+++++++++++++++++++***************************+++++++++++++++++++++++++++
It is now 710 days since the first COVID-19 case was reported in Nigeria. As at February 07, 2022 the confirmed cases are 257,906 with 3,139 (0%) fatalities, an average of 4 fatalities per day. However, to date, 230,145 or 90.69% were successfully managed and discharged leaving a balance of 20,496 (9.31%) active cases being managed.
Based on equal days forecast, by January 18, 2024, Nigeria’s aggregate confirmed COVID-19 cases are forecast to be:
Unconstrained forecast of COVID-19 for Nigeria
| Model | Confirmed cases | Recoveries | Fatalities | Active | RMSE |
|---|---|---|---|---|---|
| Linear | 360,324 | 326,778 | 0 | 33,546 | 415 |
| Semilog | 313,240 | 284,077 | 0 | 29,163 | 194 |
| Growth | 4,339 | 3,935 | 0 | 404 | 262 |
| Without knots | 1,354,816 | 1,228,682 | 0 | 126,133 | 428 |
| Smooth Spline | -1,776,545 | -1,611,149 | 0 | -165,396 | 225 |
| With knots | -20,980,816 | -19,027,502 | 0 | -1,953,314 | 225 |
| Quadratic Polynomial | 13,587 | 12,322 | 0 | 1,265 | 263 |
| Lower ARIMA | -370,856 | -336,329 | 0 | -34,527 | 186 |
| Upper ARIMA | 813,408 | 737,680 | 0 | 75,728 | 193 |
| Essembled with equal weight | -357,636 | -324,341 | 0 | -33,296 | 317 |
| Essembled based on weight | 39,981 | 36,259 | 0 | 3,722 | 431 |
| Essembled based on summed weight | 45,104 | 40,905 | 0 | 4,199 | 426 |
| Essembled based on weight of fit | -2,651,385 | -2,404,541 | 0 | -246,844 | 1.5 |
Constrained forecast of COVID-19 for Nigeria
| Model | Confirmed cases | Recoveries | Fatalities | Active |
|---|---|---|---|---|
| Linear | 360,324 | 326,778 | 0 | 33,546 |
| Semilog | 313,240 | 284,077 | 0 | 29,163 |
| Growth | 4,339 | 3,935 | 0 | 404 |
| Without knots 80% | 706 | 640 | 0 | 66 |
| Without knots 95% | 2,000,768 | 1,814,497 | 0 | 186,272 |
| Smooth Spline 80% | 190,598 | 172,854 | 0 | 17,745 |
| Smooth Spline 95% | 1,233,990 | 1,119,105 | 0 | 114,884 |
| With knots 80% | 7 | 6 | 0 | 1 |
| With knots 95% | 552,919 | 501,442 | 0 | 51,477 |
| Quadratic Polynomial 80% | 92,542 | 83,926 | 0 | 8,616 |
| Quadratic Polynomial 95% | 109,070 | 98,915 | 0 | 10,154 |
| ARIMA 80% | 2,837 | 2,572 | 0 | 264 |
| ARIMA 95% | 2,526,814 | 2,291,567 | 0 | 235,246 |
| Essembled with equal weight 80% | 10,487 | 9,510 | 0 | 976 |
| Essembled with equal weight 95% | 1,224,852 | 1,110,819 | 0 | 114,034 |
| Essembled based on weight 80% | 2,519 | 2,285 | 0 | 235 |
| Essembled based on weight 95% | 2,253,094 | 2,043,331 | 0 | 209,763 |
| Essembled based on summed weight 80% | 2,388 | 2,166 | 0 | 222 |
| Essembled based on summed weight 95% | 2,554,877 | 2,317,018 | 0 | 237,859 |
| Essembled based on weight of fit 80% | 27,635 | 25,062 | 0 | 2,573 |
| Essembled based on weight of fit 95% | 840,127 | 761,911 | 0 | 78,216 |
However, the actual forecast made by the various models on the last day i.e. January 18, 2024 is shown below:
Unconstrained forecasts on the last day
Constrained forecasts on the last day
Refer to Table 2 and Table 3 as well as Fig. 18-20 for more details on how the estimates and forecasts were obtained.
+++++++++++++++++++***************************+++++++++++++++++++++++++++
The visuals below supports this facts, take a look!
Fig. 1a Daily observed cases of COVID-19 in Nigeria
Fig. 1b COVID-19 cases and deaths in the omicron wave in Nigeria
Notes COVID-19 omicron wave - November 16 : February 07, 2022 . That is 16.91% of total or 519 cases per day. The all time cases per day is 342 . The mortality in the omicron wave is 5.957% of the total or 2 deaths per day. The all time deaths per day is 4 .
