Data-Airline13: “The Late List”

The train dataset contains detailed flight records and weather condition recorded per hour from January 1st 2013 to November 31th 2013. The data set can be joined by their recorded time.

Importing Data

flight <- read.csv("data/data-train-flight.csv")
weather <- read.csv("data/data-train-weather.csv")
data_test <- read.csv("data/flight-data-test.csv")

Flight:

head(flight)
##   year month day dep_time sched_dep_time dep_delay sched_arr_time arr_delay
## 1 2013     1   1      629            630        -1            833 Not Delay
## 2 2013     1   1      643            645        -2            848 Not Delay
## 3 2013     1   1      811            815        -4           1016     Delay
## 4 2013     1   1     1010           1015        -5           1210 Not Delay
## 5 2013     1   1     1211           1215        -4           1413     Delay
## 6 2013     1   1     1314           1315        -1           1505 Not Delay
##   carrier flight tailnum origin dest distance hour minute           time_hour
## 1      US   1019  N426US    EWR  CLT      529    6     30 2013-01-01 06:00:00
## 2      US    926  N178US    EWR  CLT      529    6     45 2013-01-01 06:00:00
## 3      US    675  N654AW    EWR  CLT      529    8     15 2013-01-01 08:00:00
## 4      US   1103  N162UW    EWR  CLT      529   10     15 2013-01-01 10:00:00
## 5      EV   4135  N21537    EWR  CLT      529   12     15 2013-01-01 12:00:00
## 6      US   1615  N177US    EWR  CLT      529   13     15 2013-01-01 13:00:00

The flight data consists of the following variables:

year,month,day: Date of departure. dep_time: Actual departure times (format HHMM or HMM), local tz. sched_dep_time,sched_arr_time: Scheduled departure and arrival times (format HHMM or HMM), local tz. dep_delay: Departure delays, in minutes. Negative times represent early departures. arr_delay: Flight arrival status; Delay or Not Delay. carrier: Two letter carrier (airlines) abbreviation. flight: Flight number. tailnum: Plane tail number. origin,dest: Airports of origin and destination. distance: Distance between airports, in miles hour,minute: Time of scheduled departure broken into hour and minutes. time_hour: Scheduled date and hour of the flight (YYYYMMDD HHMMSS).

Weather:

head(weather)
##   year month day hour  temp  dewp humid wind_dir wind_speed wind_gust precip
## 1 2013     1   1    1 39.02 26.06 59.37      270   10.35702        NA      0
## 2 2013     1   1    2 39.02 26.96 61.63      250    8.05546        NA      0
## 3 2013     1   1    3 39.02 28.04 64.43      240   11.50780        NA      0
## 4 2013     1   1    4 39.92 28.04 62.21      250   12.65858        NA      0
## 5 2013     1   1    5 39.02 28.04 64.43      260   12.65858        NA      0
## 6 2013     1   1    6 37.94 28.04 67.21      240   11.50780        NA      0
##   pressure visib           time_hour
## 1   1012.0    10 2013-01-01 01:00:00
## 2   1012.3    10 2013-01-01 02:00:00
## 3   1012.5    10 2013-01-01 03:00:00
## 4   1012.2    10 2013-01-01 04:00:00
## 5   1011.9    10 2013-01-01 05:00:00
## 6   1012.4    10 2013-01-01 06:00:00

The weather data consists of the following variables:

year,month,day,hour: Time of recording. temp: Temperature in Fahrenheit. dewp: Dewpoint in Fahrenheit. humid: Relative humidity. wind_dir: Wind direction (in degrees). wind_speed: Wind speed (in mph). wind_gust: Wind gust speed (in mph). precip: Precipitation, in inches. pressure: Sea level pressure in millibars. visib: Visibility in miles. time_hour: Date and hour of the recording (YYYYMMDD HHMMSS).

Data Test:

head(data_test)
##   id month day dep_delay sched_arr_hour sched_arr_minute sched_dep_hour
## 1 F1    12 Sun        -7              6               51              5
## 2 F2    12 Sun        -7              8               11              6
## 3 F3    12 Sun         6              8               17              6
## 4 F4    12 Sun        -4              8               35              6
## 5 F5    12 Sun        -3             10               21              8
## 6 F6    12 Sun        -7             12               18             10
##   sched_dep_minute  temp  dewp humid wind_dir wind_speed precip visib
## 1                0 35.06 28.04 75.31       10    4.60312      0    10
## 2                1 33.80 26.60 78.45       40    5.75390      0    10
## 3               15 33.80 26.60 78.45       40    5.75390      0    10
## 4               30 33.80 26.60 78.45       40    5.75390      0    10
## 5               20 39.02 30.92 72.46       30    3.45234      0    10
## 6               23 44.96 32.00 60.20        0    0.00000      0    10
##   arr_status
## 1         NA
## 2         NA
## 3         NA
## 4         NA
## 5         NA
## 6         NA

It can be seen that we need to combine the flight dataset with the weather dataset.

Joining two data frames

Merging datasets using left_join() function.

dataset <- left_join(weather, flight, by = "time_hour")

Remove certain columns after joining the data frames

It can be seen that columns such as year, distance, origin and dest can be deleted because they have the same value in all columns.

