NOTES:

set up

libraries and data sets

library(psych)
library(lme4)
## Loading required package: Matrix
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
library(lmSupport)
library(sjPlot)
## Registered S3 methods overwritten by 'parameters':
##   method                           from      
##   as.double.parameters_kurtosis    datawizard
##   as.double.parameters_skewness    datawizard
##   as.double.parameters_smoothness  datawizard
##   as.numeric.parameters_kurtosis   datawizard
##   as.numeric.parameters_skewness   datawizard
##   as.numeric.parameters_smoothness datawizard
##   print.parameters_distribution    datawizard
##   print.parameters_kurtosis        datawizard
##   print.parameters_skewness        datawizard
##   summary.parameters_kurtosis      datawizard
##   summary.parameters_skewness      datawizard
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble  3.1.3     v purrr   0.3.4
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   2.0.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x ggplot2::%+%()   masks psych::%+%()
## x ggplot2::alpha() masks psych::alpha()
## x tidyr::expand()  masks Matrix::expand()
## x dplyr::filter()  masks stats::filter()
## x dplyr::lag()     masks stats::lag()
## x tidyr::pack()    masks Matrix::pack()
## x tidyr::unpack()  masks Matrix::unpack()
library(irr)
## Loading required package: lpSolve
library(optimx)
## Warning: package 'optimx' was built under R version 4.1.2
library(parallel)
library(minqa)
library(dfoptim)
library(ggcorrplot)

#import wave 1
d1.1 <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/Covid-19_NSF_RAPID_US_Cleaned1.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

#import wave 2
d2.1 <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/Covid-19_NSF_RAPID_US_Wave2_Cleaned.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

#import LIWC csv
liwc <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/LIWC_w1w2_Dec_2021.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

LIWC wave 1 & wave 2

###################################
# Create LIWC rating averages for wave 1
###################################

#move over measures of interest
w1 <- data.frame(liwc[liwc$Wave == 1,])

w1 <- w1[,c("mediaOutlet", "analytic", "affect", "cogproc", "posemo", "negemo")]

# create wide data set for wave 2
w1w = w1 %>%
  group_by(mediaOutlet) %>% 
  mutate(Visit = 1:n()) %>% 
  gather("analytic",
         "affect",
         "cogproc",
         "posemo",
         "negemo",
         key = variable, 
         value = number) %>% 
  unite(combi, variable, Visit) %>%
  spread(combi, number)

##################
### calculate averages for each ratings
##################

#affect
affect <- cbind(w1w[paste0("affect_",1:21)])
AF <- apply(affect, MARGIN = 1, FUN = mean, na.rm = T)
#cognitive processing
cogproc <- data.frame(w1w[paste0("cogproc_",1:21)])
CP <- apply(cogproc, MARGIN = 1, FUN = mean, na.rm = T)
#positive emotions
pos <- data.frame(w1w[paste0("posemo_",1:21)])
PE <- apply(pos, MARGIN = 1, FUN = mean, na.rm = T)
#negative emotions
neg <- data.frame(w1w[paste0("negemo_",1:21)])
NE <- apply(neg, MARGIN = 1, FUN = mean, na.rm = T)
#analytic 
analytic <- data.frame(w1w[paste0("analytic_",1:21)])
AN <- apply(analytic, MARGIN = 1, FUN = mean, na.rm = T)

#add them all to new data.frame
w1 <- data.frame(w1w$mediaOutlet)
colnames(w1)[colnames(w1)=="w1w.mediaOutlet"] <- "mediaOutlet"
w1$affect <- AF
w1$cogproc <- CP
w1$analytic <- AN
w1$posemo <- PE
w1$negemo <- NE

##############################################
# Create LIWC rating averages for wave 2
##############################################

#move over measures of interest
w2 <- data.frame(liwc[liwc$Wave == 2,])

w2 <- w2[,c("mediaOutlet", "analytic", "affect", "cogproc", "posemo", "negemo")]

# create wide data set for wave 2
w2w = w2 %>% 
  group_by(mediaOutlet) %>% 
  mutate(Visit = 1:n()) %>% 
  gather("analytic",
         "affect",
         "cogproc",
         "posemo",
         "negemo",
         key = variable, 
         value = number) %>% 
  unite(combi, variable, Visit) %>%
  spread(combi, number)

##################
### calculate averages for each ratings
##################

#affect
affect <- cbind(w2w[paste0("affect_",1:22)])
AF <- apply(affect, MARGIN = 1, FUN = mean, na.rm = T)
#cognitive processing
cogproc <- data.frame(w2w[paste0("cogproc_",1:22)])
CP <- apply(cogproc, MARGIN = 1, FUN = mean, na.rm = T)
#positive emotions
pos <- data.frame(w2w[paste0("posemo_",1:22)])
PE <- apply(pos, MARGIN = 1, FUN = mean, na.rm = T)
#negative emotions
neg <- data.frame(w2w[paste0("negemo_",1:22)])
NE <- apply(neg, MARGIN = 1, FUN = mean, na.rm = T)
#analytic 
analytic <- data.frame(w2w[paste0("analytic_",1:22)])
AN <- apply(analytic, MARGIN = 1, FUN = mean, na.rm = T)

#add them all to new data.frame
w2 <- data.frame(w2w$mediaOutlet)
colnames(w2)[colnames(w2) == "w2w.mediaOutlet"] <- "mediaOutlet"
w2$affect   <- AF
w2$cogproc  <- CP
w2$analytic <- AN
w2$posemo   <- PE
w2$negemo   <- NE

prep wave 1 data

#delete any measures we don't want---exclude media exposure #3, #8, and #9
## missing Yahoo, Huff Post, Wash Post
d1 <- d1.1[,c("s3", "Wave", "vaxxAttitudes",
            "demStrength", "repStrength", "partyClose", 
            "mediaExposure_1", "mediaExposure_2", "mediaExposure_4",
            "mediaExposure_5", "mediaExposure_6", "mediaExposure_7", 
            "mediaExposure_10", "mediaExposure_11", "mediaExposure_12",
            "mediaExposure_13",  "mediaExposure_14", "mediaExposure_15")]

colnames(d1)[colnames(d1) == "s3"]  <- "participant"

#rename exposure
colnames(d1)[colnames(d1)=="mediaExposure_1"] <- "NYT_exp"
colnames(d1)[colnames(d1)=="mediaExposure_2"] <- "WSJ_exp"
colnames(d1)[colnames(d1)=="mediaExposure_4"] <- "USAT_exp"
colnames(d1)[colnames(d1)=="mediaExposure_5"] <- "Fox_exp"
colnames(d1)[colnames(d1)=="mediaExposure_6"] <- "CNN_exp"
colnames(d1)[colnames(d1)=="mediaExposure_7"] <- "MSNBC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_10"] <-"AOL_exp"
colnames(d1)[colnames(d1)=="mediaExposure_11"] <-"NPR_exp"
colnames(d1)[colnames(d1)=="mediaExposure_12"] <-"ABC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_13"] <-"NBC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_14"] <-"CBS_exp"
colnames(d1)[colnames(d1)=="mediaExposure_15"] <-"PBS_exp"

#change to 0-4 rating
d1$ABC_exp   <- d1$ABC_exp   - 1
d1$CBS_exp   <- d1$CBS_exp   - 1
d1$CNN_exp   <- d1$CNN_exp   - 1
d1$Fox_exp   <- d1$Fox_exp   - 1
d1$MSNBC_exp <- d1$MSNBC_exp - 1
d1$NBC_exp   <- d1$NBC_exp   - 1
d1$NPR_exp   <- d1$NPR_exp   - 1
d1$NYT_exp   <- d1$NYT_exp   - 1
d1$PBS_exp   <- d1$PBS_exp   - 1
d1$USAT_exp  <- d1$USAT_exp  - 1
d1$WSJ_exp   <- d1$WSJ_exp   - 1
d1$AOL_exp   <- d1$AOL_exp   - 1

## affect
d1$ABC_AF   <- w1$affect[w1$mediaOutlet == "ABC"]
d1$CBS_AF   <- w1$affect[w1$mediaOutlet == "CBS"]
d1$CNN_AF   <- w1$affect[w1$mediaOutlet == "CNN"]
d1$Fox_AF   <- w1$affect[w1$mediaOutlet == "Fox"]
d1$MSNBC_AF <- w1$affect[w1$mediaOutlet == "MSNBC"]
d1$NBC_AF   <- w1$affect[w1$mediaOutlet == "NBC"]
d1$NPR_AF   <- w1$affect[w1$mediaOutlet == "NPR"]
d1$NYT_AF   <- w1$affect[w1$mediaOutlet == "NYT"]
d1$PBS_AF   <- w1$affect[w1$mediaOutlet == "PBS"]
d1$USAT_AF  <- w1$affect[w1$mediaOutlet == "USAToday"]
d1$WSJ_AF   <- w1$affect[w1$mediaOutlet == "WSJ"]
d1$AOL_AF   <- w1$affect[w1$mediaOutlet == "AOL"]

## analytic thinking
d1$ABC_AN   <- w1$analytic[w1$mediaOutlet == "ABC"]
d1$CBS_AN   <- w1$analytic[w1$mediaOutlet == "CBS"]
d1$CNN_AN   <- w1$analytic[w1$mediaOutlet == "CNN"]
d1$Fox_AN   <- w1$analytic[w1$mediaOutlet == "Fox"]
d1$MSNBC_AN <- w1$analytic[w1$mediaOutlet == "MSNBC"]
d1$NBC_AN   <- w1$analytic[w1$mediaOutlet == "NBC"]
d1$NPR_AN   <- w1$analytic[w1$mediaOutlet == "NPR"]
d1$NYT_AN   <- w1$analytic[w1$mediaOutlet == "NYT"]
d1$PBS_AN   <- w1$analytic[w1$mediaOutlet == "PBS"]
d1$USAT_AN  <- w1$analytic[w1$mediaOutlet == "USAToday"]
d1$WSJ_AN   <- w1$analytic[w1$mediaOutlet == "WSJ"]
d1$AOL_AN   <- w1$analytic[w1$mediaOutlet == "AOL"]

#individual media affect
d1$ABC_AFexp <- d1$ABC_AF * d1$ABC_exp
d1$CBS_AFexp <- d1$CBS_AF * d1$CBS_exp
d1$CNN_AFexp <- d1$CNN_AF * d1$CNN_exp
d1$Fox_AFexp <- d1$Fox_AF * d1$Fox_exp
d1$MSNBC_AFexp <- d1$MSNBC_AF * d1$MSNBC_exp
d1$NBC_AFexp <- d1$NBC_AF * d1$NBC_exp
d1$NPR_AFexp <- d1$NPR_AF * d1$NPR_exp
d1$NYT_AFexp <- d1$NYT_AF * d1$NYT_exp
d1$PBS_AFexp <- d1$PBS_AF * d1$PBS_exp
d1$USAT_AFexp <- d1$USAT_AF * d1$USAT_exp
d1$WSJ_AFexp <- d1$WSJ_AF * d1$WSJ_exp
d1$AOL_AFexp <- d1$AOL_AF * d1$AOL_exp

x <- cbind(d1$ABC_AFexp, 
           d1$CBS_AFexp, 
           d1$CNN_AFexp, 
           d1$Fox_AFexp, 
           d1$MSNBC_AFexp, 
           d1$NBC_AFexp, 
           d1$NPR_AFexp, 
           d1$NYT_AFexp, 
           d1$PBS_AFexp, 
           d1$USAT_AFexp, 
           d1$WSJ_AFexp, 
           d1$AOL_AFexp)

d1$index_AFexp <- rowMeans(x, na.rm = T)

#individual media affect
d1$ABC_ANexp <- d1$ABC_AN * d1$ABC_exp
d1$CBS_ANexp <- d1$CBS_AN * d1$CBS_exp
d1$CNN_ANexp <- d1$CNN_AN * d1$CNN_exp
d1$Fox_ANexp <- d1$Fox_AN * d1$Fox_exp
d1$MSNBC_ANexp <- d1$MSNBC_AN * d1$MSNBC_exp
d1$NBC_ANexp <- d1$NBC_AN * d1$NBC_exp
d1$NPR_ANexp <- d1$NPR_AN * d1$NPR_exp
d1$NYT_ANexp <- d1$NYT_AN * d1$NYT_exp
d1$PBS_ANexp <- d1$PBS_AN * d1$PBS_exp
d1$USAT_ANexp <- d1$USAT_AN * d1$USAT_exp
d1$WSJ_ANexp <- d1$WSJ_AN * d1$WSJ_exp
d1$AOL_ANexp <- d1$AOL_AN * d1$AOL_exp

x <- cbind(d1$ABC_ANexp, 
           d1$CBS_ANexp, 
           d1$CNN_ANexp, 
           d1$Fox_ANexp, 
           d1$MSNBC_ANexp, 
           d1$NBC_ANexp, 
           d1$NPR_ANexp, 
           d1$NYT_ANexp, 
           d1$PBS_ANexp, 
           d1$USAT_ANexp, 
           d1$WSJ_ANexp, 
           d1$AOL_ANexp)

d1$index_ANexp <- rowMeans(x, na.rm = T)

#####################################################
# codes for party
####################################################

d1$partyCont <- NA
d1$partyCont[d1$demStrength == 1] <- -3
d1$partyCont[d1$demStrength == 2] <- -2
d1$partyCont[d1$partyClose  == 1] <- -1
d1$partyCont[d1$partyClose  == 3] <- 0
d1$partyCont[d1$partyClose  == 2] <- 1
d1$partyCont[d1$repStrength == 2] <- 2
d1$partyCont[d1$repStrength == 1] <- 3

## party factor
d1$party_factor <- NA
d1$party_factor[d1$partyCont < 0]  <- 'Democrat'
d1$party_factor[d1$partyCont == 0] <- 'Independent'
d1$party_factor[d1$partyCont > 0]  <- 'Republican'

## Order of party variable
d1$party_factor <- factor(d1$party_factor, 
                          levels = c('Democrat', 'Republican', 'Independent'))

## contrast codes
d1$DvR <- NA
d1$DvR[d1$party_factor == 'Democrat']    <- -.5
d1$DvR[d1$party_factor == 'Independent'] <- 0
d1$DvR[d1$party_factor == 'Republican']  <- .5

d1$IvDR <- NA
d1$IvDR[d1$party_factor == 'Democrat']    <- .33
d1$IvDR[d1$party_factor == 'Independent'] <- -.67
d1$IvDR[d1$party_factor == 'Republican']  <- .33

## dummy codes
d1$Rep_1[d1$party_factor == 'Democrat']    <- 0
d1$Rep_1[d1$party_factor == 'Republican']  <- 1
d1$Rep_1[d1$party_factor == 'Independent'] <- 0

d1$Ind_1[d1$party_factor == 'Democrat']    <- 0
d1$Ind_1[d1$party_factor == 'Republican']  <- 0
d1$Ind_1[d1$party_factor == 'Independent'] <- 1

d1$Dem_1[d1$party_factor == 'Democrat']    <- 1
d1$Dem_1[d1$party_factor == 'Republican']  <- 0
d1$Dem_1[d1$party_factor == 'Independent'] <- 0