Fig. 2 Perecentages and previous days differences of COVID-19 in Nigeria Starting from February 29, 2020 to February 07, 2022
Fig. 3 Cases recorded in percentages Starting from February 29, 2020 to February 07, 2022 (legend as Fig. 2)
Fig. 4 Cumulative cases and Forecast of COVID-19 cases in Nigeria Starting from February 08, 2022 to January 18, 2024
Fig. 4a Components of COVID-19 cases in Nigeria between February 29, 2020 and February 07, 2022
Fig. 5 Number of days since average recorded cases exceeded one in each State
Fig. 6 Daily confirmed Coronavirus cases, by number of the days since 1 first daily case recorded
Fig. 7 Number of days from February 29, 2020 to February 07, 2022 that cases were recorded in the States
Fig. 7a Numbers of States that COVID-19 cases were reported on daily basis
Fig. 7b Forecast of Numbers of States that may still be COVID-19 affected by January 18, 2024
Coefficient estimates for number of states reporting COVID-19 daily
| Linear | Semilog | Growth | Spline without knots | Linear splines | Spline with knots | ARIMA | |
|---|---|---|---|---|---|---|---|
| (Intercept) | 0.378 **** | 12.971 **** | 2.547 **** | 7.138 **** | 2.841 * | -0.893 | |
| (0.074) | (1.297) | (0.045) | (0.791) | (1.573) | (2.447) | ||
| Series | -0.001 **** | -0.000 *** | |||||
| (0.000) | (0.000) | ||||||
| log(Series) | 0.042 | ||||||
| (0.230) | |||||||
| bs(Series, knots = NULL)1 | 27.156 **** | ||||||
| (2.286) | |||||||
| bs(Series, knots = NULL)2 | -10.355 **** | ||||||
| (1.450) | |||||||
| bs(Series, knots = NULL)3 | 7.474 **** | ||||||
| (1.250) | |||||||
| bs(DDPtable$Series, knots = LBREAKS)1 | -2.783 | ||||||
| (2.243) | |||||||
| bs(DDPtable$Series, knots = LBREAKS)2 | 13.774 **** | ||||||
| (1.664) | |||||||
| bs(DDPtable$Series, knots = LBREAKS)3 | 22.706 **** | ||||||
| (1.942) | |||||||
| bs(DDPtable$Series, knots = LBREAKS)4 | -0.738 | ||||||
| (1.724) | |||||||
| bs(DDPtable$Series, knots = LBREAKS)5 | 28.954 **** | ||||||
| (1.775) | |||||||
| bs(DDPtable$Series, knots = LBREAKS)6 | -3.144 * | ||||||
| (1.749) | |||||||
| bs(DDPtable$Series, knots = LBREAKS)7 | 3.284 * | ||||||
| (1.772) | |||||||
| bs(DDPtable$Series, knots = LBREAKS)8 | 19.334 **** | ||||||
| (1.808) | |||||||
| bs(DDPtable$Series, knots = LBREAKS)9 | -3.188 | ||||||
| (2.018) | |||||||
| bs(DDPtable$Series, knots = LBREAKS)10 | 17.104 **** | ||||||
| (2.023) | |||||||
| bs(DDPtable$Series, knots = LBREAKS)11 | 4.120 ** | ||||||
| (1.912) | |||||||
| bs(Series, knots = QBREAKS)1 | 7.529 ** | ||||||
| (3.014) | |||||||
| bs(Series, knots = QBREAKS)2 | 22.135 **** | ||||||
| (2.584) | |||||||
| bs(Series, knots = QBREAKS)3 | 17.581 **** | ||||||
| (2.934) | |||||||
| bs(Series, knots = QBREAKS)4 | 12.631 **** | ||||||
| (2.618) | |||||||
| bs(Series, knots = QBREAKS)5 | 9.651 **** | ||||||
| (2.723) | |||||||
| bs(Series, knots = QBREAKS)6 | 15.315 **** | ||||||
| (2.837) | |||||||
| bs(Series, knots = QBREAKS)7 | 11.057 **** | ||||||
| (3.094) | |||||||
| bs(Series, knots = QBREAKS)8 | 11.725 **** | ||||||
| (2.986) | |||||||
| ma1 | -0.771 | ||||||
| (0.023) | |||||||
| nobs | 692 | 692 | 692 | 692 | 692 | 692 | 691 |
| r.squared | 0.048 | 0.000 | 0.010 | 0.226 | 0.728 | 0.285 | |
| adj.r.squared | 0.046 | -0.001 | 0.009 | 0.223 | 0.724 | 0.277 | |
| sigma | 0.977 | 5.939 | 0.588 | 5.232 | 3.117 | 5.047 | 3.216 |
| statistic | 34.466 | 0.033 | 7.295 | 67.039 | 165.838 | 34.033 | |
| p.value | 0.000 | 0.856 | 0.007 | 0.000 | 0.000 | 0.000 | |
| df | 1.000 | 1.000 | 1.000 | 3.000 | 11.000 | 8.000 | |
| logLik | -964.540 | -2213.696 | -613.815 | -2124.984 | -1762.653 | -2097.632 | -1787.520 |
| AIC | 1935.080 | 4433.393 | 1233.630 | 4259.969 | 3551.306 | 4215.264 | 3579.041 |