# dataset %>% select(year.x,year.y,distance,origin,dest) %>% unique()
# dataset <- dataset %>% select(-c("year.x","year.y","distance","origin","dest"))

Explored which airline company might needed this prediction model the most. Do you think airline that has the highest number of delayed flight needed the model the most? Is there any airline that has more delayed flight than non-delayed flight?

Explored the proportion of the target variable. What is the target variable? Is there any class imbalance between the target value? *What should you do if there is a class imbalance?

Demonstrated how to properly do data preprocessing and feature engineering. Do you need to transform the data type of some variables? Do you need to separate time into hour and minute? *Do you need to remove some variables? How?

Demonstrated how to properly handle missing values (includes reasoning for the method applied). Should you check any missing values? Do you need to impute missing values? *Should you use median or mean imputation? Why?

Demonstrated how to prepare cross-validation data for this case. What is your proportion of training-testing dataset? Do you need to use stratified random sampling during the cross-validation?

Demonstrated how to properly do model fitting and evaluation. What model do you use? How do you set the model parameter? *Do you concerned more with precision than accuracy for this case? Why?

Demonstrated how to properly do model selection by comparing models or making adjustment to single model. Which model is better? What kind of adjustment you need to do in order to improve the performance of your chosen model? *Can you adjust the classification threshold to get better model performance?

Interpretation

(3 Points) Use LIME method to interpret the model that you have used There any pre-processing that you need in order to be more interpretable? How many features do you use to explain the model? What is the difference between using LIME compared to interpretable machine learning models such as Decision Tree or metrics such as Variable Importance in Random Forest? (3 Points) Interpret the first 4 observation of the plot What is the difference between interpreting black box model with LIME and using an interpretable machine learning model? How good is the explanation fit? What does it signify?