## delete unnecessary columns
d1$party <- NULL
d1$demStrength <- NULL
d1$repStrength <- NULL
d1$partyClose <- NULL

prep wave 2 data

# delete any measures we don't want---exclude media exposure #3, #8, and #9
# missing Yahoo, Huff Post, Wash Post
d2 <- d2.1[,c("s3", "Wave", "vaxxAttitudes",
            "demStrength", "repStrength", "partyClose", 
            "mediaExposure_1", "mediaExposure_2", "mediaExposure_4",
            "mediaExposure_5", "mediaExposure_6", "mediaExposure_7", 
            "mediaExposure_10", "mediaExposure_11", "mediaExposure_12",
            "mediaExposure_13",  "mediaExposure_14", "mediaExposure_15")]

colnames(d2)[colnames(d2) == "s3"]  <- "participant"

# rename exposure
colnames(d2)[colnames(d2) == "mediaExposure_1"]  <- "NYT_exp"
colnames(d2)[colnames(d2) == "mediaExposure_2"]  <- "WSJ_exp"
colnames(d2)[colnames(d2) == "mediaExposure_4"]  <- "USAT_exp"
colnames(d2)[colnames(d2) == "mediaExposure_5"]  <- "Fox_exp"
colnames(d2)[colnames(d2) == "mediaExposure_6"]  <- "CNN_exp"
colnames(d2)[colnames(d2) == "mediaExposure_7"]  <- "MSNBC_exp"
colnames(d2)[colnames(d2) == "mediaExposure_10"] <- "AOL_exp"
colnames(d2)[colnames(d2) == "mediaExposure_11"] <- "NPR_exp"
colnames(d2)[colnames(d2) == "mediaExposure_12"] <- "ABC_exp"
colnames(d2)[colnames(d2) == "mediaExposure_13"] <- "NBC_exp"
colnames(d2)[colnames(d2) == "mediaExposure_14"] <- "CBS_exp"
colnames(d2)[colnames(d2) == "mediaExposure_15"] <- "PBS_exp"

# change to 0-4 rating
d2$ABC_exp   <- d2$ABC_exp   - 1
d2$CBS_exp   <- d2$CBS_exp   - 1
d2$CNN_exp   <- d2$CNN_exp   - 1
d2$Fox_exp   <- d2$Fox_exp   - 1
d2$MSNBC_exp <- d2$MSNBC_exp - 1
d2$NBC_exp   <- d2$NBC_exp   - 1
d2$NPR_exp   <- d2$NPR_exp   - 1
d2$NYT_exp   <- d2$NYT_exp   - 1
d2$PBS_exp   <- d2$PBS_exp   - 1
d2$USAT_exp  <- d2$USAT_exp  - 1
d2$WSJ_exp   <- d2$WSJ_exp   - 1
d2$AOL_exp   <- d2$AOL_exp   - 1

## affect
d2$ABC_AF   <- w2$affect[w2$mediaOutlet == "ABC"]
d2$CBS_AF   <- w2$affect[w2$mediaOutlet == "CBS"]
d2$CNN_AF   <- w2$affect[w2$mediaOutlet == "CNN"]
d2$Fox_AF   <- w2$affect[w2$mediaOutlet == "Fox"]
d2$MSNBC_AF <- w2$affect[w2$mediaOutlet == "MSNBC"]
d2$NBC_AF   <- w2$affect[w2$mediaOutlet == "NBC"]
d2$NPR_AF   <- w2$affect[w2$mediaOutlet == "NPR"]
d2$NYT_AF   <- w2$affect[w2$mediaOutlet == "NYT"]
d2$PBS_AF   <- w2$affect[w2$mediaOutlet == "PBS"]
d2$USAT_AF  <- w2$affect[w2$mediaOutlet == "USAToday"]
d2$WSJ_AF   <- w2$affect[w2$mediaOutlet == "WSJ"]
d2$AOL_AF   <- w2$affect[w2$mediaOutlet == "AOL"]

## analytic thinking
d2$ABC_AN   <- w2$analytic[w2$mediaOutlet == "ABC"]
d2$CBS_AN   <- w2$analytic[w2$mediaOutlet == "CBS"]
d2$CNN_AN   <- w2$analytic[w2$mediaOutlet == "CNN"]
d2$Fox_AN   <- w2$analytic[w2$mediaOutlet == "Fox"]
d2$MSNBC_AN <- w2$analytic[w2$mediaOutlet == "MSNBC"]
d2$NBC_AN   <- w2$analytic[w2$mediaOutlet == "NBC"]
d2$NPR_AN   <- w2$analytic[w2$mediaOutlet == "NPR"]
d2$NYT_AN   <- w2$analytic[w2$mediaOutlet == "NYT"]
d2$PBS_AN   <- w2$analytic[w2$mediaOutlet == "PBS"]
d2$USAT_AN  <- w2$analytic[w2$mediaOutlet == "USAToday"]
d2$WSJ_AN   <- w2$analytic[w2$mediaOutlet == "WSJ"]
d2$AOL_AN   <- w2$analytic[w2$mediaOutlet == "AOL"]

#individual media affect
d2$ABC_AFexp <- d2$ABC_AF * d2$ABC_exp
d2$CBS_AFexp <- d2$CBS_AF * d2$CBS_exp
d2$CNN_AFexp <- d2$CNN_AF * d2$CNN_exp
d2$Fox_AFexp <- d2$Fox_AF * d2$Fox_exp
d2$MSNBC_AFexp <- d2$MSNBC_AF * d2$MSNBC_exp
d2$NBC_AFexp <- d2$NBC_AF * d2$NBC_exp
d2$NPR_AFexp <- d2$NPR_AF * d2$NPR_exp
d2$NYT_AFexp <- d2$NYT_AF * d2$NYT_exp
d2$PBS_AFexp <- d2$PBS_AF * d2$PBS_exp
d2$USAT_AFexp <- d2$USAT_AF * d2$USAT_exp
d2$WSJ_AFexp <- d2$WSJ_AF * d2$WSJ_exp
d2$AOL_AFexp <- d2$AOL_AF * d2$AOL_exp

x <- cbind(d2$ABC_AFexp, 
           d2$CBS_AFexp, 
           d2$CNN_AFexp, 
           d2$Fox_AFexp, 
           d2$MSNBC_AFexp, 
           d2$NBC_AFexp, 
           d2$NPR_AFexp, 
           d2$NYT_AFexp, 
           d2$PBS_AFexp, 
           d2$USAT_AFexp, 
           d2$WSJ_AFexp, 
           d2$AOL_AFexp)

d2$index_AFexp <- rowMeans(x, na.rm = T)

#individual media affect
d2$ABC_ANexp <- d2$ABC_AN * d2$ABC_exp
d2$CBS_ANexp <- d2$CBS_AN * d2$CBS_exp
d2$CNN_ANexp <- d2$CNN_AN * d2$CNN_exp
d2$Fox_ANexp <- d2$Fox_AN * d2$Fox_exp
d2$MSNBC_ANexp <- d2$MSNBC_AN * d2$MSNBC_exp
d2$NBC_ANexp <- d2$NBC_AN * d2$NBC_exp
d2$NPR_ANexp <- d2$NPR_AN * d2$NPR_exp
d2$NYT_ANexp <- d2$NYT_AN * d2$NYT_exp
d2$PBS_ANexp <- d2$PBS_AN * d2$PBS_exp
d2$USAT_ANexp <- d2$USAT_AN * d2$USAT_exp
d2$WSJ_ANexp <- d2$WSJ_AN * d2$WSJ_exp
d2$AOL_ANexp <- d2$AOL_AN * d2$AOL_exp

x <- cbind(d2$ABC_ANexp, 
           d2$CBS_ANexp, 
           d2$CNN_ANexp, 
           d2$Fox_ANexp, 
           d2$MSNBC_ANexp, 
           d2$NBC_ANexp, 
           d2$NPR_ANexp, 
           d2$NYT_ANexp, 
           d2$PBS_ANexp, 
           d2$USAT_ANexp, 
           d2$WSJ_ANexp, 
           d2$AOL_ANexp)

d2$index_ANexp <- rowMeans(x, na.rm = T)

#####################################################
# codes for party
####################################################

d2$partyCont <- NA
d2$partyCont[d2$demStrength == 1] <- -3
d2$partyCont[d2$demStrength == 2] <- -2
d2$partyCont[d2$partyClose  == 1] <- -1
d2$partyCont[d2$partyClose  == 3] <- 0
d2$partyCont[d2$partyClose  == 2] <- 1
d2$partyCont[d2$repStrength == 2] <- 2
d2$partyCont[d2$repStrength == 1] <- 3

# party factor
d2$party_factor <- NA
d2$party_factor[d2$partyCont < 0]  <- 'Democrat'
d2$party_factor[d2$partyCont == 0] <- 'Independent'
d2$party_factor[d2$partyCont > 0]  <- 'Republican'

## Order of party variable
d2$party_factor <- factor(d2$party_factor, 
                          levels = c('Democrat', 'Republican','Independent'))

## Contrast codes
d2$DvR <- NA
d2$DvR[d2$party_factor == 'Democrat']    <- -.5
d2$DvR[d2$party_factor == 'Independent'] <-   0
d2$DvR[d2$party_factor == 'Republican']  <-  .5

d2$IvDR <- NA
d2$IvDR[d2$party_factor == 'Democrat']    <-  .33
d2$IvDR[d2$party_factor == 'Independent'] <- -.67
d2$IvDR[d2$party_factor == 'Republican']  <-  .33

## dummy codes 
d2$Rep_1[d2$party_factor == 'Democrat']    <- 0
d2$Rep_1[d2$party_factor == 'Republican']  <- 1
d2$Rep_1[d2$party_factor == 'Independent'] <- 0

d2$Ind_1[d2$party_factor == 'Democrat']    <- 0
d2$Ind_1[d2$party_factor == 'Republican']  <- 0
d2$Ind_1[d2$party_factor == 'Independent'] <- 1

d2$Dem_1[d2$party_factor == 'Democrat']    <- 1
d2$Dem_1[d2$party_factor == 'Republican']  <- 0
d2$Dem_1[d2$party_factor == 'Independent'] <- 0

## delete unnecessary columns
d2$party <- NULL
d2$demStrength <- NULL
d2$repStrength <- NULL
d2$partyClose <- NULL

LONG merged data

names(d1) == names(d2)
##  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [46] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
dm <- rbind.data.frame(d1, d2)
dm$participant <- as.factor(dm$participant)

dm$W1vW2 <- NA
dm$W1vW2[dm$Wave == 1] <- -.5
dm$W1vW2[dm$Wave == 2] <- .5

dm$W1_0 <- NA
dm$W1_0[dm$Wave == 1] <- 0
dm$W1_0[dm$Wave == 2] <- 1

dm$W2_0 <- NA
dm$W2_0[dm$Wave == 1] <- 1
dm$W2_0[dm$Wave == 2] <- 0

WIDE merged data

#d1 = x; d2 = y
dw <- merge(d1, d2, by = c("participant"), all.x = T, all.y = T)

dw$party_match <- TRUE
dw$party_match[dw$party_factor.y == 'Democrat' & dw$party_factor.x == 'Republican'] <- FALSE
dw$party_match[dw$party_factor.y == 'Republican' & dw$party_factor.x == 'Democrat']<- FALSE

#make weak leaners
dw$party_factor.y[dw$party_factor.y == 'Democrat' & dw$party_factor.x == 'Independent']<- 'Democrat'
dw$party_factor.y[dw$party_factor.y == 'Independent' & dw$party_factor.x == 'Republican']<- 'Republican'
dw$party_factor.x[dw$party_factor.y == 'Independent' & dw$party_factor.x == 'Democrat']<- 'Democrat'
dw$party_factor.x[dw$party_factor.y == 'Republican' & dw$party_factor.x == 'Independent']<- 'Republican'

dw$partyCont.y[dw$party_factor.y == 'Democrat' & dw$party_factor.x == 'Independent']<- -1
dw$partyCont.y[dw$party_factor.y == 'Independent' & dw$party_factor.x == 'Republican']<- 1
dw$partyCont.x[dw$party_factor.y == 'Independent' & dw$party_factor.x == 'Democrat']<- -1
dw$partyCont.x[dw$party_factor.y == 'Republican' & dw$party_factor.x == 'Independent']<- 1


#get rid of party swaps
dw <- dw[dw$party_match,]

colnames(dw)[colnames(dw) == "vaxxAttitudes.x"]  <- "vaxxAttitudes.w1"
colnames(dw)[colnames(dw) == "vaxxAttitudes.y"]  <- "vaxxAttitudes.w2"

dw$vaxxAttitudes.c.w1 <- dw$vaxxAttitudes.w1 - mean(dw$vaxxAttitudes.w1, na.rm = T)

colnames(dw)[colnames(dw) == "party_factor.x"]  <- "party_factor"
dw$party_factor.y <- NULL
colnames(dw)[colnames(dw) == "partyCont.x"]  <- "partyCont.w1"
colnames(dw)[colnames(dw) == "partyCont.y"]  <- "partyCont.w2"

colnames(dw)[colnames(dw) == "index_AFexp.x"]  <- "index_AFexp.w1"
colnames(dw)[colnames(dw) == "index_AFexp.y"]  <- "index_AFexp.w2"

colnames(dw)[colnames(dw) == "index_ANexp.x"]  <- "index_ANexp.w1"
colnames(dw)[colnames(dw) == "index_ANexp.y"]  <- "index_ANexp.w2"

colnames(dw)[colnames(dw) == "DvR.x"]  <- "DvR"
colnames(dw)[colnames(dw) == "IvDR.x"]  <- "IvDR"

colnames(dw)[colnames(dw) == "Ind_1.x"]  <- "Ind_1"
colnames(dw)[colnames(dw) == "Rep_1.x"]  <- "Rep_1"
colnames(dw)[colnames(dw) == "Dem_1.x"]  <- "Dem_1"