| BIC | 1948.699 | 4447.011 | 1247.248 | 4282.667 | 3610.321 | 4260.660 | 3588.117 |
| deviance | 658.126 | 24335.103 | 238.827 | 18831.423 | 6608.304 | 17400.067 | |
| df.residual | 690.000 | 690.000 | 690.000 | 688.000 | 680.000 | 683.000 | |
| nobs.1 | 692.000 | 692.000 | 692.000 | 692.000 | 692.000 | 692.000 | 691.000 |
| **** p < 0.001; *** p < 0.01; ** p < 0.05; * p < 0.1. | |||||||
Properties of the estimated coefficients
| Linear | Semilog | Growth | Spline with knots | Linear splines | Spline without knots | Smooth spline | ARIMA | |
|---|---|---|---|---|---|---|---|---|
| Absolute Error | 9100 | 3400 | 7500 | 2900 | 1600 | 3000 | 1500 | 1700 |
| Absolute Percent Error | 690 | 480 | 530 | 330 | 180 | 380 | 150 | 170 |
| Accuracy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Adjusted R Square | 0.046 | -0.0014 | 0.009 | 0.28 | 0.72 | 0.22 | 0 | 0 |
| Akaike’s Information Criterion AIC | 1900 | 4400 | 1200 | 4200 | 3600 | 4300 | 0 | 3600 |
| Allen’s Prediction Sum-Of-Squares (PRESS, P-Square) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Area under the ROC curve (AUC) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Average Precision at k | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Bias | 13 | 0.0000000000000011 | 11 | -0.000000000000000084 | -0.00000000000000016 | 0.00000000000000026 | 0.0000000000000015 | 0.048 |
| Brier score | 200 | 40 | 200 | 30 | 10 | 30 | 8 | 10 |
| Classification Error | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| F1 Score | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| fScore | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| GINI Coefficient | 0.2 | -0.2 | 0.2 | 0.5 | 0.9 | 0.4 | 0.9 | 0.8 |
| kappa statistic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Log Loss | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf |
| Matthews Correlation Coefficient | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Mean Log Loss | 200 | -420 | -420 | -420 | -420 | -420 | -420 | -420 |
| Mean Absolute Error | 13 | 5 | 11 | 4.2 | 2.4 | 4.4 | 2.1 | 2.4 |
| Mean Absolute Percent Error | 1 | 0.7 | 0.77 | 0.48 | 0.25 | 0.55 | 0.22 | 0.25 |
| Mean Average Precision at k | 0 | 0 | 0 | 0 | 0 | 0 | 0.12 | 0 |
| Mean Absolute Scaled Error | 4.5 | 1.7 | 3.7 | 1.4 | 0.8 | 1.5 | 0.72 | 0.83 |
| Median Absolute Error | 13 | 4.8 | 11 | 3.8 | 1.9 | 4.3 | 1.7 | 2 |
| Mean Squared Error | 210 | 35 | 150 | 25 | 9.5 | 27 | 8.1 | 10 |
| Mean Squared Log Error | 6.9 | 0.28 | 2 | 0.19 | 0.073 | 0.21 | 0.056 | 0.071 |
| Model turning point error | 411 | 378 | 411 | 395 | 384 | 397 | 385 | 512 |
| Negative Predictive Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Percent Bias | 1 | -0.45 | 0.73 | -0.25 | -0.096 | -0.32 | -0.084 | -0.078 |
| Positive Predictive Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Precision | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| R Square | 0.048 | 0.000048 | 0.01 | 0.29 | 0.73 | 0.23 | 0 | 0 |
| Relative Absolute Error | 2.7 | 1 | 2.2 | 0.84 | 0.48 | 0.89 | 0.43 | 0.49 |
| Recall | 0 | 1 | 1 | 0.71 | 1 | 1 | 1 | 1 |
| Root Mean Squared Error | 14 | 5.9 | 12 | 5 | 3.1 | 5.2 | 2.8 | 3.2 |
| Root Mean Squared Log Error | 2.6 | 0.52 | 1.4 | 0.43 | 0.27 | 0.46 | 0.24 | 0.27 |
| Root Relative Squared Error | 2.4 | 1 | 2.1 | 0.85 | 0.52 | 0.88 | 0.48 | 0.54 |
| Relative Squared Error | 5.9 | 1 | 4.3 | 0.71 | 0.27 | 0.77 | 0.23 | 0.29 |
| Schwarz’s Bayesian criterion BIC | 1900 | 4400 | 1200 | 4300 | 3600 | 4300 | 0 | 3600 |
| Sensitivity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| specificity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Squared Error | 140000 | 24000 | 100000 | 17000 | 6600 | 19000 | 5600 | 7100 |
| Squared Log Error | 4800 | 190 | 1400 | 130 | 51 | 140 | 39 | 49 |
