 | participant)
##    Data: dm
## 
## REML criterion at convergence: 21860.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07554 -0.46461  0.02802  0.47296  2.97593 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.027    1.740   
##  Residual                1.243    1.115   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      -7.963e-03  5.051e-02  4.766e+03  -0.158 0.874740    
## W1vW2            -2.687e-01  3.284e-02  2.467e+03  -8.184 4.35e-16 ***
## DvR              -8.463e-01  1.070e-01  5.227e+03  -7.906 3.21e-15 ***
## IvDR              3.919e-01  1.054e-01  5.408e+03   3.717 0.000204 ***
## index_AFexp       8.873e-02  8.886e-03  5.416e+03   9.986  < 2e-16 ***
## DvR:index_AFexp   8.215e-02  1.840e-02  5.296e+03   4.464 8.21e-06 ***
## IvDR:index_AFexp  1.814e-02  1.965e-02  5.077e+03   0.923 0.355922    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  DvR    IvDR   ind_AF DR:_AF
## W1vW2       -0.009                                   
## DvR         -0.052 -0.015                            
## IvDR        -0.225 -0.028 -0.064                     
## index_AFexp -0.686  0.108 -0.004  0.159              
## DvR:ndx_AFx  0.014  0.032 -0.733  0.022  0.149       
## IvDR:ndx_AF  0.151 -0.002  0.025 -0.702 -0.264  0.085

- plot

m1 <- lmer(vaxxAttitudes ~  W1vW2 + index_AFexp * party_factor + (1 | participant), data = dm)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <- lmer(vaxxAttitudes ~ W1vW2 + index_AFexp * (Rep_1 + Ind_1) + (1 | participant), data = dm)
summary(model1.dem)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + index_AFexp * (Rep_1 + Ind_1) + (1 |  
##     participant)
##    Data: dm
## 
## REML criterion at convergence: 21860.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07554 -0.46461  0.02802  0.47296  2.97593 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.027    1.740   
##  Residual                1.243    1.115   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          0.54450    0.07975 5312.96352   6.828 9.59e-12 ***
## W1vW2               -0.26875    0.03284 2467.22199  -8.184 4.35e-16 ***
## index_AFexp          0.05364    0.01186 5339.40804   4.524 6.21e-06 ***
## Rep_1               -0.84629    0.10704 5227.49812  -7.906 3.21e-15 ***
## Ind_1               -0.81503    0.12128 5438.38387  -6.720 2.00e-11 ***
## index_AFexp:Rep_1    0.08215    0.01840 5295.62226   4.464 8.21e-06 ***
## index_AFexp:Ind_1    0.02294    0.02097 5116.70536   1.094    0.274    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AF Rep_1  Ind_1  i_AF:R
## W1vW2       -0.008                                   
## index_AFexp -0.791  0.055                            
## Rep_1       -0.732 -0.015  0.579                     
## Ind_1       -0.616  0.017  0.500  0.497              
## indx_AF:R_1  0.510  0.032 -0.618 -0.733 -0.343       
## indx_AF:I_1  0.437  0.016 -0.536 -0.345 -0.732  0.359

c. simple effects Rep

model1.rep <- lmer(vaxxAttitudes ~ W1vW2 + index_AFexp * (Dem_1 + Ind_1) + (1 | participant), data = dm)
summary(model1.rep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + index_AFexp * (Dem_1 + Ind_1) + (1 |  
##     participant)
##    Data: dm
## 
## REML criterion at convergence: 21860.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07554 -0.46461  0.02802  0.47296  2.97593 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.027    1.740   
##  Residual                1.243    1.115   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -0.30178    0.07289 4773.41683  -4.140 3.53e-05 ***
## W1vW2               -0.26875    0.03284 2467.22199  -8.184 4.35e-16 ***
## index_AFexp          0.13579    0.01448 5386.99965   9.376  < 2e-16 ***
## Dem_1                0.84629    0.10704 5227.49810   7.906 3.21e-15 ***
## Ind_1                0.03126    0.11513 5438.90082   0.272  0.78601    
## index_AFexp:Dem_1   -0.08215    0.01840 5295.62228  -4.464 8.21e-06 ***
## index_AFexp:Ind_1   -0.05922    0.02240 5126.66594  -2.644  0.00822 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AF Dem_1  Ind_1  i_AF:D
## W1vW2       -0.031                                   
## index_AFexp -0.671  0.086                            
## Dem_1       -0.667  0.015  0.457                     
## Ind_1       -0.561  0.032  0.398  0.406              
## indx_AF:D_1  0.518 -0.032 -0.765 -0.733 -0.321       
## indx_AF:I_1  0.399 -0.011 -0.612 -0.280 -0.686  0.486