#get averages
x <- cbind(dw$vaxxAttitudes.w1, dw$vaxxAttitudes.w2)
dw$avgVaxxAttitudes <- rowMeans(x, na.rm = T)

x <- cbind(dw$index_AFexp.w1, dw$index_AFexp.w2)
dw$avg_AFexp <- rowMeans(x, na.rm = T)

x <- cbind(dw$index_ANexp.w1, dw$index_ANexp.w2)
dw$avg_ANexp <- rowMeans(x, na.rm = T)

descriptives

sum(table(d1$vaxxAttitudes)) #3051 responses for vaxxAttitudes in wave 1
## [1] 3051
sum(table(d2$vaxxAttitudes)) #2419 responses for vaxxAttitudes in wave 2
## [1] 2419
sum(table(d1$ABC_exp)) #3051
## [1] 3051
sum(table(d1$CBS_exp)) #3051
## [1] 3051
sum(table(d1$CNN_exp)) #3053
## [1] 3053
sum(table(d1$Fox_exp))#3053
## [1] 3053
sum(table(d1$MSNBC_exp)) #3052
## [1] 3052
sum(table(d1$NBC_exp)) #3053
## [1] 3053
sum(table(d1$NPR_exp)) #3052
## [1] 3052
sum(table(d1$NYT_exp)) #3052
## [1] 3052
sum(table(d1$PBS_exp)) #3053
## [1] 3053
sum(table(d1$USAT_exp)) #3053
## [1] 3053
sum(table(d1$WSJ_exp)) #3052
## [1] 3052
sum(table(d1$AOL_exp)) #3053
## [1] 3053
sum(table(d2$ABC_exp)) #2412
## [1] 2412
sum(table(d2$CBS_exp)) #2413
## [1] 2413
sum(table(d2$CNN_exp))#2411
## [1] 2411
sum(table(d2$Fox_exp)) #2414
## [1] 2414
sum(table(d2$MSNBC_exp)) #2413
## [1] 2413
sum(table(d2$NBC_exp)) #2412
## [1] 2412
sum(table(d2$NPR_exp)) #2413
## [1] 2413
sum(table(d2$NYT_exp)) #2412
## [1] 2412
sum(table(d2$PBS_exp))#2412
## [1] 2412
sum(table(d2$USAT_exp))#2413
## [1] 2413
sum(table(d2$WSJ_exp)) #2413
## [1] 2413
sum(table(d2$AOL_exp)) #2411
## [1] 2411
sum(table(d1$party_factor))
## [1] 3147
sum(table(d2$party_factor))
## [1] 2426
tapply(d1$index_AFexp, d1$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##    5.469034    3.406757    3.935891
tapply(d1$index_ANexp, d1$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##   108.65344    65.97917    78.10298
tapply(d2$index_AFexp, d2$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##    5.095026    2.902290    3.173599
tapply(d2$index_ANexp, d2$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##   102.32919    57.04594    63.54699

corr matrix

x <- cbind.data.frame(dw$index_ANexp.w1, dw$index_ANexp.w2, dw$index_AFexp.w1, dw$index_AFexp.w2, dw$avg_ANexp, dw$avg_AFexp, dw$partyCont.w1, dw$partyCont.w2)

corr <- cor(x, use = "complete.obs")

ggcorrplot(corr, type = "lower",
   lab = TRUE, title = "correlations")

I. AVG Wave 1 + Wave 2

1. avg_vaxxAttitudes ~ (avg_ANALYTIC + avg_AFFECT) * party

a. contrast model

model1.cc <- lm(avgVaxxAttitudes ~ (DvR + IvDR) * (avg_AFexp + avg_ANexp), data = dw)
summary(model1.cc)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (DvR + IvDR) * (avg_AFexp + avg_ANexp), 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7656 -1.4629  0.2072  1.6467  3.9363 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -0.155727   0.063167  -2.465   0.0137 *  
## DvR            -1.170813   0.142538  -8.214 3.14e-16 ***
## IvDR            0.608711   0.144158   4.223 2.49e-05 ***
## avg_AFexp       0.289147   0.104733   2.761   0.0058 ** 
## avg_ANexp      -0.007961   0.005055  -1.575   0.1154    
## DvR:avg_AFexp   0.996666   0.214940   4.637 3.69e-06 ***
## DvR:avg_ANexp  -0.043077   0.010306  -4.180 3.00e-05 ***
## IvDR:avg_AFexp -0.216677   0.254294  -0.852   0.3942    
## IvDR:avg_ANexp  0.010664   0.012319   0.866   0.3867    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.944 on 2997 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.09102,    Adjusted R-squared:  0.0886 
## F-statistic: 37.51 on 8 and 2997 DF,  p-value: < 2.2e-16

plot

b. simple effects Dem

model1.dem <- lm(avgVaxxAttitudes ~ (Rep_1 + Ind_1) *
                   (avg_AFexp + avg_ANexp), data = dw)
summary(model1.dem)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Rep_1 + Ind_1) * (avg_AFexp + 
##     avg_ANexp), data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7656 -1.4629  0.2072  1.6467  3.9363 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      0.630554   0.107382   5.872 4.78e-09 ***
## Rep_1           -1.170813   0.142538  -8.214 3.14e-16 ***
## Ind_1           -1.194118   0.165025  -7.236 5.84e-13 ***
## avg_AFexp       -0.280689   0.130273  -2.155  0.03127 *  
## avg_ANexp        0.017097   0.006229   2.745  0.00609 ** 
## Rep_1:avg_AFexp  0.996666   0.214940   4.637 3.69e-06 ***
## Rep_1:avg_ANexp -0.043077   0.010306  -4.180 3.00e-05 ***
## Ind_1:avg_AFexp  0.715010   0.264739   2.701  0.00696 ** 
## Ind_1:avg_ANexp -0.032203   0.012806  -2.515  0.01197 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.944 on 2997 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.09102,    Adjusted R-squared:  0.0886 
## F-statistic: 37.51 on 8 and 2997 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <- lm(avgVaxxAttitudes ~ (Dem_1 + Ind_1) *
                   (avg_AFexp + avg_ANexp), data = dw)
summary(model1.rep)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Dem_1 + Ind_1) * (avg_AFexp + 
##     avg_ANexp), data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7656 -1.4629  0.2072  1.6467  3.9363 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -0.540260   0.093734  -5.764 9.06e-09 ***
## Dem_1            1.170813   0.142538   8.214 3.14e-16 ***
## Ind_1           -0.023304   0.156488  -0.149  0.88163    
## avg_AFexp        0.715977   0.170963   4.188 2.90e-05 ***
## avg_ANexp       -0.025981   0.008211  -3.164  0.00157 ** 
## Dem_1:avg_AFexp -0.996666   0.214940  -4.637 3.69e-06 ***
## Dem_1:avg_ANexp  0.043077   0.010306   4.180 3.00e-05 ***
## Ind_1:avg_AFexp -0.281656   0.286956  -0.982  0.32641    
## Ind_1:avg_ANexp  0.010875   0.013879   0.784  0.43338    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.944 on 2997 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.09102,    Adjusted R-squared:  0.0886 
## F-statistic: 37.51 on 8 and 2997 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <- lm(avgVaxxAttitudes ~ (Rep_1 + Dem_1) *
                   (avg_AFexp + avg_ANexp), data = dw)
summary(model1.ind)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Rep_1 + Dem_1) * (avg_AFexp + 
##     avg_ANexp), data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7656 -1.4629  0.2072  1.6467  3.9363 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -0.56356    0.12531  -4.497 7.14e-06 ***
## Rep_1            0.02330    0.15649   0.149  0.88163    
## Dem_1            1.19412    0.16502   7.236 5.84e-13 ***
## avg_AFexp        0.43432    0.23047   1.885  0.05959 .  
## avg_ANexp       -0.01511    0.01119  -1.350  0.17710    
## Rep_1:avg_AFexp  0.28166    0.28696   0.982  0.32641    
## Rep_1:avg_ANexp -0.01087    0.01388  -0.784  0.43338    
## Dem_1:avg_AFexp -0.71501    0.26474  -2.701  0.00696 ** 
## Dem_1:avg_ANexp  0.03220    0.01281   2.515  0.01197 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.944 on 2997 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.09102,    Adjusted R-squared:  0.0886 
## F-statistic: 37.51 on 8 and 2997 DF,  p-value: < 2.2e-16

2. avg_vaxxAttitudes ~ avg_AFFECT * party

a. contrast model

model1.cc <- lm(avgVaxxAttitudes ~ (DvR + IvDR) * avg_AFexp, data = dw)
summary(model1.cc)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (DvR + IvDR) * avg_AFexp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6358 -1.4584  0.1954  1.6461  3.5314 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -0.13498    0.06131  -2.201   0.0278 *  
## DvR            -0.99894    0.13687  -7.299 3.71e-13 ***
## IvDR            0.59163    0.14107   4.194 2.82e-05 ***
## avg_AFexp       0.12593    0.01207  10.436  < 2e-16 ***
## DvR:avg_AFexp   0.10508    0.02667   3.941 8.31e-05 ***
## IvDR:avg_AFexp  0.00147    0.02797   0.053   0.9581    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.949 on 3000 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.08515,    Adjusted R-squared:  0.08362 
## F-statistic: 55.84 on 5 and 3000 DF,  p-value: < 2.2e-16

plot

b. simple effects Dem

model1.dem <- lm(avgVaxxAttitudes ~ (Rep_1 + Ind_1) * avg_AFexp, data = dw)
summary(model1.dem)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Rep_1 + Ind_1) * avg_AFexp, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6358 -1.4584  0.1954  1.6461  3.5314 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      0.55973    0.10452   5.355 9.19e-08 ***
## Rep_1           -0.99894    0.13687  -7.299 3.71e-13 ***
## Ind_1           -1.09110    0.16168  -6.748 1.79e-11 ***
## avg_AFexp        0.07387    0.01688   4.376 1.25e-05 ***
## Rep_1:avg_AFexp  0.10508    0.02667   3.941 8.31e-05 ***
## Ind_1:avg_AFexp  0.05107    0.02982   1.713   0.0869 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.949 on 3000 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.08515,    Adjusted R-squared:  0.08362 
## F-statistic: 55.84 on 5 and 3000 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <- lm(avgVaxxAttitudes ~ (Dem_1 + Ind_1) * avg_AFexp, data = dw)
summary(model1.rep)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Dem_1 + Ind_1) * avg_AFexp, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6358 -1.4584  0.1954  1.6461  3.5314 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -0.43922    0.08837  -4.970 7.06e-07 ***
## Dem_1            0.99894    0.13687   7.299 3.71e-13 ***
## Ind_1           -0.09216    0.15174  -0.607   0.5437    
## avg_AFexp        0.17896    0.02064   8.670  < 2e-16 ***
## Dem_1:avg_AFexp -0.10508    0.02667  -3.941 8.31e-05 ***
## Ind_1:avg_AFexp -0.05401    0.03210  -1.683   0.0926 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.949 on 3000 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.08515,    Adjusted R-squared:  0.08362 
## F-statistic: 55.84 on 5 and 3000 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <- lm(avgVaxxAttitudes ~ (Rep_1 + Dem_1) * avg_AFexp, data = dw)
summary(model1.ind)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Rep_1 + Dem_1) * avg_AFexp, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6358 -1.4584  0.1954  1.6461  3.5314 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -0.53137    0.12335  -4.308 1.70e-05 ***
## Rep_1            0.09216    0.15174   0.607   0.5437    
## Dem_1            1.09110    0.16168   6.748 1.79e-11 ***
## avg_AFexp        0.12494    0.02458   5.083 3.95e-07 ***
## Rep_1:avg_AFexp  0.05401    0.03210   1.683   0.0926 .  
## Dem_1:avg_AFexp -0.05107    0.02982  -1.713   0.0869 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.949 on 3000 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.08515,    Adjusted R-squared:  0.08362 
## F-statistic: 55.84 on 5 and 3000 DF,  p-value: < 2.2e-16

3. avg_vaxxAttitudes ~ avg_ANALYTIC * party

a. contrast model

model1.cc <- lm(avgVaxxAttitudes ~ (DvR + IvDR) * avg_ANexp, data = dw)
summary(model1.cc)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (DvR + IvDR) * avg_ANexp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7078 -1.4650  0.2101  1.6444  3.5001 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -0.1061776  0.0596888  -1.779 0.075365 .  
## DvR            -0.9252151  0.1323044  -6.993 3.30e-12 ***
## IvDR            0.5878714  0.1380327   4.259 2.12e-05 ***
## avg_ANexp       0.0059352  0.0005825  10.190  < 2e-16 ***
## DvR:avg_ANexp   0.0043674  0.0012798   3.413 0.000652 ***
## IvDR:avg_ANexp  0.0001111  0.0013553   0.082 0.934694    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.951 on 3000 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.08322,    Adjusted R-squared:  0.08169 
## F-statistic: 54.46 on 5 and 3000 DF,  p-value: < 2.2e-16

plot

b. simple effects Dem

model1.dem <- lm(avgVaxxAttitudes ~ (Rep_1 + Ind_1) * avg_ANexp, data = dw)
summary(model1.dem)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Rep_1 + Ind_1) * avg_ANexp, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7078 -1.4650  0.2101  1.6444  3.5001 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      0.5504275  0.1011177   5.443 5.65e-08 ***
## Rep_1           -0.9252151  0.1323044  -6.993 3.30e-12 ***
## Ind_1           -1.0504789  0.1578028  -6.657 3.31e-11 ***
## avg_ANexp        0.0037882  0.0008081   4.688 2.88e-06 ***
## Rep_1:avg_ANexp  0.0043674  0.0012798   3.413 0.000652 ***
## Ind_1:avg_ANexp  0.0020727  0.0014424   1.437 0.150835    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.951 on 3000 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.08322,    Adjusted R-squared:  0.08169 
## F-statistic: 54.46 on 5 and 3000 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <- lm(avgVaxxAttitudes ~ (Dem_1 + Ind_1) * avg_ANexp, data = dw)
summary(model1.rep)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Dem_1 + Ind_1) * avg_ANexp, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7078 -1.4650  0.2101  1.6444  3.5001 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -0.3747877  0.0853210  -4.393 1.16e-05 ***
## Dem_1            0.9252151  0.1323044   6.993 3.30e-12 ***
## Ind_1           -0.1252638  0.1481776  -0.845 0.397976    
## avg_ANexp        0.0081556  0.0009924   8.218 3.03e-16 ***
## Dem_1:avg_ANexp -0.0043674  0.0012798  -3.413 0.000652 ***
## Ind_1:avg_ANexp -0.0022948  0.0015531  -1.478 0.139644    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.951 on 3000 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.08322,    Adjusted R-squared:  0.08169 
## F-statistic: 54.46 on 5 and 3000 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <- lm(avgVaxxAttitudes ~ (Rep_1 + Dem_1) * avg_ANexp, data = dw)
summary(model1.ind)
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (Rep_1 + Dem_1) * avg_ANexp, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7078 -1.4650  0.2101  1.6444  3.5001 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -0.500051   0.121148  -4.128 3.77e-05 ***
## Rep_1            0.125264   0.148178   0.845    0.398    
## Dem_1            1.050479   0.157803   6.657 3.31e-11 ***
## avg_ANexp        0.005861   0.001195   4.905 9.82e-07 ***
## Rep_1:avg_ANexp  0.002295   0.001553   1.478    0.140    
## Dem_1:avg_ANexp -0.002073   0.001442  -1.437    0.151    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.951 on 3000 degrees of freedom
##   (411 observations deleted due to missingness)
## Multiple R-squared:  0.08322,    Adjusted R-squared:  0.08169 
## F-statistic: 54.46 on 5 and 3000 DF,  p-value: < 2.2e-16