| Symmetric Mean Absolute Percentage Error | 2 | 0.41 | 1.3 | 0.36 | 0.22 | 0.37 | 0.19 | 0.22 |
| Sum of Squared Errors | 140000 | 24000 | 100000 | 17000 | 6600 | 19000 | 5600 | 7100 |
| True negative rate | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| True positive rate | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fig. 8 Number of days the last COVID19 case was recorded as at February 07, 2022
Fig. 9 Diverging Bars of COVID-19 cases in the States (normalised)
Fig. 11 Daily recorded cases of COVID19 in the States
Fig. 12 Number of days since average recorded cases exceeded one in each geo-political zone
Fig. 13 Number of days from February 29, 2020 to February 07, 2022 that cases were recorded in the Zones
Fig. 14 Monthly summary of COVID19 cases in the Zones
Table 1 Regression estimates of factors that might have stressed Nigeria’s economy within the period of the COVID-19 pandemic
| COVID19 | PMS | Inflation | Teledensity | Birth rate | Population | |
|---|---|---|---|---|---|---|
| (Intercept) | -314.572 | -1049.380 | -126.010 | 472.492 | -34.582 **** | 15.944 **** |
| (267.255) | (1444.189) | (159.453) | (350.145) | (7.217) | (0.286) | |
| PMSprice | -0.138 **** | 0.097 **** | 0.208 **** | 0.001 | 0.000 | |
| (0.030) | (0.012) | (0.032) | (0.002) | (0.001) | ||
| Inflation | 1.201 **** | 7.890 **** | -1.659 **** | -0.031 ** | 0.005 | |
| (0.279) | (1.010) | (0.353) | (0.013) | (0.005) | ||
| Teledensity | 0.622 **** | 3.324 **** | -0.324 **** | -0.000 | -0.002 | |
| (0.098) | (0.508) | (0.069) | (0.007) | (0.002) | ||
| `Birth rate` | 2.423 | 21.376 | -7.108 ** | -0.006 | 0.266 **** | |
| (5.895) | (30.932) | (3.059) | (7.840) | (0.049) | ||
| Population | 15.277 | 42.558 | 10.675 | -23.147 | 2.275 **** | |
| (16.951) | (91.028) | (9.833) | (22.296) | (0.421) | ||
| COVID19 | -3.858 **** | 0.412 **** | 1.090 **** | 0.004 | 0.003 | |
| (0.830) | (0.096) | (0.172) | (0.009) | (0.003) | ||
| nobs | 25 | 25 | 25 | 25 | 25 | 25 |
| r.squared | 0.736 | 0.885 | 0.910 | 0.811 | 0.713 | 0.741 |
| adj.r.squared | 0.667 | 0.855 | 0.886 | 0.761 | 0.638 | 0.673 |
| sigma | 1.191 | 6.300 | 0.697 | 1.577 | 0.046 | 0.016 |
| statistic | 10.619 | 29.378 | 38.209 | 16.256 | 9.451 | 10.873 |
| p.value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| df | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 |
| logLik | -36.417 | -78.058 | -23.031 | -43.435 | 44.853 | 71.670 |
| AIC | 86.835 | 170.116 | 60.061 | 100.871 | -75.705 | -129.340 |
| BIC | 95.367 | 178.648 | 68.593 | 109.403 | -67.173 | -120.808 |
| deviance | 26.961 | 754.171 | 9.239 | 47.267 | 0.040 | 0.005 |
| df.residual | 19.000 | 19.000 | 19.000 | 19.000 | 19.000 | 19.000 |
| nobs.1 | 25.000 | 25.000 | 25.000 | 25.000 | 25.000 | 25.000 |
| **** p < 0.001; *** p < 0.01; ** p < 0.05; * p < 0.1. | ||||||
Fig. 15 COVID-19, inflation, PMS price, Teledensity and birth rate in Nigeria
Fig. 15 Relationship between COVID-19, inflation, PMS price, Teledensity and birth rate in Nigeria
Table 2 The coefficient estimates of the various models for forecasting of COVID-19 for Nigeria1
| Linear | Semilog | Growth | Spline without knots | Spline with knots | ARIMA | Quardratic polynomial | Essembled based on weight | Essembled based on summed weight | |
|---|---|---|---|---|---|---|---|---|---|
| (Intercept) | 291.021 **** | -71.056 | 4.672 **** | -99.823 | -2.304 | 168.154 **** | 171.352 | 0.295 | |
| (32.436) | (92.416) | (0.111) | (62.160) | (100.821) | (48.379) | (207.303) | (39.153) | ||
| Day | 0.203 ** | 0.001 **** | 1.239 **** | ||||||
| (0.079) | (0.000) | (0.314) | |||||||
| log(Day) | 77.955 **** | ||||||||
| (16.337) | |||||||||
| bs(Day, knots = NULL)1 | 1372.692 **** | ||||||||