dataset %>%
    select(year.x, month.x, day.x, dep_delay, sched_arr_time,
           sched_dep_time, temp, dewp, humid,
           wind_dir, wind_speed, precip,
           visib, arr_delay) %>%
    rename("year"=year.x, "month"= month.x, "day" = day.x) %>% 
    filter(!is.na(arr_delay)) -> dataset
Sys.setlocale("LC_TIME", "English")
## [1] "English_United States.1252"
dataset$day <- paste(dataset$year,
                     dataset$month,
                     dataset$day, sep = "-") %>% 
   as.Date(., "%Y-%m-%d") %>% 
   lubridate::wday(.,label = T)
dataset$arr_delay=as.factor(dataset$arr_delay)
new_data <- missForest(dataset)
##   missForest iteration 1 in progress...done!
##   missForest iteration 2 in progress...done!
##   missForest iteration 3 in progress...done!
##   missForest iteration 4 in progress...done!
##   missForest iteration 5 in progress...done!
new_data <- new_data$ximp
anyNA(new_data)
## [1] FALSE
upSample(new_data[,-14], y = new_data$arr_delay, yname = "arr_delay") -> new_dataset
ind <- createDataPartition(new_dataset$arr_delay, p = .7, list = F)
dat_train <- new_dataset[ind,]
dat_test <- new_dataset[-ind,]
ctrl = trainControl(method = "cv", number = 5)
mod <- train(arr_delay ~ dep_delay + dewp + temp + humid +
               wind_dir + wind_speed + precip +
               visib, data = dat_train,
             method = "avNNet",
             preProcess = "scale",
             trControl = ctrl)
## Warning: executing %dopar% sequentially: no parallel backend registered
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1694.129089 
## iter  10 value 1272.431594
## iter  20 value 1000.987549
## iter  30 value 953.668363
## iter  40 value 950.862592
## iter  50 value 947.099047
## iter  60 value 945.848941
## iter  70 value 945.486240
## iter  80 value 945.458641
## final  value 945.450666 
## converged
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1750.737023 
## iter  10 value 1519.334937
## iter  20 value 1225.320998
## iter  30 value 1030.266208
## iter  40 value 1008.663858
## iter  50 value 992.330063
## iter  60 value 975.452249
## iter  70 value 953.862698
## iter  80 value 949.687792
## iter  90 value 946.590317
## iter 100 value 945.799487
## final  value 945.799487 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1689.719451 
## iter  10 value 1537.871003
## iter  20 value 1007.563210
## iter  30 value 954.596657
## iter  40 value 949.017453
## iter  50 value 946.475549
## iter  60 value 946.058673
## iter  70 value 945.694731
## iter  80 value 945.532495
## iter  90 value 945.516834
## iter  90 value 945.516832
## final  value 945.516454 
## converged
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1843.264996 
## iter  10 value 1244.274144
## iter  20 value 990.632008
## iter  30 value 972.911134
## iter  40 value 967.071018
## iter  50 value 964.144930
## iter  60 value 964.032338
## iter  70 value 964.011094
## iter  80 value 963.999901
## iter  90 value 963.992806
## iter 100 value 963.976727
## final  value 963.976727 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1847.180406 
## iter  10 value 1531.889873
## iter  20 value 1043.279867
## iter  30 value 960.667301
## iter  40 value 949.771292
## iter  50 value 947.264819
## iter  60 value 946.556253
## iter  70 value 945.877805
## iter  80 value 945.599044
## iter  90 value 945.568978
## iter 100 value 945.490194
## final  value 945.490194 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1704.140371 
## iter  10 value 1148.270472
## iter  20 value 967.892947
## iter  30 value 947.288860
## iter  40 value 930.363960
## iter  50 value 921.299652
## iter  60 value 914.203168
## iter  70 value 905.527667
## iter  80 value 900.768847
## iter  90 value 898.777224
## iter 100 value 897.633986
## final  value 897.633986 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1723.531702 
## iter  10 value 1631.667733
## iter  20 value 1423.535818
## iter  30 value 1004.211164
## iter  40 value 948.261916
## iter  50 value 945.810055
## iter  60 value 944.037125
## iter  70 value 942.563578
## iter  80 value 942.367586
## iter  90 value 940.484304
## iter 100 value 938.714835
## final  value 938.714835 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 1692.080090 
## iter  10 value 1295.262498
## iter  20 value 1120.363767
## iter  30 value 989.549987
## iter  40 value 937.393957
## iter  50 value 927.742523
## iter  60 value 924.335432
## iter  70 value 922.316522
## iter  80 value 914.515304
## iter  90 value 912.818954
## iter 100 value 911.321151
## final  value 911.321151 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 2041.159311 
## iter  10 value 1441.896489
## iter  20 value 1360.761226
## iter  30 value 1312.851280
## iter  40 value 1249.980078
## iter  50 value 978.332992
## iter  60 value 957.709153
## iter  70 value 949.450452
## iter  80 value 946.223610
## iter  90 value 944.961902
## iter 100 value 940.664522
## final  value 940.664522 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1857.929896 
## iter  10 value 1259.973394
## iter  20 value 957.185199
## iter  30 value 928.870848
## iter  40 value 922.764373
## iter  50 value 922.026046
## iter  60 value 921.562211
## iter  70 value 921.451350
## iter  80 value 921.408030
## iter  90 value 921.403808
## iter 100 value 921.400598
## final  value 921.400598 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 1677.954117 
## iter  10 value 1288.808858
## iter  20 value 990.337363
## iter  30 value 959.970138
## iter  40 value 942.534106
## iter  50 value 933.066155
## iter  60 value 927.811662
## iter  70 value 925.524215
## iter  80 value 925.297327
## iter  90 value 924.593286
## iter 100 value 922.767222
## final  value 922.767222 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1860.201545 
## iter  10 value 1363.109750
## iter  