4. avg_ANALYTIC ~ avg_AFFECT * party

a. contrast model

model1.cc <- lm(avg_ANexp ~ (DvR + IvDR) * avg_AFexp, data = dw)
summary(model1.cc)
## 
## Call:
## lm(formula = avg_ANexp ~ (DvR + IvDR) * avg_AFexp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -28.969  -4.764   1.209   4.694  33.241 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -3.38809    0.24612 -13.766  < 2e-16 ***
## DvR             0.26566    0.54920   0.484 0.628620    
## IvDR           -1.87633    0.56639  -3.313 0.000935 ***
## avg_AFexp      20.62844    0.04844 425.852  < 2e-16 ***
## DvR:avg_AFexp  -0.06815    0.10701  -0.637 0.524278    
## IvDR:avg_AFexp  0.22150    0.11229   1.973 0.048636 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.828 on 3003 degrees of freedom
##   (408 observations deleted due to missingness)
## Multiple R-squared:  0.9865, Adjusted R-squared:  0.9865 
## F-statistic: 4.392e+04 on 5 and 3003 DF,  p-value: < 2.2e-16

plot

## `avg_ANexp` was not found in model terms. Maybe misspelled?
## Warning: Removed 48 row(s) containing missing values (geom_path).

b. simple effects Dem

model1.dem <- lm(avg_ANexp ~ (Rep_1 + Ind_1) * avg_AFexp, data = dw)
summary(model1.dem)
## 
## Call:
## lm(formula = avg_ANexp ~ (Rep_1 + Ind_1) * avg_AFexp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -28.969  -4.764   1.209   4.694  33.241 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -4.14010    0.41973  -9.864  < 2e-16 ***
## Rep_1            0.26566    0.54920   0.484  0.62862    
## Ind_1            2.00916    0.64928   3.094  0.00199 ** 
## avg_AFexp       20.73561    0.06779 305.900  < 2e-16 ***
## Rep_1:avg_AFexp -0.06815    0.10701  -0.637  0.52428    
## Ind_1:avg_AFexp -0.25557    0.11975  -2.134  0.03291 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.828 on 3003 degrees of freedom
##   (408 observations deleted due to missingness)
## Multiple R-squared:  0.9865, Adjusted R-squared:  0.9865 
## F-statistic: 4.392e+04 on 5 and 3003 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <- lm(avg_ANexp ~ (Dem_1 + Ind_1) * avg_AFexp, data = dw)
summary(model1.rep)
## 
## Call:
## lm(formula = avg_ANexp ~ (Dem_1 + Ind_1) * avg_AFexp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -28.969  -4.764   1.209   4.694  33.241 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -3.87445    0.35418 -10.939  < 2e-16 ***
## Dem_1           -0.26566    0.54920  -0.484  0.62862    
## Ind_1            1.74350    0.60897   2.863  0.00422 ** 
## avg_AFexp       20.66746    0.08281 249.591  < 2e-16 ***
## Dem_1:avg_AFexp  0.06815    0.10701   0.637  0.52428    
## Ind_1:avg_AFexp -0.18742    0.12885  -1.455  0.14589    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.828 on 3003 degrees of freedom
##   (408 observations deleted due to missingness)
## Multiple R-squared:  0.9865, Adjusted R-squared:  0.9865 
## F-statistic: 4.392e+04 on 5 and 3003 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <- lm(avg_ANexp ~ (Rep_1 + Dem_1) * avg_AFexp, data = dw)
summary(model1.ind)
## 
## Call:
## lm(formula = avg_ANexp ~ (Rep_1 + Dem_1) * avg_AFexp, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -28.969  -4.764   1.209   4.694  33.241 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -2.13095    0.49537  -4.302 1.75e-05 ***
## Rep_1           -1.74350    0.60897  -2.863  0.00422 ** 
## Dem_1           -2.00916    0.64928  -3.094  0.00199 ** 
## avg_AFexp       20.48004    0.09872 207.454  < 2e-16 ***
## Rep_1:avg_AFexp  0.18742    0.12885   1.455  0.14589    
## Dem_1:avg_AFexp  0.25557    0.11975   2.134  0.03291 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.828 on 3003 degrees of freedom
##   (408 observations deleted due to missingness)
## Multiple R-squared:  0.9865, Adjusted R-squared:  0.9865 
## F-statistic: 4.392e+04 on 5 and 3003 DF,  p-value: < 2.2e-16

II. WAVE 1

1. vaxxAttitudes ~ (AFFECT + ANALYTIC) * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * (index_AFexp + index_ANexp), data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * (index_AFexp + index_ANexp), 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7628 -1.5860  0.2761  1.7980  3.8266 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.026098   0.065208  -0.400 0.689020    
## DvR              -1.409247   0.146485  -9.620  < 2e-16 ***
## IvDR              0.576950   0.149324   3.864 0.000114 ***
## index_AFexp       0.296050   0.099508   2.975 0.002952 ** 
## index_ANexp      -0.008724   0.004811  -1.813 0.069868 .  
## DvR:index_AFexp   0.779364   0.199567   3.905 9.62e-05 ***
## DvR:index_ANexp  -0.031730   0.009577  -3.313 0.000933 ***
## IvDR:index_AFexp -0.248788   0.244621  -1.017 0.309219    
## IvDR:index_ANexp  0.012615   0.011873   1.062 0.288107    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.058 on 3033 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.09335,    Adjusted R-squared:  0.09096 
## F-statistic: 39.04 on 8 and 3033 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * (index_AFexp + index_ANexp), data = d1)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(vaxxAttitudes ~ party_factor * (index_AFexp + index_ANexp), data = d1)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * (index_AFexp + index_ANexp), data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * (index_AFexp + 
##     index_ANexp), data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7628 -1.5860  0.2761  1.7980  3.8266 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.868919   0.109142   7.961 2.38e-15 ***
## Rep_1             -1.409247   0.146485  -9.620  < 2e-16 ***
## Ind_1             -1.281573   0.169839  -7.546 5.91e-14 ***
## index_AFexp       -0.175732   0.120474  -1.459 0.144759    
## index_ANexp        0.011304   0.005751   1.966 0.049440 *  
## Rep_1:index_AFexp  0.779364   0.199567   3.905 9.62e-05 ***
## Rep_1:index_ANexp -0.031730   0.009577  -3.313 0.000933 ***
## Ind_1:index_AFexp  0.638470   0.253765   2.516 0.011921 *  
## Ind_1:index_ANexp -0.028480   0.012293  -2.317 0.020580 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.058 on 3033 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.09335,    Adjusted R-squared:  0.09096 
## F-statistic: 39.04 on 8 and 3033 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * (index_AFexp + index_ANexp), data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * (index_AFexp + 
##     index_ANexp), data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7628 -1.5860  0.2761  1.7980  3.8266 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.540328   0.097703  -5.530 3.47e-08 ***
## Dem_1              1.409247   0.146485   9.620  < 2e-16 ***
## Ind_1              0.127674   0.162724   0.785 0.432748    
## index_AFexp        0.603632   0.159100   3.794 0.000151 ***
## index_ANexp       -0.020427   0.007658  -2.667 0.007684 ** 
## Dem_1:index_AFexp -0.779364   0.199567  -3.905 9.62e-05 ***
## Dem_1:index_ANexp  0.031730   0.009577   3.313 0.000933 ***
## Ind_1:index_AFexp -0.140894   0.274218  -0.514 0.607427    
## Ind_1:index_ANexp  0.003251   0.013292   0.245 0.806817    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.058 on 3033 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.09335,    Adjusted R-squared:  0.09096 
## F-statistic: 39.04 on 8 and 3033 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * (index_AFexp + index_ANexp), data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * (index_AFexp + 
##     index_ANexp), data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7628 -1.5860  0.2761  1.7980  3.8266 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.412654   0.130128  -3.171  0.00153 ** 
## Rep_1             -0.127674   0.162724  -0.785  0.43275    
## Dem_1              1.281573   0.169839   7.546 5.91e-14 ***
## index_AFexp        0.462738   0.223345   2.072  0.03836 *  
## index_ANexp       -0.017176   0.010864  -1.581  0.11399    
## Rep_1:index_AFexp  0.140894   0.274218   0.514  0.60743    
## Rep_1:index_ANexp -0.003251   0.013292  -0.245  0.80682    
## Dem_1:index_AFexp -0.638470   0.253765  -2.516  0.01192 *  
## Dem_1:index_ANexp  0.028480   0.012293   2.317  0.02058 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.058 on 3033 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.09335,    Adjusted R-squared:  0.09096 
## F-statistic: 39.04 on 8 and 3033 DF,  p-value: < 2.2e-16

2. vaxxAttitudes ~ ANALYTIC * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_ANexp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_ANexp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7254 -1.6460  0.2202  1.8104  3.3857 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.0305811  0.0614206   0.498 0.618593    
## DvR              -1.1966381  0.1353612  -8.840  < 2e-16 ***
## IvDR              0.5515359  0.1426194   3.867 0.000112 ***
## index_ANexp       0.0055330  0.0005703   9.702  < 2e-16 ***
## DvR:index_ANexp   0.0054088  0.0012363   4.375 1.25e-05 ***
## IvDR:index_ANexp  0.0004985  0.0013394   0.372 0.709800    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3036 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08713,    Adjusted R-squared:  0.08563 
## F-statistic: 57.95 on 5 and 3036 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_ANexp, data = d1)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_ANexp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_ANexp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7254 -1.6460  0.2202  1.8104  3.3857 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.8109070  0.1019356   7.955 2.50e-15 ***
## Rep_1             -1.1966381  0.1353612  -8.840  < 2e-16 ***
## Ind_1             -1.1498550  0.1617112  -7.111 1.44e-12 ***
## index_ANexp        0.0029931  0.0007851   3.812  0.00014 ***
## Rep_1:index_ANexp  0.0054088  0.0012363   4.375 1.25e-05 ***
## Ind_1:index_ANexp  0.0022060  0.0014242   1.549  0.12150    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3036 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08713,    Adjusted R-squared:  0.08563 
## F-statistic: 57.95 on 5 and 3036 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_ANexp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_ANexp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7254 -1.6460  0.2202  1.8104  3.3857 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.3857311  0.0890606  -4.331 1.53e-05 ***
## Dem_1              1.1966381  0.1353612   8.840  < 2e-16 ***
## Ind_1              0.0467831  0.1539202   0.304   0.7612    
## index_ANexp        0.0084019  0.0009549   8.798  < 2e-16 ***
## Dem_1:index_ANexp -0.0054088  0.0012363  -4.375 1.25e-05 ***
## Ind_1:index_ANexp -0.0032029  0.0015244  -2.101   0.0357 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3036 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08713,    Adjusted R-squared:  0.08563 
## F-statistic: 57.95 on 5 and 3036 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_ANexp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_ANexp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7254 -1.6460  0.2202  1.8104  3.3857 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.338948   0.125537  -2.700  0.00697 ** 
## Rep_1             -0.046783   0.153920  -0.304  0.76119    
## Dem_1              1.149855   0.161711   7.111 1.44e-12 ***
## index_ANexp        0.005199   0.001188   4.376 1.25e-05 ***
## Rep_1:index_ANexp  0.003203   0.001524   2.101  0.03572 *  
## Dem_1:index_ANexp -0.002206   0.001424  -1.549  0.12150    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3036 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08713,    Adjusted R-squared:  0.08563 
## F-statistic: 57.95 on 5 and 3036 DF,  p-value: < 2.2e-16

3. vaxxAttitudes ~ AFFECT * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_AFexp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_AFexp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6923 -1.6134  0.2362  1.8013  3.4534 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.002097   0.063167  -0.033 0.973517    
## DvR              -1.267583   0.140315  -9.034  < 2e-16 ***
## IvDR              0.553138   0.145852   3.792 0.000152 ***
## index_AFexp       0.117744   0.011797   9.981  < 2e-16 ***
## DvR:index_AFexp   0.123673   0.025740   4.805 1.63e-06 ***
## IvDR:index_AFexp  0.008955   0.027584   0.325 0.745465    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.061 on 3036 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08932,    Adjusted R-squared:  0.08782 
## F-statistic: 59.56 on 5 and 3036 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_AFexp, data = d1)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_AFexp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_AFexp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6923 -1.6134  0.2362  1.8013  3.4534 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.81423    0.10572   7.702 1.80e-14 ***
## Rep_1             -1.26758    0.14031  -9.034  < 2e-16 ***
## Ind_1             -1.18693    0.16591  -7.154 1.05e-12 ***
## index_AFexp        0.05886    0.01643   3.583 0.000345 ***
## Rep_1:index_AFexp  0.12367    0.02574   4.805 1.63e-06 ***
## Ind_1:index_AFexp  0.05288    0.02941   1.798 0.072289 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.061 on 3036 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08932,    Adjusted R-squared:  0.08782 
## F-statistic: 59.56 on 5 and 3036 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_AFexp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_AFexp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6923 -1.6134  0.2362  1.8013  3.4534 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.45335    0.09226  -4.914 9.40e-07 ***
## Dem_1              1.26758    0.14031   9.034  < 2e-16 ***
## Ind_1              0.08065    0.15768   0.512   0.6090    
## index_AFexp        0.18254    0.01982   9.211  < 2e-16 ***
## Dem_1:index_AFexp -0.12367    0.02574  -4.805 1.63e-06 ***
## Ind_1:index_AFexp -0.07079    0.03143  -2.252   0.0244 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.061 on 3036 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08932,    Adjusted R-squared:  0.08782 
## F-statistic: 59.56 on 5 and 3036 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_AFexp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_AFexp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6923 -1.6134  0.2362  1.8013  3.4534 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.37270    0.12787  -2.915  0.00359 ** 
## Rep_1             -0.08065    0.15768  -0.512  0.60903    
## Dem_1              1.18693    0.16591   7.154 1.05e-12 ***
## index_AFexp        0.11174    0.02440   4.580 4.83e-06 ***
## Rep_1:index_AFexp  0.07079    0.03143   2.252  0.02437 *  
## Dem_1:index_AFexp -0.05288    0.02941  -1.798  0.07229 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.061 on 3036 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08932,    Adjusted R-squared:  0.08782 
## F-statistic: 59.56 on 5 and 3036 DF,  p-value: < 2.2e-16