| (179.567) | |||||||||
| bs(Day, knots = NULL)2 | -202.196 * | ||||||||
| (113.868) | |||||||||
| bs(Day, knots = NULL)3 | 682.476 **** | ||||||||
| (98.180) | |||||||||
| bs(Day, knots = BREAKS)1 | 1.320 | ||||||||
| (194.907) | |||||||||
| bs(Day, knots = BREAKS)2 | 16.747 | ||||||||
| (126.257) | |||||||||
| bs(Day, knots = BREAKS)3 | 837.363 **** | ||||||||
| (144.731) | |||||||||
| bs(Day, knots = BREAKS)4 | 178.798 | ||||||||
| (122.952) | |||||||||
| bs(Day, knots = BREAKS)5 | 182.470 | ||||||||
| (134.613) | |||||||||
| bs(Day, knots = BREAKS)6 | -50.023 | ||||||||
| (126.521) | |||||||||
| bs(Day, knots = BREAKS)7 | 1976.318 **** | ||||||||
| (125.373) | |||||||||
| bs(Day, knots = BREAKS)8 | -159.422 | ||||||||
| (124.283) | |||||||||
| bs(Day, knots = BREAKS)9 | -214.703 * | ||||||||
| (125.433) | |||||||||
| bs(Day, knots = BREAKS)10 | 1001.468 **** | ||||||||
| (125.608) | |||||||||
| bs(Day, knots = BREAKS)11 | -684.504 **** | ||||||||
| (138.163) | |||||||||
| bs(Day, knots = BREAKS)12 | 1796.828 **** | ||||||||
| (140.083) | |||||||||
| bs(Day, knots = BREAKS)13 | -454.960 **** | ||||||||
| (136.084) | |||||||||
| ar1 | 0.846 | ||||||||
| (0.085) | |||||||||
| ar2 | 0.229 | ||||||||
| (0.055) | |||||||||
| ar3 | -0.223 | ||||||||
| (0.056) | |||||||||
| ar4 | -0.011 | ||||||||
| (0.049) | |||||||||
| ar5 | 0.132 | ||||||||
| (0.040) | |||||||||
| ma1 | -0.539 | ||||||||
| (0.079) | |||||||||
| intercept | 327.557 | ||||||||
| (131.253) | |||||||||
| I(Day^2) | -0.001 **** | ||||||||
| (0.000) | |||||||||
| fitf | 9.932 * | -0.088 * | |||||||
| (5.105) | (0.050) | ||||||||
| fit0f | -1.282 | 0.000 | |||||||
| (1.340) | (0.074) | ||||||||
| fit1f | -8.762 | 1.107 **** | |||||||
| (5.917) | (0.076) | ||||||||
| fitpif | -0.867 | -0.000 | |||||||
| (1.040) | (0.127) | ||||||||
| fitaf | -1.137 | -0.020 | |||||||
| (2.547) | (0.069) | ||||||||
| fitf:fit0f | -0.023 * | ||||||||
| (0.012) | |||||||||
| fitf:fit1f | -0.035 * | ||||||||
| (0.020) | |||||||||
| fit0f:fit1f | 0.045 ** | ||||||||
| (0.021) | |||||||||
| fitf:fitpif | -0.025 * | ||||||||
| (0.013) | |||||||||
| fit0f:fitpif | 0.004 | ||||||||
| (0.004) | |||||||||
| fit1f:fitpif | 0.032 * | ||||||||
| (0.018) | |||||||||
| fitf:fitaf | -0.015 | ||||||||
| (0.024) | |||||||||
| fit0f:fitaf | -0.010 | ||||||||
| (0.012) | |||||||||
| fit1f:fitaf | 0.045 * | ||||||||
| (0.027) | |||||||||
| fitpif:fitaf | 0.001 | ||||||||
| (0.011) | |||||||||
| fitf:fit0f:fit1f | 0.000 | ||||||||
| (0.000) | |||||||||
| fitf:fit0f:fitpif | 0.000 * | ||||||||
| (0.000) | |||||||||
| fitf:fit1f:fitpif | 0.000 | ||||||||
| (0.000) | |||||||||
| fit0f:fit1f:fitpif | -0.000 ** | ||||||||
| (0.000) | |||||||||
| fitf:fit0f:fitaf | 0.000 | ||||||||
| (0.000) | |||||||||
| fitf:fit1f:fitaf | 0.000 | ||||||||
| (0.000) | |||||||||
| fit0f:fit1f:fitaf | -0.000 * | ||||||||
| (0.000) | |||||||||
| fitf:fitpif:fitaf | 0.000 | ||||||||
| (0.000) | |||||||||
| fit0f:fitpif:fitaf | 0.000 | ||||||||
| (0.000) | |||||||||
| fit1f:fitpif:fitaf | -0.000 * | ||||||||
| (0.000) | |||||||||
| fitf:fit0f:fit1f:fitpif | -0.000 | ||||||||
| (0.000) | |||||||||
| fitf:fit0f:fit1f:fitaf | -0.000 | ||||||||
| (0.000) | |||||||||
| fitf:fit0f:fitpif:fitaf | -0.000 | ||||||||
| (0.000) | |||||||||
| fitf:fit1f:fitpif:fitaf | -0.000 | ||||||||
| (0.000) | |||||||||
| fit0f:fit1f:fitpif:fitaf | 0.000 ** | ||||||||
| (0.000) | |||||||||
| fitf:fit0f:fit1f:fitpif:fitaf | 0.000 | ||||||||
| (0.000) | |||||||||
| nobs | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 |
| r.squared | 0.009 | 0.031 | 0.034 | 0.081 | 0.635 | 0.025 | 0.815 | 0.801 | |
| adj.r.squared | 0.008 | 0.030 | 0.032 | 0.077 | 0.628 | 0.022 | 0.807 | 0.800 | |
