# Week 10 Lab Exercise
#Download the LabW9 dataset from spectrum.
#Load the dataset and appropriate packages.
library(readxl)
df1 <- read_excel("labW9.xlsx",1)
View(df1)
#any(grepl("caret", installed.packages()))
#install.packages("caret")
#install.packages("klaR")
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(klaR)
## Loading required package: MASS
#Conduct data exploration and checking and cleaning if necessary
names(df1)
## [1] "Pregnancies" "Glucose"
## [3] "BloodPressure" "SkinThickness"
## [5] "Insulin" "BMI"
## [7] "DiabetesPedigreeFunction" "Age"
## [9] "Outcome"
nrow(df1)
## [1] 768
ncol(df1)
## [1] 9
length(df1)
## [1] 9
str(df1)
## tibble [768 x 9] (S3: tbl_df/tbl/data.frame)
## $ Pregnancies : num [1:768] 6 1 8 1 0 5 3 10 2 8 ...
## $ Glucose : num [1:768] 148 85 183 89 137 116 78 115 197 125 ...
## $ BloodPressure : num [1:768] 72 66 64 66 40 74 50 0 70 96 ...
## $ SkinThickness : num [1:768] 35 29 0 23 35 0 32 0 45 0 ...
## $ Insulin : num [1:768] 0 0 0 94 168 0 88 0 543 0 ...
## $ BMI : num [1:768] 33.6 26.6 23.3 28.1 43.1 25.6 31 35.3 30.5 0 ...
## $ DiabetesPedigreeFunction: num [1:768] 0.627 0.351 0.672 0.167 2.288 ...
## $ Age : num [1:768] 50 31 32 21 33 30 26 29 53 54 ...
## $ Outcome : num [1:768] 1 0 1 0 1 0 1 0 1 1 ...
summary(df1)
## Pregnancies Glucose BloodPressure SkinThickness
## Min. : 0.000 Min. : 0.0 Min. : 0.00 Min. : 0.00
## 1st Qu.: 1.000 1st Qu.: 99.0 1st Qu.: 62.00 1st Qu.: 0.00
## Median : 3.000 Median :117.0 Median : 72.00 Median :23.00
## Mean : 3.845 Mean :120.9 Mean : 69.11 Mean :20.54
## 3rd Qu.: 6.000 3rd Qu.:140.2 3rd Qu.: 80.00 3rd Qu.:32.00
## Max. :17.000 Max. :199.0 Max. :122.00 Max. :99.00
## Insulin BMI DiabetesPedigreeFunction Age
## Min. : 0.0 Min. : 0.00 Min. :0.0780 Min. :21.00
## 1st Qu.: 0.0 1st Qu.:27.30 1st Qu.:0.2437 1st Qu.:24.00
## Median : 30.5 Median :32.00 Median :0.3725 Median :29.00
## Mean : 79.8 Mean :31.99 Mean :0.4719 Mean :33.24
## 3rd Qu.:127.2 3rd Qu.:36.60 3rd Qu.:0.6262 3rd Qu.:41.00
## Max. :846.0 Max. :67.10 Max. :2.4200 Max. :81.00
## Outcome
## Min. :0.000
## 1st Qu.:0.000
## Median :0.000
## Mean :0.349
## 3rd Qu.:1.000
## Max. :1.000
head(df1)
## # A tibble: 6 x 9
## Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigre~
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 6 148 72 35 0 33.6 0.627
## 2 1 85 66 29 0 26.6 0.351
## 3 8 183 64 0 0 23.3 0.672
## 4 1 89 66 23 94 28.1 0.167
## 5 0 137 40 35 168 43.1 2.29
## 6 5 116 74 0 0 25.6 0.201
## # ... with 2 more variables: Age <dbl>, Outcome <dbl>
tail(df1)
## # A tibble: 6 x 9
## Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigre~
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 9 89 62 0 0 22.5 0.142
## 2 10 101 76 48 180 32.9 0.171
## 3 2 122 70 27 0 36.8 0.34
## 4 5 121 72 23 112 26.2 0.245
## 5 1 126 60 0 0 30.1 0.349
## 6 1 93 70 31 0 30.4 0.315
## # ... with 2 more variables: Age <dbl>, Outcome <dbl>
sum(is.na(df1)) #no missing value is found
## [1] 0
#Partition data 70/30 using any method you feel comfortable with
split=0.70 # define an 70%/30% train/test split of the dataset
inTraining <- createDataPartition(df1$Outcome, p=split, list=FALSE)
training <- df1[ inTraining,]
testing <- df1[-inTraining,]
#Check both your training and test subsets
str(training)