d. simple effects Indep

model1.ind <- lmer(vaxxAttitudes ~ W1vW2 + index_AFexp * (Dem_1 + Rep_1) + (1 | participant), data = dm)
summary(model1.ind)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + index_AFexp * (Dem_1 + Rep_1) + (1 |  
##     participant)
##    Data: dm
## 
## REML criterion at convergence: 21860.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07554 -0.46461  0.02802  0.47296  2.97593 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.027    1.740   
##  Residual                1.243    1.115   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -0.27053    0.09564 5425.88907  -2.829  0.00469 ** 
## W1vW2               -0.26875    0.03284 2467.22172  -8.184 4.35e-16 ***
## index_AFexp          0.07658    0.01772 5162.86573   4.321 1.59e-05 ***
## Dem_1                0.81503    0.12128 5438.38387   6.720 2.00e-11 ***
## Rep_1               -0.03126    0.11513 5438.90081  -0.272  0.78601    
## index_AFexp:Dem_1   -0.02294    0.02097 5116.70538  -1.094  0.27421    
## index_AFexp:Rep_1    0.05922    0.02240 5126.66595   2.644  0.00822 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AF Dem_1  Rep_1  i_AF:D
## W1vW2        0.015                                   
## index_AFexp -0.685  0.056                            
## Dem_1       -0.754 -0.017  0.532                     
## Rep_1       -0.776 -0.032  0.541  0.591              
## indx_AF:D_1  0.565 -0.016 -0.825 -0.732 -0.451       
## indx_AF:R_1  0.521  0.011 -0.763 -0.404 -0.686  0.642

3. vaxxAttitudes ~ W1vW2 + (AFFECT + ANALYTIC) * party + (1 | participant)

a. contrast model

model1.cc <- lmer(vaxxAttitudes ~ W1vW2 + (DvR + IvDR) *
                   (index_AFexp + index_ANexp) +
                   (1 | participant), data = dm)
summary(model1.cc)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + (DvR + IvDR) * (index_AFexp + index_ANexp) +  
##     (1 | participant)
##    Data: dm
## 
## REML criterion at convergence: 21881.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0352 -0.4588  0.0287  0.4704  2.9707 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.019    1.737   
##  Residual                1.246    1.116   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       1.021e-03  5.192e-02  4.813e+03   0.020   0.9843    
## W1vW2            -2.730e-01  3.320e-02  2.506e+03  -8.223 3.15e-16 ***
## DvR              -8.977e-01  1.109e-01  5.272e+03  -8.093 7.19e-16 ***
## IvDR              4.195e-01  1.076e-01  5.395e+03   3.897 9.86e-05 ***
## index_AFexp       7.303e-02  7.536e-02  5.313e+03   0.969   0.3326    
## index_ANexp       7.066e-04  3.625e-03  5.303e+03   0.195   0.8455    
## DvR:index_AFexp   2.940e-01  1.429e-01  5.111e+03   2.057   0.0397 *  
## DvR:index_ANexp  -1.013e-02  6.822e-03  5.097e+03  -1.485   0.1377    
## IvDR:index_AFexp -1.348e-01  1.753e-01  4.906e+03  -0.769   0.4420    
## IvDR:index_ANexp  7.373e-03  8.479e-03  4.894e+03   0.870   0.3846    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  DvR    IvDR   ind_AF ind_AN DR:_AF DR:_AN IDR:_AF
## W1vW2       -0.041                                                         
## DvR         -0.054 -0.013                                                  
## IvDR        -0.209 -0.036 -0.068                                           
## index_AFexp -0.298  0.134 -0.018  0.058                                    
## index_ANexp  0.221 -0.121  0.019 -0.042 -0.993                             
## DvR:ndx_AFx -0.021  0.025 -0.347  0.002  0.194 -0.197                      
## DvR:ndx_ANx  0.024 -0.022  0.258  0.001 -0.197  0.202 -0.992               
## IvDR:ndx_AF  0.047  0.014  0.001 -0.270 -0.411  0.417  0.092 -0.094        
## IvDR:ndx_AN -0.032 -0.014  0.002  0.194  0.414 -0.423 -0.093  0.097 -0.994