| sigma | 431.683 | 426.882 | 1.480 | 416.266 | 264.278 | 225.867 | 428.494 | 190.410 | 193.971 |
| statistic | 6.607 | 22.769 | 24.816 | 20.840 | 93.128 | 9.141 | 96.611 | 567.069 | |
| p.value | 0.010 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| df | 1.000 | 1.000 | 1.000 | 3.000 | 13.000 | 2.000 | 31.000 | 5.000 | |
| logLik | -5314.505 | -5306.566 | -1285.015 | -5287.681 | -4960.048 | -4852.991 | -5308.739 | -4717.993 | -4744.507 |
| AIC | 10635.011 | 10619.132 | 2576.030 | 10585.361 | 9950.095 | 9721.982 | 10625.479 | 9501.987 | 9503.013 |
| BIC | 10648.706 | 10632.827 | 2589.726 | 10608.187 | 10018.574 | 9758.504 | 10643.740 | 9652.640 | 9534.970 |
| deviance | 131935734.107 | 129017758.449 | 1551.765 | 122333642.610 | 48610656.272 | 129810103.400 | 24581627.414 | 26487810.358 | |
| df.residual | 708.000 | 708.000 | 708.000 | 706.000 | 696.000 | 707.000 | 678.000 | 704.000 | |
| nobs.1 | 710.000 | 710.000 | 710.000 | 710.000 | 710.000 | 710.000 | 710.000 | 710.000 | 710.000 |
| **** p < 0.001; *** p < 0.01; ** p < 0.05; * p < 0.1. | |||||||||
Table 3 Various selection criteria for the estimated models2
| Linears | Semilogs | Growths | Spline with knots | Spline without knots | Smooth spline | ARIMA | Quardratic polynomial | Essembled equal weight | Essembled on weight | Essembled summed weight | Essembled weight of fit | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Absolute Error | 210000 | 210000 | 250000 | 100000 | 200000 | 64000 | 81000 | 210000 | 260000 | 66000 | 65000 | 260000 |
| Absolute Percent Error | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf |
| Accuracy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.025 | 0 | 0 | 0.025 |
| Adjusted R Square | 0.0078 | 0.03 | 0.032 | 0.63 | 0.077 | 0 | 0 | 0.022 | 0 | 0.81 | 0.8 | 0 |
| Akaike’s Information Criterion AIC | 11000 | 11000 | 2600 | 10000 | 11000 | 0 | 9700 | 11000 | 0 | 9500 | 9500 | 0 |
| Allen’s Prediction Sum-Of-Squares (PRESS, P-Square) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Area under the ROC curve (AUC) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Average Precision at k | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0.5 |
| Bias | -0.000000000000012 | -0.000000000000008 | 360 | 0.0000000000000056 | 0.0000000000000002 | 0.000000000000028 | 2.1 | -0.000000000000034 | 360 | -0.0000000000000005 | -0.0000000000000019 | 360 |
| Brier score | 200000 | 200000 | 300000 | 70000 | 200000 | 40000 | 50000 | 200000 | NaN | 30000 | 40000 | 300000 |
| Classification Error | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| F1 Score | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| fScore | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| GINI Coefficient | 0.1 | 0.1 | 0.1 | 0.9 | 0.3 | 1 | 0.9 | 0.07 | 0.9 | 1 | 1 | 0.9 |
| kappa statistic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Log Loss | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf |
| Matthews Correlation Coefficient | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NaN | 0 | 0 | NaN |
| Mean Log Loss | -13000 | -13000 | -13000 | -12000 | -13000 | -13000 | -13000 | -13000 | NaN | -12000 | -13000 | NaN |
| Mean Absolute Error | 300 | 290 | 360 | 140 | 280 | 90 | 110 | 290 | NaN | 93 | 91 | 360 |
| Mean Absolute Percent Error | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf |
| Mean Average Precision at k | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 |
| Mean Absolute Scaled Error | 2.4 | 2.3 | 2.8 | 1.1 | 2.2 | 0.71 | 0.9 | 2.3 | 2.9 | 0.74 | 0.72 | 2.9 |
| Median Absolute Error | 260 | 240 | 210 | 90 | 260 | 41 | 53 | 230 | 120 | 45 | 43 | 130 |
| Mean Squared Error | 190000 | 180000 | 320000 | 68000 | 170000 | 38000 | 51000 | 180000 | NaN | 35000 | 37000 | 320000 |