## tibble [538 x 9] (S3: tbl_df/tbl/data.frame)
## $ Pregnancies : num [1:538] 6 3 2 8 10 5 0 1 3 8 ...
## $ Glucose : num [1:538] 148 78 197 125 168 166 118 103 126 99 ...
## $ BloodPressure : num [1:538] 72 50 70 96 74 72 84 30 88 84 ...
## $ SkinThickness : num [1:538] 35 32 45 0 0 19 47 38 41 0 ...
## $ Insulin : num [1:538] 0 88 543 0 0 175 230 83 235 0 ...
## $ BMI : num [1:538] 33.6 31 30.5 0 38 25.8 45.8 43.3 39.3 35.4 ...
## $ DiabetesPedigreeFunction: num [1:538] 0.627 0.248 0.158 0.232 0.537 0.587 0.551 0.183 0.704 0.388 ...
## $ Age : num [1:538] 50 26 53 54 34 51 31 33 27 50 ...
## $ Outcome : num [1:538] 1 1 1 1 1 1 1 0 0 0 ...
str(testing)
## tibble [230 x 9] (S3: tbl_df/tbl/data.frame)
## $ Pregnancies : num [1:230] 1 8 1 0 5 10 4 10 1 7 ...
## $ Glucose : num [1:230] 85 183 89 137 116 115 110 139 189 100 ...
## $ BloodPressure : num [1:230] 66 64 66 40 74 0 92 80 60 0 ...
## $ SkinThickness : num [1:230] 29 0 23 35 0 0 0 0 23 0 ...
## $ Insulin : num [1:230] 0 0 94 168 0 0 0 0 846 0 ...
## $ BMI : num [1:230] 26.6 23.3 28.1 43.1 25.6 35.3 37.6 27.1 30.1 30 ...
## $ DiabetesPedigreeFunction: num [1:230] 0.351 0.672 0.167 2.288 0.201 ...
## $ Age : num [1:230] 31 32 21 33 30 29 30 57 59 32 ...
## $ Outcome : num [1:230] 0 1 0 1 0 0 0 0 1 1 ...
#Check for cross validation if the model allows for it
train_control <- trainControl(method="cv", number = 10)
train_control
## $method
## [1] "cv"
##
## $number
## [1] 10
##
## $repeats
## [1] NA
##
## $search
## [1] "grid"
##
## $p
## [1] 0.75
##
## $initialWindow
## NULL
##
## $horizon
## [1] 1
##
## $fixedWindow
## [1] TRUE
##
## $skip
## [1] 0
##
## $verboseIter
## [1] FALSE
##
## $returnData
## [1] TRUE
##
## $returnResamp
## [1] "final"
##
## $savePredictions
## [1] FALSE
##
## $classProbs
## [1] FALSE
##
## $summaryFunction
## function (data, lev = NULL, model = NULL)
## {
## if (is.character(data$obs))
## data$obs <- factor(data$obs, levels = lev)
## postResample(data[, "pred"], data[, "obs"])
## }
## <bytecode: 0x000000003014b638>
## <environment: namespace:caret>
##
## $selectionFunction
## [1] "best"
##
## $preProcOptions
## $preProcOptions$thresh
## [1] 0.95
##
## $preProcOptions$ICAcomp
## [1] 3
##
## $preProcOptions$k
## [1] 5
##
## $preProcOptions$freqCut
## [1] 19
##
## $preProcOptions$uniqueCut
## [1] 10
##
## $preProcOptions$cutoff
## [1] 0.9
##
##
## $sampling
## NULL
##
## $index
## NULL
##
## $indexOut
## NULL
##
## $indexFinal
## NULL
##
## $timingSamps
## [1] 0
##
## $predictionBounds
## [1] FALSE FALSE
##
## $seeds
## [1] NA
##
## $adaptive
## $adaptive$min
## [1] 5
##
## $adaptive$alpha
## [1] 0.05
##
## $adaptive$method
## [1] "gls"
##
## $adaptive$complete
## [1] TRUE
##
##
## $trim
## [1] FALSE
##
## $allowParallel
## [1] TRUE
#Train your test data using KNN model
set.seed(123456) #to make sure that we get the same results
KNN <- train(factor(Outcome)~., data=df1, trControl=train_control, method="knn")
KNN
## k-Nearest Neighbors
##
## 768 samples
## 8 predictor
## 2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 691, 692, 691, 691, 691, 691, ...
## Resampling results across tuning parameters:
##
## k Accuracy Kappa
## 5 0.7201128 0.3589603
## 7 0.7278537 0.3770873
## 9 0.7395420 0.4017339
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 9.
#Plot your model
plot(KNN) #The plot showed that when k=9, the accuracy is the highest, 0.739
#Predict using your test data onto your model
predictions<-predict(KNN, newdata = testing)
predictions
## [1] 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1
## [38] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0
## [75] 1 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0
## [112] 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## [149] 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1
## [186] 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0
## [223] 1 0 1 0 0 0 0 1
## Levels: 0 1
table(predictions)
## predictions
## 0 1
## 164 66
plot(predictions)
#Evaluate outcome using confusion matrix
confusion_matrix<-confusionMatrix(predictions,as.factor(testing$Outcome))
confusion_matrix
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 134 30
## 1 14 52
##
## Accuracy : 0.8087
## 95% CI : (0.7518, 0.8574)
## No Information Rate : 0.6435
## P-Value [Acc > NIR] : 3.116e-08
##
## Kappa : 0.5641
##
## Mcnemar's Test P-Value : 0.02374
##
## Sensitivity : 0.9054
## Specificity : 0.6341
## Pos Pred Value : 0.8171
## Neg Pred Value : 0.7879
## Prevalence : 0.6435
## Detection Rate : 0.5826
## Detection Prevalence : 0.7130
## Balanced Accuracy : 0.7698
##
## 'Positive' Class : 0
##
#Accuracy of the model is 81%.
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.