4. ANALYTIC ~ AFFECT * party

a. contrast model

model1.cc <- lm(index_ANexp ~ (DvR + IvDR) * index_AFexp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = index_ANexp ~ (DvR + IvDR) * index_AFexp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -30.758  -5.611   1.603   5.390  34.878 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -3.80961    0.27020 -14.099  < 2e-16 ***
## DvR               0.59646    0.59998   0.994 0.320234    
## IvDR             -2.21409    0.62405  -3.548 0.000394 ***
## index_AFexp      20.60045    0.05047 408.182  < 2e-16 ***
## DvR:index_AFexp  -0.13940    0.11008  -1.266 0.205491    
## IvDR:index_AFexp  0.24723    0.11803   2.095 0.036282 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.822 on 3039 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.985,  Adjusted R-squared:  0.985 
## F-statistic: 3.993e+04 on 5 and 3039 DF,  p-value: < 2.2e-16

plot

m1 <- lm(index_ANexp ~ party_factor * index_AFexp, data = d1)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("media analytic thinking ") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(index_ANexp ~ (Rep_1 + Ind_1) * index_AFexp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = index_ANexp ~ (Rep_1 + Ind_1) * index_AFexp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -30.758  -5.611   1.603   5.390  34.878 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -4.83849    0.45242 -10.695  < 2e-16 ***
## Rep_1              0.59646    0.59998   0.994 0.320234    
## Ind_1              2.51232    0.71002   3.538 0.000409 ***
## index_AFexp       20.75173    0.07029 295.218  < 2e-16 ***
## Rep_1:index_AFexp -0.13940    0.11008  -1.266 0.205491    
## Ind_1:index_AFexp -0.31693    0.12586  -2.518 0.011852 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.822 on 3039 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.985,  Adjusted R-squared:  0.985 
## F-statistic: 3.993e+04 on 5 and 3039 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(index_ANexp ~ (Dem_1 + Ind_1) * index_AFexp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = index_ANexp ~ (Dem_1 + Ind_1) * index_AFexp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -30.758  -5.611   1.603   5.390  34.878 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -4.24203    0.39408 -10.765  < 2e-16 ***
## Dem_1             -0.59646    0.59998  -0.994  0.32023    
## Ind_1              1.91586    0.67435   2.841  0.00453 ** 
## index_AFexp       20.61233    0.08472 243.301  < 2e-16 ***
## Dem_1:index_AFexp  0.13940    0.11008   1.266  0.20549    
## Ind_1:index_AFexp -0.17753    0.13446  -1.320  0.18682    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.822 on 3039 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.985,  Adjusted R-squared:  0.985 
## F-statistic: 3.993e+04 on 5 and 3039 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(index_ANexp ~ (Rep_1 + Dem_1) * index_AFexp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = index_ANexp ~ (Rep_1 + Dem_1) * index_AFexp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -30.758  -5.611   1.603   5.390  34.878 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -2.3262     0.5472  -4.251 2.19e-05 ***
## Rep_1              -1.9159     0.6743  -2.841 0.004526 ** 
## Dem_1              -2.5123     0.7100  -3.538 0.000409 ***
## index_AFexp        20.4348     0.1044 195.723  < 2e-16 ***
## Rep_1:index_AFexp   0.1775     0.1345   1.320 0.186817    
## Dem_1:index_AFexp   0.3169     0.1259   2.518 0.011852 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.822 on 3039 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.985,  Adjusted R-squared:  0.985 
## F-statistic: 3.993e+04 on 5 and 3039 DF,  p-value: < 2.2e-16

III. WAVE 2

1. vaxxAttitudes ~ (AFFECT + ANALYTIC) * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * (index_AFexp + index_ANexp), data = d2)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * (index_AFexp + index_ANexp), 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5114 -1.5385  0.1135  1.7013  3.5653 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.177235   0.071958  -2.463  0.01385 *  
## DvR              -0.663006   0.156158  -4.246 2.26e-05 ***
## IvDR              0.478005   0.168860   2.831  0.00468 ** 
## index_AFexp       0.124070   0.135985   0.912  0.36166    
## index_ANexp      -0.000544   0.006508  -0.084  0.93338    
## DvR:index_AFexp   0.807628   0.248682   3.248  0.00118 ** 
## DvR:index_ANexp  -0.036590   0.011814  -3.097  0.00198 ** 
## IvDR:index_AFexp  0.082734   0.348621   0.237  0.81243    
## IvDR:index_ANexp -0.004936   0.016732  -0.295  0.76799    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.057 on 2397 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05401,    Adjusted R-squared:  0.05086 
## F-statistic: 17.11 on 8 and 2397 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * (index_AFexp + index_ANexp), data = d2)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(vaxxAttitudes ~ party_factor * (index_AFexp + index_ANexp), data = d2)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * (index_AFexp + index_ANexp), data = d2)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * (index_AFexp + 
##     index_ANexp), data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5114 -1.5385  0.1135  1.7013  3.5653 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.312010   0.119117   2.619  0.00887 ** 
## Rep_1             -0.663006   0.156158  -4.246 2.26e-05 ***
## Ind_1             -0.809508   0.191328  -4.231 2.41e-05 ***
## index_AFexp       -0.252441   0.155295  -1.626  0.10417    
## index_ANexp        0.016122   0.007349   2.194  0.02834 *  
## Rep_1:index_AFexp  0.807628   0.248682   3.248  0.00118 ** 
## Rep_1:index_ANexp -0.036590   0.011814  -3.097  0.00198 ** 
## Ind_1:index_AFexp  0.321080   0.360821   0.890  0.37363    
## Ind_1:index_ANexp -0.013358   0.017294  -0.772  0.43993    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.057 on 2397 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05401,    Adjusted R-squared:  0.05086 
## F-statistic: 17.11 on 8 and 2397 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * (index_AFexp + index_ANexp), data = d2)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * (index_AFexp + 
##     index_ANexp), data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5114 -1.5385  0.1135  1.7013  3.5653 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.35100    0.10098  -3.476 0.000518 ***
## Dem_1              0.66301    0.15616   4.246 2.26e-05 ***
## Ind_1             -0.14650    0.18059  -0.811 0.417317    
## index_AFexp        0.55519    0.19423   2.858 0.004295 ** 
## index_ANexp       -0.02047    0.00925  -2.213 0.027005 *  
## Dem_1:index_AFexp -0.80763    0.24868  -3.248 0.001180 ** 
## Dem_1:index_ANexp  0.03659    0.01181   3.097 0.001976 ** 
## Ind_1:index_AFexp -0.48655    0.37921  -1.283 0.199599    
## Ind_1:index_ANexp  0.02323    0.01818   1.278 0.201501    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.057 on 2397 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05401,    Adjusted R-squared:  0.05086 
## F-statistic: 17.11 on 8 and 2397 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * (index_AFexp + index_ANexp), data = d2)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * (index_AFexp + 
##     index_ANexp), data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5114 -1.5385  0.1135  1.7013  3.5653 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.497498   0.149725  -3.323 0.000905 ***
## Rep_1              0.146502   0.180593   0.811 0.417317    
## Dem_1              0.809508   0.191328   4.231 2.41e-05 ***
## index_AFexp        0.068638   0.325693   0.211 0.833104    
## index_ANexp        0.002763   0.015655   0.177 0.859897    
## Rep_1:index_AFexp  0.486548   0.379212   1.283 0.199599    
## Rep_1:index_ANexp -0.023231   0.018183  -1.278 0.201501    
## Dem_1:index_AFexp -0.321080   0.360821  -0.890 0.373632    
## Dem_1:index_ANexp  0.013358   0.017294   0.772 0.439927    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.057 on 2397 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05401,    Adjusted R-squared:  0.05086 
## F-statistic: 17.11 on 8 and 2397 DF,  p-value: < 2.2e-16

2. vaxxAttitudes ~ ANALYTIC * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_ANexp, data = d2)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_ANexp, data = d2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.610 -1.575  0.125  1.758  3.488 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.160534   0.067676  -2.372 0.017766 *  
## DvR              -0.476138   0.144390  -3.298 0.000989 ***
## IvDR              0.489176   0.160574   3.046 0.002341 ** 
## index_ANexp       0.005360   0.000701   7.647 2.95e-14 ***
## DvR:index_ANexp   0.001517   0.001422   1.067 0.286228    
## IvDR:index_ANexp -0.001024   0.001713  -0.598 0.550138    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2400 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.04973,    Adjusted R-squared:  0.04775 
## F-statistic: 25.12 on 5 and 2400 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_ANexp, data = d2)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_ANexp, data = d2)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_ANexp, data = d2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.610 -1.575  0.125  1.758  3.488 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.2389636  0.1104970   2.163 0.030668 *  
## Rep_1             -0.4761380  0.1443901  -3.298 0.000989 ***
## Ind_1             -0.7272455  0.1810568  -4.017 6.08e-05 ***
## index_ANexp        0.0042642  0.0008921   4.780 1.86e-06 ***
## Rep_1:index_ANexp  0.0015173  0.0014224   1.067 0.286228    
## Ind_1:index_ANexp  0.0017821  0.0017952   0.993 0.320961    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2400 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.04973,    Adjusted R-squared:  0.04775 
## F-statistic: 25.12 on 5 and 2400 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_ANexp, data = d2)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_ANexp, data = d2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.610 -1.575  0.125  1.758  3.488 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.2371744  0.0929458  -2.552 0.010780 *  
## Dem_1              0.4761380  0.1443901   3.298 0.000989 ***
## Ind_1             -0.2511074  0.1709120  -1.469 0.141904    
## index_ANexp        0.0057814  0.0011079   5.219 1.96e-07 ***
## Dem_1:index_ANexp -0.0015173  0.0014224  -1.067 0.286228    
## Ind_1:index_ANexp  0.0002648  0.0019116   0.139 0.889828    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2400 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.04973,    Adjusted R-squared:  0.04775 
## F-statistic: 25.12 on 5 and 2400 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_ANexp, data = d2)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_ANexp, data = d2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.610 -1.575  0.125  1.758  3.488 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.4882818  0.1434294  -3.404 0.000674 ***
## Rep_1              0.2511074  0.1709120   1.469 0.141904    
## Dem_1              0.7272455  0.1810568   4.017 6.08e-05 ***
## index_ANexp        0.0060462  0.0015578   3.881 0.000107 ***
## Rep_1:index_ANexp -0.0002648  0.0019116  -0.139 0.889828    
## Dem_1:index_ANexp -0.0017821  0.0017952  -0.993 0.320961    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2400 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.04973,    Adjusted R-squared:  0.04775 
## F-statistic: 25.12 on 5 and 2400 DF,  p-value: < 2.2e-16

3. vaxxAttitudes ~ AFFECT * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_AFexp, data = d2)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_AFexp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6618 -1.5849  0.1269  1.7613  3.5034 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.18015    0.06947  -2.593 0.009571 ** 
## DvR              -0.51862    0.14933  -3.473 0.000524 ***
## IvDR              0.48254    0.16406   2.941 0.003301 ** 
## index_AFexp       0.11329    0.01466   7.728  1.6e-14 ***
## DvR:index_AFexp   0.04273    0.02994   1.427 0.153610    
## IvDR:index_AFexp -0.01874    0.03569  -0.525 0.599567    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2400 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05017,    Adjusted R-squared:  0.04819 
## F-statistic: 25.35 on 5 and 2400 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_AFexp, data = d2)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_AFexp, data = d2)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_AFexp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6618 -1.5849  0.1269  1.7613  3.5034 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.23840    0.11445   2.083 0.037365 *  
## Rep_1             -0.51862    0.14933  -3.473 0.000524 ***
## Ind_1             -0.74185    0.18558  -3.997 6.60e-05 ***
## index_AFexp        0.08574    0.01885   4.549 5.66e-06 ***
## Rep_1:index_AFexp  0.04273    0.02994   1.427 0.153610    
## Ind_1:index_AFexp  0.04011    0.03749   1.070 0.284761    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2400 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05017,    Adjusted R-squared:  0.04819 
## F-statistic: 25.35 on 5 and 2400 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_AFexp, data = d2)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_AFexp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6618 -1.5849  0.1269  1.7613  3.5034 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.280221   0.095912  -2.922 0.003514 ** 
## Dem_1              0.518620   0.149329   3.473 0.000524 ***
## Ind_1             -0.223225   0.174760  -1.277 0.201610    
## index_AFexp        0.128469   0.023258   5.524 3.68e-08 ***
## Dem_1:index_AFexp -0.042731   0.029937  -1.427 0.153610    
## Ind_1:index_AFexp -0.002623   0.039886  -0.066 0.947573    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2400 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05017,    Adjusted R-squared:  0.04819 
## F-statistic: 25.35 on 5 and 2400 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_AFexp, data = d2)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_AFexp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6618 -1.5849  0.1269  1.7613  3.5034 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.503447   0.146088  -3.446 0.000578 ***
## Rep_1              0.223225   0.174760   1.277 0.201610    
## Dem_1              0.741846   0.185584   3.997  6.6e-05 ***
## index_AFexp        0.125846   0.032403   3.884 0.000106 ***
## Rep_1:index_AFexp  0.002623   0.039886   0.066 0.947573    
## Dem_1:index_AFexp -0.040108   0.037486  -1.070 0.284761    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.06 on 2400 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.05017,    Adjusted R-squared:  0.04819 
## F-statistic: 25.35 on 5 and 2400 DF,  p-value: < 2.2e-16