| Mean Squared Log Error | 2.8 | NaN | 13 | NaN | NaN | 0.21 | 0.61 | 2.6 | 29 | NaN | NaN | 29 |
| Model turning point error | 362 | 362 | 362 | 345 | 363 | 335 | 449 | 351 | 421 | 313 | 324 | 415 |
| Negative Predictive Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Percent Bias | -Inf | NaN | -Inf | NaN | NaN | NaN | -Inf | -Inf | -Inf | NaN | NaN | -Inf |
| Positive Predictive Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Precision | 0.1 | 0.056 | 0.1 | 0 | 0 | 0 | 0.1 | 0.1 | 0 | 0.067 | 0 | 0 |
| R Square | 0.0092 | 0.031 | 0.034 | 0.63 | 0.081 | 0 | 0 | 0.025 | 0 | 0.82 | 0.8 | 0 |
| Relative Absolute Error | 1 | 0.98 | 1.2 | 0.48 | 0.95 | 0.3 | 0.38 | 0.99 | 0.52 | 0.31 | 0.3 | 0.62 |
| Recall | 1 | 0.5 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0.5 | 0 | 0 |
| Root Mean Squared Error | 430 | 430 | 560 | 260 | 420 | 190 | 220 | 430 | NaN | 190 | 190 | 570 |
| Root Mean Squared Log Error | 1.7 | NaN | 3.7 | NaN | NaN | 0.46 | 0.78 | 1.6 | 5.4 | NaN | NaN | 5.4 |
| Root Relative Squared Error | 1 | 0.98 | 1.3 | 0.6 | 0.96 | 0.45 | 0.52 | 0.99 | 1.3 | 0.43 | 0.45 | 1.3 |
| Relative Squared Error | 0.99 | 0.97 | 1.7 | 0.37 | 0.92 | 0.2 | 0.27 | 0.97 | 1.7 | 0.18 | 0.2 | 1.7 |
| Schwarz’s Bayesian criterion BIC | 11000 | 11000 | 2600 | 10000 | 11000 | 0 | 9800 | 11000 | 0 | 9700 | 9500 | 0 |
| Sensitivity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| specificity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Squared Error | 130000000 | 130000000 | 220000000 | 49000000 | 120000000 | 27000000 | 36000000 | 130000000 | 230000000 | 25000000 | 26000000 | 230000000 |
| Squared Log Error | 2000 | NaN | 9500 | NaN | NaN | 150 | 440 | 1800 | 20000 | NaN | NaN | 20000 |
| Symmetric Mean Absolute Percentage Error | 0.89 | 0.89 | 1.8 | 0.63 | 0.86 | 0.34 | 0.43 | 0.89 | 0.62 | 0.4 | 0.36 | 0.67 |
| Sum of Squared Errors | 130000000 | 130000000 | 220000000 | 49000000 | 120000000 | 27000000 | 36000000 | 130000000 | 230000000 | 25000000 | 26000000 | 230000000 |
| True negative rate | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| True positive rate | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fig. 18 Models of COVID-19 Cases using ensemble technology
Fig. 19 Equal duration forecast of COVID-19 Cases from the ensemble models using a native plotting method
Fig. 20 Unconstrained forecast of COVID-19 cases in Nigeria Starting from February 08, 2022 to January 18, 2024 using a more advaced plotting method
Fig. 20a Lagged unconstrained forecasts (1-14 days) of COVID-19 cases in Nigeria
Fig. 20b Constrained forecast of COVID-19 cases in Nigeria Starting from February 08, 2022 to January 18, 2024 using a more advaced plotting method
Fig. 20c Constrained forecast of COVID-19 cases in Nigeria Starting from February 08, 2022 to January 18, 2024 using a more advaced plotting method
Fig. 20c Lagged constrained forecasts (1-14 days) of COVID-19 cases in Nigeria
| Model | Jan 25, 22 - Dec 21, 23 | Feb 01, 22 - Jan 04, 24 | Feb 04, 22 - Jan 10, 24 | Feb 05, 22 - Jan 12, 24 | Feb 06, 22 - Jan 14, 24 | Feb 07, 22 - Jan 16, 24 |
|---|---|---|---|---|---|---|
| Linear | 382570 | 372529 | 367780 | 365683 | 364360 | 362280 |
| Semilog | 315304 | 314682 | 342240 | 313962 | 314203 | 341090 |
| Growth | 4347 | 4352 | 4353 | 4346 | 4349 | 4343 |
| Without knots | 1703598 | 1534341 | 1460954 | 1431428 | 1410669 | 1381919 |
| Smooth Spline | -20102286 | -21533061 | -21389219 | -21403535 | -21163778 | -21106805 |
| With knots | -133626 | -374113 | -179398 | -281105 | 29127 | -172260 |
| Quadratic Polynomial | 118168 | 69158 | 46972 | 37682 | 31388 | 22226 |
| Lower ARIMA | -351772 | -362142 | -364806 | -369472 | -344261 | -367963 |
| Upper ARIMA | 817054 | 812056 | 813062 | 813716 | 840317 | 813573 |