20 value 1089.108990
## iter  30 value 964.312122
## iter  40 value 932.902271
## iter  50 value 916.591365
## iter  60 value 909.671946
## iter  70 value 905.453018
## iter  80 value 897.083606
## iter  90 value 890.166666
## iter 100 value 885.068016
## final  value 885.068016 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 1831.032774 
## iter  10 value 1298.825051
## iter  20 value 1004.463416
## iter  30 value 945.744750
## iter  40 value 936.925954
## iter  50 value 926.798546
## iter  60 value 919.415241
## iter  70 value 910.580573
## iter  80 value 901.560686
## iter  90 value 897.929941
## iter 100 value 895.518618
## final  value 895.518618 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1680.515951 
## iter  10 value 1310.394629
## iter  20 value 1061.990498
## iter  30 value 966.953679
## iter  40 value 936.511414
## iter  50 value 933.903309
## iter  60 value 927.479366
## iter  70 value 916.656194
## iter  80 value 911.982205
## iter  90 value 910.000375
## iter 100 value 909.267778
## final  value 909.267778 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1762.940913 
## iter  10 value 1389.483863
## iter  20 value 985.023629
## iter  30 value 943.257834
## iter  40 value 939.112593
## iter  50 value 937.944045
## iter  60 value 937.601464
## iter  70 value 937.465016
## iter  80 value 937.091439
## iter  90 value 936.054272
## iter 100 value 923.232396
## final  value 923.232396 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1968.886910 
## iter  10 value 1620.247315
## iter  20 value 1319.593885
## iter  30 value 1031.336283
## iter  40 value 992.644169
## iter  50 value 962.015553
## iter  60 value 959.316083
## iter  70 value 959.296436
## final  value 959.296125 
## converged
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1802.204858 
## iter  10 value 1501.267512
## iter  20 value 1069.183334
## iter  30 value 966.026747
## iter  40 value 961.504875
## iter  50 value 959.103586
## final  value 959.049096 
## converged
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1670.711770 
## iter  10 value 1139.821146
## iter  20 value 980.183020
## iter  30 value 962.202480
## iter  40 value 959.955248
## iter  50 value 959.049103
## iter  50 value 959.049097
## iter  50 value 959.049097
## final  value 959.049097 
## converged
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1687.943734 
## iter  10 value 1268.571185
## iter  20 value 1070.900137
## iter  30 value 963.549111
## iter  40 value 959.316561
## final  value 959.049096 
## converged
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1726.019834 
## iter  10 value 1292.210949
## iter  20 value 992.473669
## iter  30 value 967.719044
## iter  40 value 960.043361
## iter  50 value 959.296303
## final  value 959.296125 
## converged
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1746.644289 
## iter  10 value 1023.394070
## iter  20 value 973.451397
## iter  30 value 960.367502
## iter  40 value 937.385216
## iter  50 value 931.675592
## iter  60 value 928.387333
## iter  70 value 922.784427
## iter  80 value 919.270997
## iter  90 value 918.103633
## iter 100 value 917.722369
## final  value 917.722369 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1878.483837 
## iter  10 value 1307.259245
## iter  20 value 1130.852039
## iter  30 value 997.403353
## iter  40 value 965.518335
## iter  50 value 960.231400
## iter  60 value 938.119649
## iter  70 value 927.611570
## iter  80 value 925.173610
## iter  90 value 923.907934
## iter 100 value 923.745860
## final  value 923.745860 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 2190.404476 
## iter  10 value 1569.005228
## iter  20 value 1019.936158
## iter  30 value 971.784893
## iter  40 value 957.097623
## iter  50 value 943.263457
## iter  60 value 935.491982
## iter  70 value 933.242998
## iter  80 value 933.111520
## final  value 933.110841 
## converged
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1682.564940 
## iter  10 value 1355.878822
## iter  20 value 1055.256805
## iter  30 value 976.709160
## iter  40 value 948.197689
## iter  50 value 939.121432
## iter  60 value 933.469696
## iter  70 value 929.965187
## iter  80 value 918.203821
## iter  90 value 915.704003
## iter 100 value 915.278117
## final  value 915.278117 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1721.039679 
## iter  10 value 1171.264534
## iter  20 value 989.582136
## iter  30 value 959.439750
## iter  40 value 952.580716
## iter  50 value 940.533377
## iter  60 value 932.174868
## iter  70 value 928.085123
## iter  80 value 927.242886
## iter  90 value 924.758571
## iter 100 value 922.951768
## final  value 922.951768 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 1880.467516 
## iter  10 value 1207.635317
## iter  20 value 1048.903580
## iter  30 value 968.085266
## iter  40 value 946.701976
## iter  50 value 933.219406
## iter  60 value 928.067683
## iter  70 value 920.592945
## iter  80 value 909.588907
## iter  90 value 905.289890
## iter 100 value 903.866657
## final  value 903.866657 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1759.788983 
## iter  10 value 1175.506217
## iter  20 value 983.075316
## iter  30 value 960.877406
## iter  40 value 948.708092
## iter  50 value 933.858549
## iter  60 value 929.091571
## iter  70 value 923.700501
## iter  80 value 919.899719
## iter  90 value 917.767359
## iter 100 value 914.285717
## final  value 914.285717 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 1701.029852 
## iter  10 value 1183.511049
## iter  20 value 1013.555094
## iter  30 value 970.064753
## iter  40 value 958.956749
## iter  50 value 949.503488
## iter  60 value 935.553453
## iter  70 value 922.160213
## iter  80 value 913.712744
## iter  90 value 906.096702
## iter 100 value 903.461306
## final  value 903.461306 