4. ANALYTIC ~ AFFECT * party

a. contrast model

model1.cc <- lm(index_ANexp ~ (DvR + IvDR) * index_AFexp, data = d2)
summary(model1.cc)
## 
## Call:
## lm(formula = index_ANexp ~ (DvR + IvDR) * index_AFexp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.116  -4.782   1.023   4.519  31.267 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -3.38435    0.26241 -12.897  < 2e-16 ***
## DvR               1.05638    0.56383   1.874  0.06111 .  
## IvDR             -1.83851    0.61984  -2.966  0.00305 ** 
## index_AFexp      20.84125    0.05539 376.277  < 2e-16 ***
## DvR:index_AFexp  -0.12248    0.11309  -1.083  0.27888    
## IvDR:index_AFexp  0.20799    0.13487   1.542  0.12316    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.783 on 2402 degrees of freedom
##   (55 observations deleted due to missingness)
## Multiple R-squared:  0.9875, Adjusted R-squared:  0.9875 
## F-statistic: 3.807e+04 on 5 and 2402 DF,  p-value: < 2.2e-16

plot

m1 <- lm(index_ANexp ~ party_factor * index_AFexp, data = d2)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("media analytic thinking") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(index_ANexp ~ (Rep_1 + Ind_1) * index_AFexp, data = d2)
summary(model1.dem)
## 
## Call:
## lm(formula = index_ANexp ~ (Rep_1 + Ind_1) * index_AFexp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.116  -4.782   1.023   4.519  31.267 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -4.5193     0.4321 -10.458  < 2e-16 ***
## Rep_1               1.0564     0.5638   1.874 0.061109 .  
## Ind_1               2.3667     0.7010   3.376 0.000747 ***
## index_AFexp        20.9711     0.0712 294.558  < 2e-16 ***
## Rep_1:index_AFexp  -0.1225     0.1131  -1.083 0.278881    
## Ind_1:index_AFexp  -0.2692     0.1416  -1.901 0.057438 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.783 on 2402 degrees of freedom
##   (55 observations deleted due to missingness)
## Multiple R-squared:  0.9875, Adjusted R-squared:  0.9875 
## F-statistic: 3.807e+04 on 5 and 2402 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(index_ANexp ~ (Dem_1 + Ind_1) * index_AFexp, data = d2)
summary(model1.rep)
## 
## Call:
## lm(formula = index_ANexp ~ (Dem_1 + Ind_1) * index_AFexp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.116  -4.782   1.023   4.519  31.267 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -3.46287    0.36215  -9.562   <2e-16 ***
## Dem_1             -1.05638    0.56383  -1.874   0.0611 .  
## Ind_1              1.31032    0.66021   1.985   0.0473 *  
## index_AFexp       20.84864    0.08787 237.279   <2e-16 ***
## Dem_1:index_AFexp  0.12248    0.11309   1.083   0.2789    
## Ind_1:index_AFexp -0.14674    0.15070  -0.974   0.3303    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.783 on 2402 degrees of freedom
##   (55 observations deleted due to missingness)
## Multiple R-squared:  0.9875, Adjusted R-squared:  0.9875 
## F-statistic: 3.807e+04 on 5 and 2402 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(index_ANexp ~ (Rep_1 + Dem_1) * index_AFexp, data = d2)
summary(model1.ind)
## 
## Call:
## lm(formula = index_ANexp ~ (Rep_1 + Dem_1) * index_AFexp, data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.116  -4.782   1.023   4.519  31.267 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -2.1525     0.5520  -3.899 9.91e-05 ***
## Rep_1              -1.3103     0.6602  -1.985 0.047291 *  
## Dem_1              -2.3667     0.7010  -3.376 0.000747 ***
## index_AFexp        20.7019     0.1224 169.078  < 2e-16 ***
## Rep_1:index_AFexp   0.1467     0.1507   0.974 0.330292    
## Dem_1:index_AFexp   0.2692     0.1416   1.901 0.057438 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.783 on 2402 degrees of freedom
##   (55 observations deleted due to missingness)
## Multiple R-squared:  0.9875, Adjusted R-squared:  0.9875 
## F-statistic: 3.807e+04 on 5 and 2402 DF,  p-value: < 2.2e-16

IV. LONGITUDINAL MODELS

1. vaxxAttitudes.w2 ~ party * (ANALYTIC.w1 + ANALYTIC.w2) + vaxxAttitudes.w1

a. contrast coded model

model3.cc <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 +  index_ANexp.w2) * (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)

summary(model3.cc)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * 
##     (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0993 -0.8189  0.0449  0.9365  5.4289 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.775e-01  5.269e-02   3.368  0.00077 ***
## index_ANexp.w1      -8.643e-04  6.609e-04  -1.308  0.19111    
## index_ANexp.w2       2.003e-03  6.868e-04   2.917  0.00357 ** 
## DvR                  2.968e-01  1.141e-01   2.602  0.00934 ** 
## IvDR                 2.567e-01  1.228e-01   2.090  0.03671 *  
## vaxxAttitudes.c.w1   7.204e-01  1.489e-02  48.398  < 2e-16 ***
## index_ANexp.w1:DvR  -1.973e-03  1.458e-03  -1.354  0.17598    
## index_ANexp.w1:IvDR -1.061e-03  1.524e-03  -0.696  0.48654    
## index_ANexp.w2:DvR   1.031e-03  1.549e-03   0.666  0.50560    
## index_ANexp.w2:IvDR  6.892e-05  1.565e-03   0.044  0.96489    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5477, Adjusted R-squared:  0.5458 
## F-statistic:   289 on 9 and 2148 DF,  p-value: < 2.2e-16

- plots

m1 <- lm(vaxxAttitudes.w2 ~  (index_ANexp.w1 +  index_ANexp.w2) * party_factor + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_ANexp.w2", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking wave 2") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(vaxxAttitudes.w2 ~  (index_ANexp.w1 +  index_ANexp.w2) * party_factor + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_ANexp.w1", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking wave 1") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects for Dem

model2.dem <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)

summary(model2.dem)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * 
##     (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0993 -0.8189  0.0449  0.9365  5.4289 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.1137476  0.0871526   1.305  0.19198    
## index_ANexp.w1       -0.0002277  0.0008545  -0.266  0.78992    
## index_ANexp.w2        0.0015106  0.0008737   1.729  0.08394 .  
## Ind_1                -0.1082906  0.1403182  -0.772  0.44035    
## Rep_1                 0.2968434  0.1141037   2.602  0.00934 ** 
## vaxxAttitudes.c.w1    0.7204229  0.0148853  48.398  < 2e-16 ***
## index_ANexp.w1:Ind_1  0.0000740  0.0015892   0.047  0.96287    
## index_ANexp.w1:Rep_1 -0.0019734  0.0014578  -1.354  0.17598    
## index_ANexp.w2:Ind_1  0.0004467  0.0016162   0.276  0.78229    
## index_ANexp.w2:Rep_1  0.0010312  0.0015487   0.666  0.50560    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5477, Adjusted R-squared:  0.5458 
## F-statistic:   289 on 9 and 2148 DF,  p-value: < 2.2e-16

c. simple effects for Rep

model2.rep <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)

summary(model2.rep)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * 
##     (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0993 -0.8189  0.0449  0.9365  5.4289 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.4105909  0.0730136   5.623 2.12e-08 ***
## index_ANexp.w1       -0.0022010  0.0011827  -1.861  0.06287 .  
## index_ANexp.w2        0.0025418  0.0012792   1.987  0.04704 *  
## Ind_1                -0.4051340  0.1303350  -3.108  0.00191 ** 
## Dem_1                -0.2968434  0.1141037  -2.602  0.00934 ** 
## vaxxAttitudes.c.w1    0.7204229  0.0148853  48.398  < 2e-16 ***
## index_ANexp.w1:Ind_1  0.0020474  0.0017840   1.148  0.25125    
## index_ANexp.w1:Dem_1  0.0019734  0.0014578   1.354  0.17598    
## index_ANexp.w2:Ind_1 -0.0005845  0.0018677  -0.313  0.75434    
## index_ANexp.w2:Dem_1 -0.0010312  0.0015487  -0.666  0.50560    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5477, Adjusted R-squared:  0.5458 
## F-statistic:   289 on 9 and 2148 DF,  p-value: < 2.2e-16

d. simple effects for Indep

model2.ind <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)

summary(model2.ind)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * 
##     (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0993 -0.8189  0.0449  0.9365  5.4289 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.0054570  0.1095614   0.050  0.96028    
## index_ANexp.w1       -0.0001537  0.0013408  -0.115  0.90876    
## index_ANexp.w2        0.0019573  0.0013612   1.438  0.15059    
## Dem_1                 0.1082906  0.1403182   0.772  0.44035    
## Rep_1                 0.4051340  0.1303350   3.108  0.00191 ** 
## vaxxAttitudes.c.w1    0.7204229  0.0148853  48.398  < 2e-16 ***
## index_ANexp.w1:Dem_1 -0.0000740  0.0015892  -0.047  0.96287    
## index_ANexp.w1:Rep_1 -0.0020474  0.0017840  -1.148  0.25125    
## index_ANexp.w2:Dem_1 -0.0004467  0.0016162  -0.276  0.78229    
## index_ANexp.w2:Rep_1  0.0005845  0.0018677   0.313  0.75434    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5477, Adjusted R-squared:  0.5458 
## F-statistic:   289 on 9 and 2148 DF,  p-value: < 2.2e-16

2. vaxxAttitudes.w2 ~ party * (AFFECT.w1 + AFFECT.w2) + vaxxAttitudes.w1

a. contrast coded model

model3.cc <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 +  index_AFexp.w2) * (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)

summary(model3.cc)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * 
##     (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0617 -0.8126  0.0416  0.9384  5.4207 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.1794202  0.0543672   3.300 0.000982 ***
## index_AFexp.w1      -0.0154658  0.0137346  -1.126 0.260272    
## index_AFexp.w2       0.0384976  0.0144351   2.667 0.007712 ** 
## DvR                  0.2768726  0.1185634   2.335 0.019623 *  
## IvDR                 0.2720531  0.1259446   2.160 0.030875 *  
## vaxxAttitudes.c.w1   0.7204464  0.0149108  48.317  < 2e-16 ***
## index_AFexp.w1:DvR  -0.0383700  0.0304108  -1.262 0.207185    
## index_AFexp.w1:IvDR -0.0222708  0.0315830  -0.705 0.480792    
## index_AFexp.w2:DvR   0.0243595  0.0326008   0.747 0.455020    
## index_AFexp.w2:IvDR -0.0009634  0.0328450  -0.029 0.976602    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5473, Adjusted R-squared:  0.5454 
## F-statistic: 288.5 on 9 and 2148 DF,  p-value: < 2.2e-16

- plots

m1 <- lm(vaxxAttitudes.w2 ~  (index_AFexp.w1 +  index_AFexp.w2) * party_factor + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_AFexp.w2", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect wave 2") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(vaxxAttitudes.w2 ~  (index_AFexp.w1 +  index_AFexp.w2) * party_factor + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_AFexp.w1", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect wave 1") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects for Dem

model2.dem <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)

summary(model2.dem)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * 
##     (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0617 -0.8126  0.0416  0.9384  5.4207 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.130761   0.090357   1.447   0.1480    
## index_AFexp.w1       -0.003630   0.018210  -0.199   0.8420    
## index_AFexp.w2        0.026000   0.018740   1.387   0.1655    
## Ind_1                -0.133617   0.144220  -0.926   0.3543    
## Rep_1                 0.276873   0.118563   2.335   0.0196 *  
## vaxxAttitudes.c.w1    0.720446   0.014911  48.317   <2e-16 ***
## index_AFexp.w1:Ind_1  0.003086   0.033165   0.093   0.9259    
## index_AFexp.w1:Rep_1 -0.038370   0.030411  -1.262   0.2072    
## index_AFexp.w2:Ind_1  0.013143   0.034108   0.385   0.7000    
## index_AFexp.w2:Rep_1  0.024360   0.032601   0.747   0.4550    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5473, Adjusted R-squared:  0.5454 
## F-statistic: 288.5 on 9 and 2148 DF,  p-value: < 2.2e-16

c. simple effects for Rep

model2.rep <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)

summary(model2.rep)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * 
##     (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0617 -0.8126  0.0416  0.9384  5.4207 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.40763    0.07614   5.354 9.53e-08 ***
## index_AFexp.w1       -0.04200    0.02438  -1.722  0.08514 .  
## index_AFexp.w2        0.05036    0.02669   1.887  0.05935 .  
## Ind_1                -0.41049    0.13399  -3.064  0.00221 ** 
## Dem_1                -0.27687    0.11856  -2.335  0.01962 *  
## vaxxAttitudes.c.w1    0.72045    0.01491  48.317  < 2e-16 ***
## index_AFexp.w1:Ind_1  0.04146    0.03684   1.125  0.26064    
## index_AFexp.w1:Dem_1  0.03837    0.03041   1.262  0.20719    
## index_AFexp.w2:Ind_1 -0.01122    0.03906  -0.287  0.77402    
## index_AFexp.w2:Dem_1 -0.02436    0.03260  -0.747  0.45502    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5473, Adjusted R-squared:  0.5454 
## F-statistic: 288.5 on 9 and 2148 DF,  p-value: < 2.2e-16

d. simple effects for Indep

model2.ind <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)

summary(model2.ind)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * 
##     (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0617 -0.8126  0.0416  0.9384  5.4207 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -0.0028554  0.1120111  -0.025  0.97966    
## index_AFexp.w1       -0.0005444  0.0277329  -0.020  0.98434    
## index_AFexp.w2        0.0391431  0.0285284   1.372  0.17018    
## Dem_1                 0.1336168  0.1442204   0.926  0.35430    
## Rep_1                 0.4104894  0.1339896   3.064  0.00221 ** 
## vaxxAttitudes.c.w1    0.7204464  0.0149108  48.317  < 2e-16 ***
## index_AFexp.w1:Dem_1 -0.0030858  0.0331647  -0.093  0.92588    
## index_AFexp.w1:Rep_1 -0.0414558  0.0368440  -1.125  0.26064    
## index_AFexp.w2:Dem_1 -0.0131432  0.0341080  -0.385  0.70002    
## index_AFexp.w2:Rep_1  0.0112163  0.0390594   0.287  0.77402    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.418 on 2148 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5473, Adjusted R-squared:  0.5454 
## F-statistic: 288.5 on 9 and 2148 DF,  p-value: < 2.2e-16

3. vaxxAttitudes.w2 ~ party * (ANALYTIC.w2 + ANALYTIC.w1 + AFFECT.w2 + AFFECT.w1) + vaxxAttitudes.w1

a. contrast coded model

model3.cc <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) * 
                  (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)

summary(model3.cc)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + 
##     index_ANexp.w2 + index_AFexp.w2) * (DvR + IvDR) + vaxxAttitudes.c.w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2807 -0.8117  0.0350  0.9206  5.4001 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.188275   0.056482   3.333 0.000873 ***
## index_ANexp.w1      -0.007988   0.005118  -1.561 0.118770    
## index_AFexp.w1       0.150442   0.106175   1.417 0.156649    
## index_ANexp.w2       0.011498   0.005679   2.025 0.043032 *  
## index_AFexp.w2      -0.201747   0.119350  -1.690 0.091101 .  
## DvR                  0.198983   0.124391   1.600 0.109823    
## IvDR                 0.307677   0.129918   2.368 0.017961 *  
## vaxxAttitudes.c.w1   0.719638   0.014939  48.172  < 2e-16 ***
## index_ANexp.w1:DvR  -0.006047   0.010218  -0.592 0.554002    
## index_ANexp.w1:IvDR  0.004676   0.012619   0.371 0.711015    
## index_AFexp.w1:DvR   0.078136   0.212917   0.367 0.713673    
## index_AFexp.w1:IvDR -0.115727   0.261061  -0.443 0.657597    
## index_ANexp.w2:DvR  -0.012351   0.011664  -1.059 0.289750    
## index_ANexp.w2:IvDR  0.005426   0.013797   0.393 0.694178    
## index_AFexp.w2:DvR   0.290564   0.245520   1.183 0.236756    
## index_AFexp.w2:IvDR -0.117359   0.289591  -0.405 0.685329    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.416 on 2142 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5499, Adjusted R-squared:  0.5468 
## F-statistic: 174.5 on 15 and 2142 DF,  p-value: < 2.2e-16