| Essembled with equal weight | -4929349 | -4547070 | -4178436 | -4519865 | -123922 | -3898871 |
| Essembled based on weight | 31678 | 366354 | 414266 | 454094 | 435179 | 440808 |
| Essembled based on summed weight | -20979 | -44264 | -55485 | -56106 | -66389 | -60868 |
| Essembled based on weight of fit | -2823674 | -2897206 | -2600418 | -2840682 | -2651528 | -38156 |
| Model | Jan 25, 22 - Dec 21, 23 | Feb 01, 22 - Jan 04, 24 | Feb 04, 22 - Jan 10, 24 | Feb 05, 22 - Jan 12, 24 | Feb 06, 22 - Jan 14, 24 | Feb 07, 22 - Jan 16, 24 |
|---|---|---|---|---|---|---|
| Linear | 382570 | 372529 | 367780 | 365683 | 364360 | 362280 |
| Semilog | 315304 | 314682 | 342240 | 313962 | 314203 | 341090 |
| Growth | 4347 | 4352 | 4353 | 4346 | 4349 | 4343 |
| Without knots 80% | 7723 | 645 | 5961 | 2610 | 3130 | 1274 |
| Without knots 95% | 2192032 | 2306664 | 1204895 | 1083163 | 2347269 | 2110080 |
| Smooth Spline 80% | 37 | 8 | 7 | 7 | 8 | 6 |
| Smooth Spline 95% | 339935 | 1327459 | 1317522 | 1263393 | 420209 | 1201001 |
| With knots 80% | 30625 | 269239 | 244115 | 216529 | 83354 | 60594 |
| With knots 95% | 2636762 | 924850 | 1018373 | 1145854 | 2154181 | 2375339 |
| Quadratic Polynomial 80% | 145707 | 118459 | 107517 | 103148 | 100320 | 96249 |
| Quadratic Polynomial 95% | 168561 | 138476 | 126165 | 121215 | 117978 | 113332 |
| ARIMA 80% | 3907 | 3018 | 3321 | 2208 | 2473 | 2803 |
| ARIMA 95% | 2517099 | 2513138 | 2535182 | 2484256 | 2492804 | 2522015 |
| Essembled with equal weight 80% | 22310 | 14692 | 13457 | 12953 | 11429 | 8752 |
| Essembled with equal weight 95% | 1745309 | 1443801 | 1390212 | 1101387 | 1355576 | 1539457 |
| Essembled based on weight 80% | 2795 | 56458 | 62843 | 71476 | 31133 | 60466 |
| Essembled based on weight 95% | 1975366 | 2228941 | 2299832 | 2323433 | 2617314 | 2392102 |
| Essembled based on summed weight 80% | 2299 | 60444 | 109141 | 73259 | 102954 | 109200 |
| Essembled based on summed weight 95% | 2763011 | 1204303 | 505682 | 843612 | 511068 | 419802 |
| Essembled based on weight of fit 80% | 39540 | 30278 | 18429 | 20169 | 17579 | 17288 |
| Essembled based on weight of fit 95% | 1340600 | 1122554 | 1362322 | 1228372 | 1241109 | 1241034 |
| Model | Jan 25, 22 - Dec 21, 23 | Feb 01, 22 - Jan 04, 24 | Feb 04, 22 - Jan 10, 24 | Feb 05, 22 - Jan 12, 24 | Feb 06, 22 - Jan 14, 24 | Feb 07, 22 - Jan 16, 24 |
|---|---|---|---|---|---|---|
| Linear | 432.64 | 431.73 | 431.37 | 431.34 | 431.18 | 431.14 |
| Semilog | 427.77 | 426.87 | 426.54 | 426.51 | 426.36 | 426.33 |
| Growth | 567.26 | 564.64 | 563.49 | 563.09 | 562.72 | 562.32 |
| Without knots | 412.37 | 413.8 | 414.31 | 414.59 | 414.65 | 414.9 |
| Smooth Spline | 256.17 | 257.74 | 259.3 | 259.73 | 260.53 | 261.05 |
| With knots | 189.34 | 189.94 | 192.8 | 188.69 | 186.66 | 192.66 |
| Quadratic Polynomial | 430.54 | 429.01 | 428.36 | 428.2 | 427.95 | 427.78 |
| Lower ARIMA | 226.77 | 225.78 | 225.34 | 225.19 | 225.05 | 224.9 |
| Upper ARIMA | 226.77 | 225.78 | 225.34 | 225.19 | 225.05 | 224.9 |
| Essembled with equal weight | 261.05 | 261.57 | 262.57 | 261.63 | 261.28 | 262.91 |
| Essembled based on weight | 449.48 | 450.4 | 451.71 | 452.25 | 452.25 | 453.1 |
| Essembled based on summed weight | 440.06 | 435.77 | 433.81 | 433.23 | 432.7 | 431.94 |
| Essembled based on weight of fit | 219.92 | 224.29 | 226.51 | 227.18 | 227.71 | 228.88 |
Fig. 21 Percentage of COVID19 cases that resulted into casualty per State as at February 07, 2022
Fig. 22 Percentage of COVID19 cases that recovered per State as at February 07, 2022
Fig. 23 Percentage of recoveries and deaths from COVID19 cases per Zone as at February 07, 2022
Fig. 24 Distribution of COVID19 in the States as at February 07, 2022