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 2398.276683 
## iter  10 value 1314.126988
## iter  20 value 1065.025779
## iter  30 value 1000.046746
## iter  40 value 947.276668
## iter  50 value 939.706834
## iter  60 value 933.421440
## iter  70 value 929.401632
## iter  80 value 920.414980
## iter  90 value 913.503907
## iter 100 value 911.161244
## final  value 911.161244 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1761.804744 
## iter  10 value 1423.783500
## iter  20 value 1079.471768
## iter  30 value 992.529646
## iter  40 value 956.858348
## iter  50 value 936.823557
## iter  60 value 931.725841
## iter  70 value 928.176904
## iter  80 value 924.015706
## iter  90 value 921.556171
## iter 100 value 919.096190
## final  value 919.096190 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1711.829210 
## iter  10 value 1476.176151
## iter  20 value 1235.124151
## iter  30 value 1139.989650
## iter  40 value 1064.634019
## iter  50 value 1056.647781
## iter  60 value 1055.780487
## iter  70 value 1040.893445
## iter  80 value 1040.355637
## iter  90 value 1040.145479
## iter 100 value 1039.992422
## final  value 1039.992422 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1676.790199 
## iter  10 value 1441.191660
## iter  20 value 1130.338498
## iter  30 value 983.057094
## iter  40 value 976.557526
## iter  50 value 953.625503
## iter  60 value 947.738903
## iter  70 value 946.848421
## iter  80 value 945.836453
## iter  90 value 945.621171
## iter 100 value 945.590840
## final  value 945.590840 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1664.910818 
## iter  10 value 1488.355789
## iter  20 value 1183.419715
## iter  30 value 1017.023420
## iter  40 value 958.801936
## iter  50 value 949.844613
## iter  60 value 946.099144
## iter  70 value 944.578762
## iter  80 value 944.439517
## iter  90 value 943.989462
## final  value 943.892909 
## converged
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1679.288890 
## iter  10 value 1238.428533
## iter  20 value 946.357911
## iter  30 value 944.441484
## iter  40 value 944.247678
## iter  50 value 943.993241
## iter  60 value 943.931497
## iter  70 value 943.808635
## iter  80 value 943.768968
## final  value 943.764542 
## converged
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1730.391224 
## iter  10 value 1368.795644
## iter  20 value 1012.923950
## iter  30 value 978.076681
## iter  40 value 963.056259
## iter  50 value 948.057009
## iter  60 value 945.735930
## iter  70 value 944.879113
## iter  80 value 944.119695
## iter  90 value 944.036842
## iter 100 value 943.872311
## final  value 943.872311 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1751.701386 
## iter  10 value 1580.461804
## iter  20 value 1015.775239
## iter  30 value 967.688471
## iter  40 value 958.552639
## iter  50 value 948.603588
## iter  60 value 946.664974
## iter  70 value 945.865735
## iter  80 value 945.613546
## iter  90 value 945.544546
## iter 100 value 945.506602
## final  value 945.506602 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 2187.458061 
## iter  10 value 1197.136338
## iter  20 value 985.089948
## iter  30 value 948.301602
## iter  40 value 935.041579
## iter  50 value 929.313102
## iter  60 value 921.728740
## iter  70 value 919.420947
## iter  80 value 916.958733
## iter  90 value 915.439472
## iter 100 value 907.523164
## final  value 907.523164 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 1785.025336 
## iter  10 value 1248.915851
## iter  20 value 1018.064113
## iter  30 value 946.547270
## iter  40 value 928.802018
## iter  50 value 923.506051
## iter  60 value 911.365328
## iter  70 value 907.008020
## iter  80 value 906.042384
## iter  90 value 905.451919
## iter 100 value 905.119635
## final  value 905.119635 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1653.558689 
## iter  10 value 1104.034864
## iter  20 value 970.533515
## iter  30 value 941.798187
## iter  40 value 935.738500
## iter  50 value 930.472755
## iter  60 value 928.714079
## iter  70 value 925.535867
## iter  80 value 920.760597
## iter  90 value 916.410517
## iter 100 value 915.968842
## final  value 915.968842 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1646.192429 
## iter  10 value 952.609894
## iter  20 value 939.621430
## iter  30 value 931.185370
## iter  40 value 922.641748
## iter  50 value 920.094821
## iter  60 value 919.165680
## iter  70 value 918.783360
## iter  80 value 918.492000
## iter  90 value 918.387287
## iter 100 value 918.378845
## final  value 918.378845 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 1761.840808 
## iter  10 value 1011.711514
## iter  20 value 939.470334
## iter  30 value 921.347225
## iter  40 value 900.172184
## iter  50 value 893.859159
## iter  60 value 891.227425
## iter  70 value 889.967051
## iter  80 value 888.481678
## iter  90 value 886.683645
## iter 100 value 886.006390
## final  value 886.006390 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1779.864270 
## iter  10 value 1118.713965
## iter  20 value 981.825545
## iter  30 value 957.334553
## iter  40 value 935.586798
## iter  50 value 927.789976
## iter  60 value 925.017961
## iter  70 value 921.204386
## iter  80 value 917.267779
## iter  90 value 914.733462
## iter 100 value 912.871232
## final  value 912.871232 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 1831.894793 
## iter  10 value 1196.694216
## iter  20 value 968.703022
## iter  30 value 941.574158
## iter  40 value 925.941734
## iter  50 value 921.011057
## iter  60 value 914.723103
## iter  70 value 907.605029
## iter  80 value 892.820705
## iter  90 value 886.569917
## iter 100 value 882.278092
## final  value 882.278092 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1989.155376 
## final  value 1665.005280 
## converged
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1922.472707 