- plots

m1 <- lm(vaxxAttitudes.w2 ~  (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) * 
                  (party_factor) + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_ANexp.w2", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking wave 2") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

plot_model(m1, type = "pred", terms = c("index_ANexp.w1", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking wave 1") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(vaxxAttitudes.w2 ~  (index_ANexp.w1 + index_AFexp.w1 + 
                                      index_ANexp.w2 + index_AFexp.w2) * 
                  (party_factor) + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_AFexp.w2", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect wave 2") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(vaxxAttitudes.w2 ~  (index_ANexp.w1 + index_AFexp.w1 + 
                                      index_ANexp.w2 + index_AFexp.w2) * 
                  (party_factor) + vaxxAttitudes.c.w1, data = dw)

plot_model(m1, type = "pred", terms = c("index_AFexp.w1", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect wave 1") + 
  ylab("willingness to obtain the Covid-19 vaccine wave 2") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects for Dem

model3.dem <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) * 
                   (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)

summary(model3.dem)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + 
##     index_ANexp.w2 + index_AFexp.w2) * (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2807 -0.8117  0.0350  0.9206  5.4001 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.190317   0.093459   2.036  0.04184 *  
## index_ANexp.w1       -0.003421   0.005825  -0.587  0.55708    
## index_AFexp.w1        0.073184   0.124092   0.590  0.55542    
## index_ANexp.w2        0.019464   0.006693   2.908  0.00367 ** 
## index_AFexp.w2       -0.385757   0.143278  -2.692  0.00715 ** 
## Ind_1                -0.208186   0.148609  -1.401  0.16139    
## Rep_1                 0.198983   0.124391   1.600  0.10982    
## vaxxAttitudes.c.w1    0.719638   0.014939  48.172  < 2e-16 ***
## index_ANexp.w1:Ind_1 -0.007699   0.012925  -0.596  0.55145    
## index_ANexp.w1:Rep_1 -0.006047   0.010218  -0.592  0.55400    
## index_AFexp.w1:Ind_1  0.154795   0.268775   0.576  0.56473    
## index_AFexp.w1:Rep_1  0.078136   0.212917   0.367  0.71367    
## index_ANexp.w2:Ind_1 -0.011601   0.014179  -0.818  0.41332    
## index_ANexp.w2:Rep_1 -0.012351   0.011664  -1.059  0.28975    
## index_AFexp.w2:Ind_1  0.262641   0.298782   0.879  0.37948    
## index_AFexp.w2:Rep_1  0.290564   0.245520   1.183  0.23676    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.416 on 2142 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5499, Adjusted R-squared:  0.5468 
## F-statistic: 174.5 on 15 and 2142 DF,  p-value: < 2.2e-16

c. simple effects for Rep

model3.rep <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) * 
                   (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)

summary(model3.rep)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + 
##     index_ANexp.w2 + index_AFexp.w2) * (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2807 -0.8117  0.0350  0.9206  5.4001 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.3893005  0.0813476   4.786 1.82e-06 ***
## index_ANexp.w1       -0.0094684  0.0083951  -1.128  0.25951    
## index_AFexp.w1        0.1513201  0.1730095   0.875  0.38187    
## index_ANexp.w2        0.0071131  0.0095518   0.745  0.45654    
## index_AFexp.w2       -0.0951931  0.1994256  -0.477  0.63317    
## Ind_1                -0.4071687  0.1393172  -2.923  0.00351 ** 
## Dem_1                -0.1989831  0.1243914  -1.600  0.10982    
## vaxxAttitudes.c.w1    0.7196384  0.0149388  48.172  < 2e-16 ***
## index_ANexp.w1:Ind_1 -0.0016520  0.0142687  -0.116  0.90784    
## index_ANexp.w1:Dem_1  0.0060474  0.0102175   0.592  0.55400    
## index_AFexp.w1:Ind_1  0.0766592  0.2945035   0.260  0.79466    
## index_AFexp.w1:Dem_1 -0.0781357  0.2129174  -0.367  0.71367    
## index_ANexp.w2:Ind_1  0.0007499  0.0157393   0.048  0.96200    
## index_ANexp.w2:Dem_1  0.0123514  0.0116640   1.059  0.28975    
## index_AFexp.w2:Ind_1 -0.0279231  0.3295373  -0.085  0.93248    
## index_AFexp.w2:Dem_1 -0.2905640  0.2455195  -1.183  0.23676    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.416 on 2142 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5499, Adjusted R-squared:  0.5468 
## F-statistic: 174.5 on 15 and 2142 DF,  p-value: < 2.2e-16

d. simple effects for Indep

model3.ind <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) * 
                   (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)

summary(model3.ind)
## 
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + 
##     index_ANexp.w2 + index_AFexp.w2) * (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2807 -0.8117  0.0350  0.9206  5.4001 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -0.0178683  0.1150875  -0.155  0.87663    
## index_ANexp.w1       -0.0111204  0.0115356  -0.964  0.33515    
## index_AFexp.w1        0.2279793  0.2383603   0.956  0.33895    
## index_ANexp.w2        0.0078630  0.0124998   0.629  0.52938    
## index_AFexp.w2       -0.1231163  0.2621772  -0.470  0.63869    
## Dem_1                 0.2081856  0.1486093   1.401  0.16139    
## Rep_1                 0.4071687  0.1393172   2.923  0.00351 ** 
## vaxxAttitudes.c.w1    0.7196384  0.0149388  48.172  < 2e-16 ***
## index_ANexp.w1:Dem_1  0.0076995  0.0129253   0.596  0.55145    
## index_ANexp.w1:Rep_1  0.0016520  0.0142687   0.116  0.90784    
## index_AFexp.w1:Dem_1 -0.1547950  0.2687755  -0.576  0.56473    
## index_AFexp.w1:Rep_1 -0.0766592  0.2945035  -0.260  0.79466    
## index_ANexp.w2:Dem_1  0.0116015  0.0141789   0.818  0.41332    
## index_ANexp.w2:Rep_1 -0.0007499  0.0157393  -0.048  0.96200    
## index_AFexp.w2:Dem_1 -0.2626409  0.2987825  -0.879  0.37948    
## index_AFexp.w2:Rep_1  0.0279231  0.3295373   0.085  0.93248    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.416 on 2142 degrees of freedom
##   (1259 observations deleted due to missingness)
## Multiple R-squared:  0.5499, Adjusted R-squared:  0.5468 
## F-statistic: 174.5 on 15 and 2142 DF,  p-value: < 2.2e-16

V. long by W1 + W2 models

1. vaxxAttitudes ~ W1vW2 + ANALYTIC * party + (1 | participant)

a. contrast model

model1.cc <- lmer(vaxxAttitudes ~ W1vW2 + (DvR + IvDR) *
                   (index_ANexp) +
                   (1 | participant), data = dm)

summary(model1.cc)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## vaxxAttitudes ~ W1vW2 + (DvR + IvDR) * (index_ANexp) + (1 | participant)
##    Data: dm
## 
## REML criterion at convergence: 21879.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07085 -0.45918  0.03003  0.47244  2.99335 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.035    1.742   
##  Residual                1.241    1.114   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       9.121e-03  4.934e-02  4.721e+03   0.185 0.853332    
## W1vW2            -2.754e-01  3.274e-02  2.459e+03  -8.411  < 2e-16 ***
## DvR              -8.157e-01  1.037e-01  5.201e+03  -7.865 4.47e-15 ***
## IvDR              3.912e-01  1.033e-01  5.413e+03   3.785 0.000155 ***
## index_ANexp       4.244e-03  4.267e-04  5.410e+03   9.947  < 2e-16 ***
## DvR:index_ANexp   3.772e-03  8.779e-04  5.281e+03   4.297 1.76e-05 ***
## IvDR:index_ANexp  9.206e-04  9.491e-04  5.060e+03   0.970 0.332096    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  DvR    IvDR   ind_AN DR:_AN
## W1vW2        0.006                                   
## DvR         -0.045 -0.017                            
## IvDR        -0.237 -0.024 -0.059                     
## index_ANexp -0.667  0.091 -0.009  0.168              
## DvR:ndx_ANx  0.011  0.031 -0.713  0.018  0.159       
## IvDR:ndx_AN  0.159 -0.007  0.022 -0.688 -0.278  0.092

- plot

m1 <- lmer(vaxxAttitudes ~  W1vW2 + index_ANexp * party_factor + 
                   (1 | participant), data = dm)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <- lmer(vaxxAttitudes ~ W1vW2 + 
                     index_ANexp * 
                     (Rep_1 + Ind_1) + 
                     (1 | participant), data = dm)
summary(model1.dem)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + index_ANexp * (Rep_1 + Ind_1) + (1 |  
##     participant)
##    Data: dm
## 
## REML criterion at convergence: 21879.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07085 -0.45918  0.03003  0.47244  2.99335 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.035    1.742   
##  Residual                1.241    1.114   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        5.461e-01  7.698e-02  5.301e+03   7.093 1.48e-12 ***
## W1vW2             -2.754e-01  3.274e-02  2.459e+03  -8.411  < 2e-16 ***
## index_ANexp        2.662e-03  5.600e-04  5.303e+03   4.754 2.05e-06 ***
## Rep_1             -8.157e-01  1.037e-01  5.201e+03  -7.865 4.47e-15 ***
## Ind_1             -7.991e-01  1.183e-01  5.439e+03  -6.753 1.60e-11 ***
## index_ANexp:Rep_1  3.772e-03  8.779e-04  5.281e+03   4.297 1.76e-05 ***
## index_ANexp:Ind_1  9.654e-04  1.008e-03  5.087e+03   0.957    0.338    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AN Rep_1  Ind_1  i_AN:R
## W1vW2        0.004                                   
## index_ANexp -0.774  0.041                            
## Rep_1       -0.729 -0.017  0.564                     
## Ind_1       -0.608  0.014  0.484  0.490              
## indx_AN:R_1  0.495  0.031 -0.611 -0.713 -0.328       
## indx_AN:I_1  0.420  0.020 -0.525 -0.331 -0.717  0.349

c. simple effects Rep

model1.rep <- lmer(vaxxAttitudes ~ W1vW2 + 
                     index_ANexp * 
                     (Dem_1 + Ind_1) + 
                     (1 | participant), data = dm)
summary(model1.rep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + index_ANexp * (Dem_1 + Ind_1) + (1 |  
##     participant)
##    Data: dm
## 
## REML criterion at convergence: 21879.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07085 -0.45918  0.03003  0.47244  2.99335 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.035    1.742   
##  Residual                1.241    1.114   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       -2.696e-01  7.106e-02  4.697e+03  -3.795  0.00015 ***
## W1vW2             -2.754e-01  3.274e-02  2.459e+03  -8.411  < 2e-16 ***
## index_ANexp        6.434e-03  6.954e-04  5.389e+03   9.253  < 2e-16 ***
## Dem_1              8.157e-01  1.037e-01  5.201e+03   7.865 4.47e-15 ***
## Ind_1              1.664e-02  1.129e-01  5.441e+03   0.147  0.88278    
## index_ANexp:Dem_1 -3.772e-03  8.779e-04  5.281e+03  -4.297 1.76e-05 ***
## index_ANexp:Ind_1 -2.806e-03  1.082e-03  5.120e+03  -2.595  0.00949 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AN Dem_1  Ind_1  i_AN:D
## W1vW2       -0.020                                   
## index_ANexp -0.649  0.073                            
## Dem_1       -0.670  0.017  0.446                     
## Ind_1       -0.557  0.030  0.384  0.406              
## indx_AN:D_1  0.504 -0.031 -0.770 -0.713 -0.311       
## indx_AN:I_1  0.383 -0.007 -0.609 -0.270 -0.670  0.486

d. simple effects Indep

model1.ind <- lmer(vaxxAttitudes ~ W1vW2 +
                     index_ANexp * 
                     (Dem_1 + Rep_1) + 
                     (1 | participant), data = dm)
summary(model1.ind)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + index_ANexp * (Dem_1 + Rep_1) + (1 |  
##     participant)
##    Data: dm
## 
## REML criterion at convergence: 21879.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07085 -0.45918  0.03003  0.47244  2.99335 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.035    1.742   
##  Residual                1.241    1.114   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       -2.530e-01  9.408e-02  5.422e+03  -2.689  0.00718 ** 
## W1vW2             -2.754e-01  3.274e-02  2.459e+03  -8.411  < 2e-16 ***
## index_ANexp        3.628e-03  8.585e-04  5.148e+03   4.225 2.43e-05 ***
## Dem_1              7.991e-01  1.183e-01  5.439e+03   6.753 1.60e-11 ***
## Rep_1             -1.664e-02  1.129e-01  5.441e+03  -0.147  0.88278    
## index_ANexp:Dem_1 -9.654e-04  1.008e-03  5.087e+03  -0.957  0.33846    
## index_ANexp:Rep_1  2.806e-03  1.082e-03  5.120e+03   2.595  0.00949 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AN Dem_1  Rep_1  i_AN:D
## W1vW2        0.021                                   
## index_ANexp -0.672  0.051                            
## Dem_1       -0.760 -0.014  0.527                     
## Rep_1       -0.779 -0.030  0.533  0.598              
## indx_AN:D_1  0.558 -0.020 -0.832 -0.717 -0.448       
## indx_AN:R_1  0.514  0.007 -0.766 -0.402 -0.670  0.649

2. vaxxAttitudes ~ W1vW2 + AFFECT * party + (1 | participant)

a. contrast model

model1.cc <- lmer(vaxxAttitudes ~ W1vW2 + (DvR + IvDR) * index_AFexp + (1 | participant), data = dm)

summary(model1.cc)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + (DvR + IvDR) * index_AFexp + (1 | participant)
##    Data: dm
## 
## REML criterion at convergence: 21860.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07554 -0.46461  0.02802  0.47296  2.97593 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.027    1.740   
##  Residual                1.243    1.115   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      -7.963e-03  5.051e-02  4.766e+03  -0.158 0.874740    
## W1vW2            -2.687e-01  3.284e-02  2.467e+03  -8.184 4.35e-16 ***
## DvR              -8.463e-01  1.070e-01  5.227e+03  -7.906 3.21e-15 ***
## IvDR              3.919e-01  1.054e-01  5.408e+03   3.717 0.000204 ***
## index_AFexp       8.873e-02  8.886e-03  5.416e+03   9.986  < 2e-16 ***
## DvR:index_AFexp   8.215e-02  1.840e-02  5.296e+03   4.464 8.21e-06 ***
## IvDR:index_AFexp  1.814e-02  1.965e-02  5.077e+03   0.923 0.355922    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  DvR    IvDR   ind_AF DR:_AF
## W1vW2       -0.009                                   
## DvR         -0.052 -0.015                            
## IvDR        -0.225 -0.028 -0.064                     
## index_AFexp -0.686  0.108 -0.004  0.159              
## DvR:ndx_AFx  0.014  0.032 -0.733  0.022  0.149       
## IvDR:ndx_AF  0.151 -0.002  0.025 -0.702 -0.264  0.085