- plots

m1 <- lmer(vaxxAttitudes ~  W1vW2 + (index_AFexp + index_ANexp) * party_factor + 
                   (1 | participant), data = dm)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lmer(vaxxAttitudes ~  W1vW2 + (index_AFexp + index_ANexp) * party_factor + 
                   (1 | participant), data = dm)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <- lmer(vaxxAttitudes ~ W1vW2 + 
                     (index_AFexp + index_ANexp) * 
                     (Rep_1 + Ind_1) + 
                     (1 | participant), data = dm)
summary(model1.dem)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + (index_AFexp + index_ANexp) * (Rep_1 +  
##     Ind_1) + (1 | participant)
##    Data: dm
## 
## REML criterion at convergence: 21881.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0352 -0.4588  0.0287  0.4704  2.9707 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.019    1.737   
##  Residual                1.246    1.116   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        5.883e-01  8.270e-02  5.310e+03   7.114 1.28e-12 ***
## W1vW2             -2.730e-01  3.320e-02  2.506e+03  -8.223 3.15e-16 ***
## index_AFexp       -1.185e-01  8.772e-02  5.135e+03  -1.350   0.1769    
## index_ANexp        8.204e-03  4.144e-03  5.082e+03   1.980   0.0478 *  
## Rep_1             -8.977e-01  1.109e-01  5.272e+03  -8.093 7.19e-16 ***
## Ind_1             -8.684e-01  1.244e-01  5.435e+03  -6.981 3.28e-12 ***
## index_AFexp:Rep_1  2.940e-01  1.429e-01  5.111e+03   2.057   0.0397 *  
## index_AFexp:Ind_1  2.818e-01  1.832e-01  4.960e+03   1.538   0.1240    
## index_ANexp:Rep_1 -1.013e-02  6.822e-03  5.097e+03  -1.485   0.1377    
## index_ANexp:Ind_1 -1.244e-02  8.827e-03  4.936e+03  -1.409   0.1589    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AF ind_AN Rep_1  Ind_1  i_AF:R i_AF:I i_AN:R
## W1vW2       -0.033                                                        
## index_AFexp -0.367  0.104                                                 
## index_ANexp  0.266 -0.097 -0.991                                          
## Rep_1       -0.734 -0.013  0.268 -0.194                                   
## Ind_1       -0.624  0.026  0.232 -0.168  0.504                            
## indx_AF:R_1  0.221  0.025 -0.587  0.581 -0.347 -0.157                     
## indx_AF:I_1  0.170 -0.004 -0.451  0.446 -0.137 -0.286  0.302              
## indx_AN:R_1 -0.158 -0.022  0.576 -0.581  0.258  0.114 -0.992 -0.296       
## indx_AN:I_1 -0.120  0.005  0.438 -0.441  0.098  0.205 -0.294 -0.993  0.293