## iter  10 value 1572.904823
## iter  20 value 1008.672233
## iter  30 value 964.528599
## iter  40 value 946.648644
## iter  50 value 935.251765
## iter  60 value 926.461237
## iter  70 value 917.705299
## iter  80 value 916.133311
## iter  90 value 914.798406
## iter 100 value 911.080992
## final  value 911.080992 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1748.499704 
## iter  10 value 1552.223262
## iter  20 value 1231.340040
## iter  30 value 1084.980249
## iter  40 value 1050.688571
## iter  50 value 1044.838230
## iter  60 value 1043.348520
## iter  70 value 1041.922068
## iter  80 value 1041.837134
## iter  90 value 1041.827457
## iter 100 value 1041.788472
## final  value 1041.788472 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1669.507911 
## iter  10 value 1475.333891
## iter  20 value 1174.836082
## iter  30 value 1001.960233
## iter  40 value 990.146372
## iter  50 value 982.726911
## iter  60 value 957.844047
## iter  70 value 952.229926
## iter  80 value 950.856464
## iter  90 value 949.530431
## iter 100 value 949.245519
## final  value 949.245519 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1823.937622 
## iter  10 value 1395.344669
## iter  20 value 1038.367366
## iter  30 value 981.363673
## iter  40 value 974.824017
## iter  50 value 954.788992
## iter  60 value 951.052433
## iter  70 value 950.187634
## iter  80 value 949.390137
## iter  90 value 949.224285
## iter 100 value 949.158039
## final  value 949.158039 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1820.147822 
## iter  10 value 1389.487984
## iter  20 value 1009.699041
## iter  30 value 981.104935
## iter  40 value 966.524583
## iter  50 value 956.573931
## iter  60 value 954.120186
## iter  70 value 952.266321
## iter  80 value 950.757458
## iter  90 value 950.501399
## iter 100 value 950.080222
## final  value 950.080222 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1702.376257 
## iter  10 value 1485.105918
## iter  20 value 1144.221396
## iter  30 value 994.213497
## iter  40 value 978.286285
## iter  50 value 972.579586
## iter  60 value 971.012501
## iter  70 value 970.955767
## final  value 970.949676 
## converged
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1880.316175 
## iter  10 value 1439.552452
## iter  20 value 1036.217244
## iter  30 value 998.188642
## iter  40 value 977.676795
## iter  50 value 957.234407
## iter  60 value 938.115028
## iter  70 value 928.244780
## iter  80 value 922.992053
## iter  90 value 918.324481
## iter 100 value 915.129485
## final  value 915.129485 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1789.576057 
## iter  10 value 1594.187733
## iter  20 value 1021.223955
## iter  30 value 1004.768827
## iter  40 value 998.551122
## iter  50 value 979.089567
## iter  60 value 961.005623
## iter  70 value 953.753632
## iter  80 value 952.514915
## iter  90 value 951.136488
## iter 100 value 950.359834
## final  value 950.359834 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 1770.971253 
## iter  10 value 1205.406675
## iter  20 value 998.133276
## iter  30 value 938.978308
## iter  40 value 930.293691
## iter  50 value 928.479165
## iter  60 value 924.829357
## iter  70 value 921.400457
## iter  80 value 916.940840
## iter  90 value 914.354472
## iter 100 value 913.922263
## final  value 913.922263 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1644.415542 
## iter  10 value 996.874799
## iter  20 value 970.121509
## iter  30 value 952.457042
## iter  40 value 944.813386
## iter  50 value 941.127708
## iter  60 value 939.996429
## iter  70 value 939.778927
## iter  80 value 939.681090
## iter  90 value 939.502729
## iter 100 value 939.483328
## final  value 939.483328 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1698.691290 
## iter  10 value 1432.351210
## iter  20 value 982.673324
## iter  30 value 955.819180
## iter  40 value 950.284092
## iter  50 value 940.668896
## iter  60 value 932.565949
## iter  70 value 930.307336
## iter  80 value 921.741695
## iter  90 value 917.017767
## iter 100 value 914.498291
## final  value 914.498291 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 1829.333492 
## iter  10 value 1418.934577
## iter  20 value 977.876532
## iter  30 value 937.442972
## iter  40 value 926.279177
## iter  50 value 922.051672
## iter  60 value 918.791663
## iter  70 value 916.097691
## iter  80 value 914.569719
## iter  90 value 910.583639
## iter 100 value 908.643872
## final  value 908.643872 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1835.895077 
## iter  10 value 1570.065820
## iter  20 value 1385.287008
## iter  30 value 1069.583506
## iter  40 value 981.070739
## iter  50 value 954.091201
## iter  60 value 941.843651
## iter  70 value 935.954668
## iter  80 value 924.518189
## iter  90 value 915.835414
## iter 100 value 913.056198
## final  value 913.056198 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 1896.324537 
## iter  10 value 995.756904
## iter  20 value 948.356284
## iter  30 value 936.936927
## iter  40 value 932.052088
## iter  50 value 925.924278
## iter  60 value 922.764084
## iter  70 value 919.954890
## iter  80 value 919.025185
## iter  90 value 918.386697
## iter 100 value 917.405957
## final  value 917.405957 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1876.039689 
## iter  10 value 1540.880032
## iter  20 value 1275.529014
## iter  30 value 1026.762422
## iter  40 value 950.519328
## iter  50 value 935.203020
## iter  60 value 932.119941
## iter  70 value 931.013879
## iter  80 value 926.221511
## iter  90 value 924.306102
## iter 100 value 922.745714
## final  value 922.745714 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1718.967389 
## iter  10 value 1108.346517
## iter  20 value 962.148078
## iter  30 value 943.774318
## iter  40 value 923.634744
## iter  50 value 912.229828
## iter  60 value 907.096008
## iter  70 value 903.425367
## iter  80 value 901.044276
## iter  90 value 899.473466
## iter 100 value 898.544934
## final  value 898.544934 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1732.773493 
## iter  10 value 1638.566761
## iter  20 value 1558.470030
## iter  30 value 1161.773481
## iter  40 value 994.681564
## iter  50 value 963.801573
## iter  60 value 963.184945
## iter  70 value 963.149645
## iter  70 value 963.149645
## iter  70 value 963.149645
## final  value 963.149645 
## converged
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1725.502644 