- plot

m1 <- lmer(vaxxAttitudes ~  W1vW2 + index_AFexp * party_factor + (1 | participant), data = dm)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <- lmer(vaxxAttitudes ~ W1vW2 + index_AFexp * (Rep_1 + Ind_1) + (1 | participant), data = dm)
summary(model1.dem)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + index_AFexp * (Rep_1 + Ind_1) + (1 |  
##     participant)
##    Data: dm
## 
## REML criterion at convergence: 21860.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07554 -0.46461  0.02802  0.47296  2.97593 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.027    1.740   
##  Residual                1.243    1.115   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          0.54450    0.07975 5312.96352   6.828 9.59e-12 ***
## W1vW2               -0.26875    0.03284 2467.22199  -8.184 4.35e-16 ***
## index_AFexp          0.05364    0.01186 5339.40804   4.524 6.21e-06 ***
## Rep_1               -0.84629    0.10704 5227.49812  -7.906 3.21e-15 ***
## Ind_1               -0.81503    0.12128 5438.38387  -6.720 2.00e-11 ***
## index_AFexp:Rep_1    0.08215    0.01840 5295.62226   4.464 8.21e-06 ***
## index_AFexp:Ind_1    0.02294    0.02097 5116.70536   1.094    0.274    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AF Rep_1  Ind_1  i_AF:R
## W1vW2       -0.008                                   
## index_AFexp -0.791  0.055                            
## Rep_1       -0.732 -0.015  0.579                     
## Ind_1       -0.616  0.017  0.500  0.497              
## indx_AF:R_1  0.510  0.032 -0.618 -0.733 -0.343       
## indx_AF:I_1  0.437  0.016 -0.536 -0.345 -0.732  0.359

c. simple effects Rep

model1.rep <- lmer(vaxxAttitudes ~ W1vW2 + index_AFexp * (Dem_1 + Ind_1) + (1 | participant), data = dm)
summary(model1.rep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + index_AFexp * (Dem_1 + Ind_1) + (1 |  
##     participant)
##    Data: dm
## 
## REML criterion at convergence: 21860.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07554 -0.46461  0.02802  0.47296  2.97593 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.027    1.740   
##  Residual                1.243    1.115   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -0.30178    0.07289 4773.41683  -4.140 3.53e-05 ***
## W1vW2               -0.26875    0.03284 2467.22199  -8.184 4.35e-16 ***
## index_AFexp          0.13579    0.01448 5386.99965   9.376  < 2e-16 ***
## Dem_1                0.84629    0.10704 5227.49810   7.906 3.21e-15 ***
## Ind_1                0.03126    0.11513 5438.90082   0.272  0.78601    
## index_AFexp:Dem_1   -0.08215    0.01840 5295.62228  -4.464 8.21e-06 ***
## index_AFexp:Ind_1   -0.05922    0.02240 5126.66594  -2.644  0.00822 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AF Dem_1  Ind_1  i_AF:D
## W1vW2       -0.031                                   
## index_AFexp -0.671  0.086                            
## Dem_1       -0.667  0.015  0.457                     
## Ind_1       -0.561  0.032  0.398  0.406              
## indx_AF:D_1  0.518 -0.032 -0.765 -0.733 -0.321       
## indx_AF:I_1  0.399 -0.011 -0.612 -0.280 -0.686  0.486

d. simple effects Indep

model1.ind <- lmer(vaxxAttitudes ~ W1vW2 + index_AFexp * (Dem_1 + Rep_1) + (1 | participant), data = dm)
summary(model1.ind)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + index_AFexp * (Dem_1 + Rep_1) + (1 |  
##     participant)
##    Data: dm
## 
## REML criterion at convergence: 21860.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07554 -0.46461  0.02802  0.47296  2.97593 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.027    1.740   
##  Residual                1.243    1.115   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -0.27053    0.09564 5425.88907  -2.829  0.00469 ** 
## W1vW2               -0.26875    0.03284 2467.22172  -8.184 4.35e-16 ***
## index_AFexp          0.07658    0.01772 5162.86573   4.321 1.59e-05 ***
## Dem_1                0.81503    0.12128 5438.38387   6.720 2.00e-11 ***
## Rep_1               -0.03126    0.11513 5438.90081  -0.272  0.78601    
## index_AFexp:Dem_1   -0.02294    0.02097 5116.70538  -1.094  0.27421    
## index_AFexp:Rep_1    0.05922    0.02240 5126.66595   2.644  0.00822 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AF Dem_1  Rep_1  i_AF:D
## W1vW2        0.015                                   
## index_AFexp -0.685  0.056                            
## Dem_1       -0.754 -0.017  0.532                     
## Rep_1       -0.776 -0.032  0.541  0.591              
## indx_AF:D_1  0.565 -0.016 -0.825 -0.732 -0.451       
## indx_AF:R_1  0.521  0.011 -0.763 -0.404 -0.686  0.642

3. vaxxAttitudes ~ W1vW2 + (AFFECT + ANALYTIC) * party + (1 | participant)

a. contrast model

model1.cc <- lmer(vaxxAttitudes ~ W1vW2 + (DvR + IvDR) *
                   (index_AFexp + index_ANexp) +
                   (1 | participant), data = dm)
summary(model1.cc)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + (DvR + IvDR) * (index_AFexp + index_ANexp) +  
##     (1 | participant)
##    Data: dm
## 
## REML criterion at convergence: 21881.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0352 -0.4588  0.0287  0.4704  2.9707 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.019    1.737   
##  Residual                1.246    1.116   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       1.021e-03  5.192e-02  4.813e+03   0.020   0.9843    
## W1vW2            -2.730e-01  3.320e-02  2.506e+03  -8.223 3.15e-16 ***
## DvR              -8.977e-01  1.109e-01  5.272e+03  -8.093 7.19e-16 ***
## IvDR              4.195e-01  1.076e-01  5.395e+03   3.897 9.86e-05 ***
## index_AFexp       7.303e-02  7.536e-02  5.313e+03   0.969   0.3326    
## index_ANexp       7.066e-04  3.625e-03  5.303e+03   0.195   0.8455    
## DvR:index_AFexp   2.940e-01  1.429e-01  5.111e+03   2.057   0.0397 *  
## DvR:index_ANexp  -1.013e-02  6.822e-03  5.097e+03  -1.485   0.1377    
## IvDR:index_AFexp -1.348e-01  1.753e-01  4.906e+03  -0.769   0.4420    
## IvDR:index_ANexp  7.373e-03  8.479e-03  4.894e+03   0.870   0.3846    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  DvR    IvDR   ind_AF ind_AN DR:_AF DR:_AN IDR:_AF
## W1vW2       -0.041                                                         
## DvR         -0.054 -0.013                                                  
## IvDR        -0.209 -0.036 -0.068                                           
## index_AFexp -0.298  0.134 -0.018  0.058                                    
## index_ANexp  0.221 -0.121  0.019 -0.042 -0.993                             
## DvR:ndx_AFx -0.021  0.025 -0.347  0.002  0.194 -0.197                      
## DvR:ndx_ANx  0.024 -0.022  0.258  0.001 -0.197  0.202 -0.992               
## IvDR:ndx_AF  0.047  0.014  0.001 -0.270 -0.411  0.417  0.092 -0.094        
## IvDR:ndx_AN -0.032 -0.014  0.002  0.194  0.414 -0.423 -0.093  0.097 -0.994

- plots

m1 <- lmer(vaxxAttitudes ~  W1vW2 + (index_AFexp + index_ANexp) * party_factor + 
                   (1 | participant), data = dm)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lmer(vaxxAttitudes ~  W1vW2 + (index_AFexp + index_ANexp) * party_factor + 
                   (1 | participant), data = dm)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <- lmer(vaxxAttitudes ~ W1vW2 + 
                     (index_AFexp + index_ANexp) * 
                     (Rep_1 + Ind_1) + 
                     (1 | participant), data = dm)
summary(model1.dem)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + (index_AFexp + index_ANexp) * (Rep_1 +  
##     Ind_1) + (1 | participant)
##    Data: dm
## 
## REML criterion at convergence: 21881.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0352 -0.4588  0.0287  0.4704  2.9707 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.019    1.737   
##  Residual                1.246    1.116   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        5.883e-01  8.270e-02  5.310e+03   7.114 1.28e-12 ***
## W1vW2             -2.730e-01  3.320e-02  2.506e+03  -8.223 3.15e-16 ***
## index_AFexp       -1.185e-01  8.772e-02  5.135e+03  -1.350   0.1769    
## index_ANexp        8.204e-03  4.144e-03  5.082e+03   1.980   0.0478 *  
## Rep_1             -8.977e-01  1.109e-01  5.272e+03  -8.093 7.19e-16 ***
## Ind_1             -8.684e-01  1.244e-01  5.435e+03  -6.981 3.28e-12 ***
## index_AFexp:Rep_1  2.940e-01  1.429e-01  5.111e+03   2.057   0.0397 *  
## index_AFexp:Ind_1  2.818e-01  1.832e-01  4.960e+03   1.538   0.1240    
## index_ANexp:Rep_1 -1.013e-02  6.822e-03  5.097e+03  -1.485   0.1377    
## index_ANexp:Ind_1 -1.244e-02  8.827e-03  4.936e+03  -1.409   0.1589    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AF ind_AN Rep_1  Ind_1  i_AF:R i_AF:I i_AN:R
## W1vW2       -0.033                                                        
## index_AFexp -0.367  0.104                                                 
## index_ANexp  0.266 -0.097 -0.991                                          
## Rep_1       -0.734 -0.013  0.268 -0.194                                   
## Ind_1       -0.624  0.026  0.232 -0.168  0.504                            
## indx_AF:R_1  0.221  0.025 -0.587  0.581 -0.347 -0.157                     
## indx_AF:I_1  0.170 -0.004 -0.451  0.446 -0.137 -0.286  0.302              
## indx_AN:R_1 -0.158 -0.022  0.576 -0.581  0.258  0.114 -0.992 -0.296       
## indx_AN:I_1 -0.120  0.005  0.438 -0.441  0.098  0.205 -0.294 -0.993  0.293

c. simple effects Rep

model1.rep <- lmer(vaxxAttitudes ~ W1vW2 + 
                     (index_AFexp + index_ANexp) * 
                     (Dem_1 + Ind_1) + 
                     (1 | participant), data = dm)
summary(model1.rep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + (index_AFexp + index_ANexp) * (Dem_1 +  
##     Ind_1) + (1 | participant)
##    Data: dm
## 
## REML criterion at convergence: 21881.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0352 -0.4588  0.0287  0.4704  2.9707 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.019    1.737   
##  Residual                1.246    1.116   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       -3.094e-01  7.541e-02  4.942e+03  -4.103 4.14e-05 ***
## W1vW2             -2.730e-01  3.320e-02  2.506e+03  -8.223 3.15e-16 ***
## index_AFexp        1.755e-01  1.157e-01  5.248e+03   1.517   0.1294    
## index_ANexp       -1.925e-03  5.557e-03  5.255e+03  -0.346   0.7291    
## Dem_1              8.977e-01  1.109e-01  5.272e+03   8.093 7.19e-16 ***
## Ind_1              2.936e-02  1.177e-01  5.427e+03   0.249   0.8031    
## index_AFexp:Dem_1 -2.940e-01  1.429e-01  5.111e+03  -2.057   0.0397 *  
## index_AFexp:Ind_1 -1.219e-02  1.953e-01  4.918e+03  -0.062   0.9502    
## index_ANexp:Dem_1  1.013e-02  6.822e-03  5.097e+03   1.485   0.1377    
## index_ANexp:Ind_1 -2.309e-03  9.441e-03  4.914e+03  -0.245   0.8068    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AF ind_AN Dem_1  Ind_1  i_AF:D i_AF:I i_AN:D
## W1vW2       -0.055                                                        
## index_AFexp -0.337  0.109                                                 
## index_ANexp  0.258 -0.099 -0.992                                          
## Dem_1       -0.667  0.013  0.226 -0.172                                   
## Ind_1       -0.568  0.039  0.194 -0.146  0.409                            
## indx_AF:D_1  0.268 -0.025 -0.790  0.784 -0.347 -0.161                     
## indx_AF:I_1  0.183 -0.022 -0.548  0.544 -0.126 -0.281  0.448              
## indx_AN:D_1 -0.207  0.022  0.788 -0.795  0.258  0.123 -0.992 -0.448       
## indx_AN:I_1 -0.138  0.020  0.540 -0.545  0.095  0.205 -0.442 -0.993  0.448

d. simple effects Indep

model1.ind <- lmer(vaxxAttitudes ~ W1vW2 +
                     (index_AFexp + index_ANexp) * 
                     (Dem_1 + Rep_1) + 
                     (1 | participant), data = dm)
summary(model1.ind)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ W1vW2 + (index_AFexp + index_ANexp) * (Dem_1 +  
##     Rep_1) + (1 | participant)
##    Data: dm
## 
## REML criterion at convergence: 21881.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0352 -0.4588  0.0287  0.4704  2.9707 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 3.019    1.737   
##  Residual                1.246    1.116   
## Number of obs: 5448, groups:  participant, 3244
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       -2.800e-01  9.728e-02  5.426e+03  -2.879  0.00401 ** 
## W1vW2             -2.730e-01  3.320e-02  2.506e+03  -8.223 3.15e-16 ***
## index_AFexp        1.634e-01  1.636e-01  5.036e+03   0.998  0.31811    
## index_ANexp       -4.233e-03  7.926e-03  5.023e+03  -0.534  0.59331    
## Dem_1              8.684e-01  1.244e-01  5.435e+03   6.981 3.28e-12 ***
## Rep_1             -2.936e-02  1.177e-01  5.427e+03  -0.249  0.80306    
## index_AFexp:Dem_1 -2.818e-01  1.832e-01  4.960e+03  -1.538  0.12400    
## index_AFexp:Rep_1  1.219e-02  1.953e-01  4.918e+03   0.062  0.95023    
## index_ANexp:Dem_1  1.244e-02  8.827e-03  4.936e+03   1.409  0.15890    
## index_ANexp:Rep_1  2.309e-03  9.441e-03  4.914e+03   0.245  0.80682    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) W1vW2  ind_AF ind_AN Dem_1  Rep_1  i_AF:D i_AF:R i_AN:D
## W1vW2        0.005                                                        
## index_AFexp -0.255  0.052                                                 
## index_ANexp  0.183 -0.046 -0.994                                          
## Dem_1       -0.748 -0.026  0.195 -0.140                                   
## Rep_1       -0.770 -0.039  0.198 -0.141  0.581                            
## indx_AF:D_1  0.221  0.004 -0.878  0.873 -0.286 -0.173                     
## indx_AF:R_1  0.198  0.022 -0.806  0.802 -0.153 -0.281  0.717              
## indx_AN:D_1 -0.159 -0.005  0.878 -0.883  0.205  0.124 -0.993 -0.716       
## indx_AN:R_1 -0.140 -0.020  0.804 -0.809  0.109  0.205 -0.715 -0.993  0.723