c. simple effects Rep

model1.rep <- lmer(vaxxAttitudes ~ W1vW2 + 
                     (index_AFexp + index_ANexp) * 
                     (Dem_1 + Ind_1) + 
                     (1 | participant), data = dm)
summary(model1.rep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + (index_AFexp + index_ANexp) * (Dem_1 +  
##     Ind_1) + (1 | participant)
##    Data: dm
## 
## REML criterion at convergence: 21881.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0352 -0.4588  0.0287  0.4704  2.9707 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.019    1.737   
##  Residual                1.246    1.116   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       -3.094e-01  7.541e-02  4.942e+03  -4.103 4.14e-05 ***
## W1vW2             -2.730e-01  3.320e-02  2.506e+03  -8.223 3.15e-16 ***
## index_AFexp        1.755e-01  1.157e-01  5.248e+03   1.517   0.1294    
## index_ANexp       -1.925e-03  5.557e-03  5.255e+03  -0.346   0.7291    
## Dem_1              8.977e-01  1.109e-01  5.272e+03   8.093 7.19e-16 ***
## Ind_1              2.936e-02  1.177e-01  5.427e+03   0.249   0.8031    
## index_AFexp:Dem_1 -2.940e-01  1.429e-01  5.111e+03  -2.057   0.0397 *  
## index_AFexp:Ind_1 -1.219e-02  1.953e-01  4.918e+03  -0.062   0.9502    
## index_ANexp:Dem_1  1.013e-02  6.822e-03  5.097e+03   1.485   0.1377    
## index_ANexp:Ind_1 -2.309e-03  9.441e-03  4.914e+03  -0.245   0.8068    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AF ind_AN Dem_1  Ind_1  i_AF:D i_AF:I i_AN:D
## W1vW2       -0.055                                                        
## index_AFexp -0.337  0.109                                                 
## index_ANexp  0.258 -0.099 -0.992                                          
## Dem_1       -0.667  0.013  0.226 -0.172                                   
## Ind_1       -0.568  0.039  0.194 -0.146  0.409                            
## indx_AF:D_1  0.268 -0.025 -0.790  0.784 -0.347 -0.161                     
## indx_AF:I_1  0.183 -0.022 -0.548  0.544 -0.126 -0.281  0.448              
## indx_AN:D_1 -0.207  0.022  0.788 -0.795  0.258  0.123 -0.992 -0.448       
## indx_AN:I_1 -0.138  0.020  0.540 -0.545  0.095  0.205 -0.442 -0.993  0.448

d. simple effects Indep

model1.ind <- lmer(vaxxAttitudes ~ W1vW2 +
                     (index_AFexp + index_ANexp) * 
                     (Dem_1 + Rep_1) + 
                     (1 | participant), data = dm)
summary(model1.ind)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + (index_AFexp + index_ANexp) * (Dem_1 +  
##     Rep_1) + (1 | participant)
##    Data: dm
## 
## REML criterion at convergence: 21881.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0352 -0.4588  0.0287  0.4704  2.9707 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.019    1.737   
##  Residual                1.246    1.116   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       -2.800e-01  9.728e-02  5.426e+03  -2.879  0.00401 ** 
## W1vW2             -2.730e-01  3.320e-02  2.506e+03  -8.223 3.15e-16 ***
## index_AFexp        1.634e-01  1.636e-01  5.036e+03   0.998  0.31811    
## index_ANexp       -4.233e-03  7.926e-03  5.023e+03  -0.534  0.59331    
## Dem_1              8.684e-01  1.244e-01  5.435e+03   6.981 3.28e-12 ***
## Rep_1             -2.936e-02  1.177e-01  5.427e+03  -0.249  0.80306    
## index_AFexp:Dem_1 -2.818e-01  1.832e-01  4.960e+03  -1.538  0.12400    
## index_AFexp:Rep_1  1.219e-02  1.953e-01  4.918e+03   0.062  0.95023    
## index_ANexp:Dem_1  1.244e-02  8.827e-03  4.936e+03   1.409  0.15890    
## index_ANexp:Rep_1  2.309e-03  9.441e-03  4.914e+03   0.245  0.80682    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AF ind_AN Dem_1  Rep_1  i_AF:D i_AF:R i_AN:D
## W1vW2        0.005                                                        
## index_AFexp -0.255  0.052                                                 
## index_ANexp  0.183 -0.046 -0.994                                          
## Dem_1       -0.748 -0.026  0.195 -0.140                                   
## Rep_1       -0.770 -0.039  0.198 -0.141  0.581                            
## indx_AF:D_1  0.221  0.004 -0.878  0.873 -0.286 -0.173                     
## indx_AF:R_1  0.198  0.022 -0.806  0.802 -0.153 -0.281  0.717              
## indx_AN:D_1 -0.159 -0.005  0.878 -0.883  0.205  0.124 -0.993 -0.716       
## indx_AN:R_1 -0.140 -0.020  0.804 -0.809  0.109  0.205 -0.715 -0.993  0.723