## iter  10 value 1622.451825
## iter  20 value 1142.853343
## iter  30 value 1014.150796
## iter  40 value 971.415616
## iter  50 value 964.001663
## iter  60 value 963.186661
## iter  70 value 963.149645
## iter  70 value 963.149645
## iter  70 value 963.149645
## final  value 963.149645 
## converged
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1674.234426 
## iter  10 value 1375.584485
## iter  20 value 1026.504883
## iter  30 value 980.812736
## iter  40 value 965.716107
## iter  50 value 962.735103
## final  value 962.690899 
## converged
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1699.895252 
## iter  10 value 1472.062743
## iter  20 value 1025.244975
## iter  30 value 973.430606
## iter  40 value 964.192122
## iter  50 value 962.694516
## final  value 962.690852 
## converged
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1719.779540 
## iter  10 value 1309.027463
## iter  20 value 1082.630095
## iter  30 value 970.579533
## iter  40 value 964.393893
## iter  50 value 963.149652
## iter  50 value 963.149650
## iter  50 value 963.149650
## final  value 963.149650 
## converged
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1831.026756 
## iter  10 value 1533.726732
## iter  20 value 1009.412493
## iter  30 value 962.775482
## iter  40 value 962.228441
## iter  50 value 960.360512
## iter  60 value 947.475269
## iter  70 value 940.603288
## iter  80 value 939.993586
## iter  90 value 939.597603
## iter 100 value 938.145408
## final  value 938.145408 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1874.372410 
## iter  10 value 1252.356454
## iter  20 value 1024.016059
## iter  30 value 981.185094
## iter  40 value 959.158601
## iter  50 value 947.367553
## iter  60 value 943.333613
## iter  70 value 940.448557
## iter  80 value 939.841494
## iter  90 value 939.620460
## iter 100 value 939.612870
## final  value 939.612870 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 1796.536300 
## iter  10 value 1451.526951
## iter  20 value 1043.204452
## iter  30 value 971.235275
## iter  40 value 959.074285
## iter  50 value 950.581763
## iter  60 value 943.682959
## iter  70 value 940.785127
## iter  80 value 940.087518
## iter  90 value 939.909260
## iter 100 value 939.893532
## final  value 939.893532 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1785.430448 
## iter  10 value 1474.811854
## iter  20 value 1063.912138
## iter  30 value 985.563209
## iter  40 value 968.681684
## iter  50 value 960.004692
## iter  60 value 946.812733
## iter  70 value 943.586052
## iter  80 value 941.764277
## iter  90 value 939.893454
## iter 100 value 938.045394
## final  value 938.045394 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1799.400610 
## iter  10 value 1220.685614
## iter  20 value 1063.480516
## iter  30 value 972.342545
## iter  40 value 954.465598
## iter  50 value 941.781220
## iter  60 value 938.637942
## iter  70 value 936.054285
## iter  80 value 935.378852
## iter  90 value 934.506777
## iter 100 value 934.209537
## final  value 934.209537 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 1707.702606 
## iter  10 value 1076.692548
## iter  20 value 964.762593
## iter  30 value 947.545597
## iter  40 value 939.567587
## iter  50 value 937.284660
## iter  60 value 928.505475
## iter  70 value 926.709083
## iter  80 value 925.918798
## iter  90 value 924.764743
## iter 100 value 924.194574
## final  value 924.194574 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1767.283570 
## iter  10 value 1202.631145
## iter  20 value 1039.339859
## iter  30 value 974.851814
## iter  40 value 931.770187
## iter  50 value 920.166977
## iter  60 value 914.654914
## iter  70 value 913.014605
## iter  80 value 911.834680
## iter  90 value 910.642140
## iter 100 value 910.205808
## final  value 910.205808 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 2220.513151 
## iter  10 value 1304.536614
## iter  20 value 1004.338175
## iter  30 value 962.448762
## iter  40 value 939.441603
## iter  50 value 933.995247
## iter  60 value 924.235400
## iter  70 value 920.263860
## iter  80 value 919.065967
## iter  90 value 918.794021
## iter 100 value 918.776448
## final  value 918.776448 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1705.067106 
## iter  10 value 1098.594651
## iter  20 value 996.562549
## iter  30 value 974.915700
## iter  40 value 955.993340
## iter  50 value 946.989969
## iter  60 value 942.814287
## iter  70 value 937.597422
## iter  80 value 933.161079
## iter  90 value 928.739003
## iter 100 value 927.522904
## final  value 927.522904 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1778.969037 
## iter  10 value 1298.967168
## iter  20 value 995.849842
## iter  30 value 954.691423
## iter  40 value 949.132300
## iter  50 value 946.324414
## iter  60 value 944.245003
## iter  70 value 940.825642
## iter  80 value 932.236932
## iter  90 value 929.323585
## iter 100 value 927.898996
## final  value 927.898996 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1736.303831 
## iter  10 value 1289.893842
## iter  20 value 1000.320298
## iter  30 value 965.537360
## iter  40 value 960.009679
## iter  50 value 951.887833
## iter  60 value 949.900462
## iter  70 value 949.585751
## iter  80 value 949.215014
## iter  90 value 949.166217
## iter 100 value 949.161491
## final  value 949.161491 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1698.816635 
## iter  10 value 1606.447586
## iter  20 value 1013.643502
## iter  30 value 978.065075
## iter  40 value 976.317734
## iter  50 value 973.840733
## iter  60 value 972.252407
## iter  70 value 971.817551
## iter  80 value 970.944475
## iter  90 value 970.646394
## iter 100 value 969.742107
## final  value 969.742107 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1721.145536 
## iter  10 value 1177.794465
## iter  20 value 974.821647
## iter  30 value 962.819613
## iter  40 value 956.554791
## iter  50 value 950.674610
## iter  60 value 949.663260
## iter  70 value 949.473566
## iter  80 value 949.204081
## iter  90 value 949.167822
## iter 100 value 949.157168
## final  value 949.157168 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1704.804230 
## iter  10 value 1559.707722
## iter  20 value 1163.778956
## iter  30 value 967.043326
## iter  40 value 954.892094
## iter  50 value 950.980014
## iter  60 value 949.515231
## iter  70 value 949.426834
## iter  80 value 949.207514
## iter  90 value 949.153871
## iter 100 value 949.151906
## final  value 949.151906 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1830.192799 
## iter  10 value 1425.685334
## iter  20 value 1115.196462
## iter  30 value 991.792956
## iter  40 value 959.913956
## iter  50 value 950.210680
## iter  60 value 949.732503
## iter  70 value 949.382580
## iter  80 value 949.180918
## iter  90 value 949.172326
## iter 100 value 949.168089
## final  value 949.168089 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1864.956430 
## iter  10 value 1394.043184
## iter  20 value 1031.908120
## iter  30 value 966.227633
## iter  40 value 950.375701
## iter  50 value 937.043900
## iter  60 value 934.594704
## iter  70 value 933.848852
## iter  80 value 933.362820
## iter  90 value 932.821961
## iter 100 value 932.446770
## final  value 932.446770 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1915.507884 
## iter  10 value 1259.884647
## iter  20 value 1101.480747
## iter  30 value 971.287153
## iter  40 value 949.295800
## iter  50 value 933.440479
## iter  60 value 930.560335
## iter  70 value 929.967396
## iter  80 value 929.908490
## iter  90 value 929.544218
## iter 100 value 920.753272
## final  value 920.753272 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 1773.719159 
## iter  10 value 1056.162717
## iter  20 value 959.593846
## iter  30 value 945.951482
## iter  40 value 925.302553
## iter  50 value 920.771276
## iter  60 value 918.029499
## iter  70 value 917.081866
## iter  80 value 917.043594
## iter  90 value 916.920380
## iter 100 value 916.816307
## final  value 916.816307 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1777.530316 
## iter  10 value 1361.542901
## iter  20 value 983.785794
## iter  30 value 944.751756
## iter  40 value 937.558904
## iter  50 value 933.946933
## iter  60 value 930.697232
## iter  70 value 928.689784
## iter  80 value 927.760702
## iter  90 value 926.919110
## iter 100 value 926.373664
## final  value 926.373664 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1835.207335 
## iter  10 value 1319.459967
## iter  20 value 1003.129452
## iter  30 value 950.743845
## iter  40 value 937.877797
## iter  50 value 933.286710
## iter  60 value 931.963281
## iter  70 value 931.703742
## iter  80 value 931.629620
## iter  90 value 931.579538
## iter 100 value 930.737312
## final  value 930.737312 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 2241.719559 
## iter  10 value 1285.204680
## iter  20 value 1011.879891
## iter  30 value 956.685681
## iter  40 value 935.988469
## iter  50 value 916.479858
## iter  60 value 911.083046
## iter  70 value 906.247282
## iter  80 value 904.920651
## iter  90 value 903.298102
## iter 100 value 900.775180
## final  value 900.775180 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1752.949017 
## iter  10 value 1291.754594
## iter  20 value 962.814381
## iter  30 value 943.301074
## iter  40 value 932.194041
## iter  50 value 917.574680
## iter  60 value 913.996941
## iter  70 value 911.971280
## iter  80 value 909.486347
## iter  90 value 907.485939
## iter 100 value 906.189172
## final  value 906.189172 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 1897.474072 
## iter  10 value 1508.469819
## iter  20 value 1100.123834
## iter  30 value 989.127444
## iter  40 value 950.678676
## iter  50 value 943.256991
## iter  60 value 937.836655
## iter  70 value 927.828461
## iter  80 value 926.804134
## iter  90 value 926.429766
## iter 100 value 926.240155
## final  value 926.240155 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1704.996682 
## iter  10 value 1019.488254
## iter  20 value 954.278784
## iter  30 value 938.404194
## iter  40 value 931.374385
## iter  50 value 924.025929
## iter  60 value 919.299922
## iter  70 value 916.994502
## iter  80 value 914.890715
## iter  90 value 908.862387
## iter 100 value 905.186772
## final  value 905.186772 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 2006.823188 
## iter  10 value 1093.713646
## iter  20 value 979.888409
## iter  30 value 956.063561
## iter  40 value 947.276973
## iter  50 value 939.297715
## iter  60 value 926.198285
## iter  70 value 920.197645
## iter  80 value 917.107863
## iter  90 value 915.514255
## iter 100 value 911.591495
## final  value 911.591495 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1746.287077 
## iter  10 value 1241.088451
## iter  20 value 953.634489
## iter  30 value 946.117543
## iter  40 value 942.327937
## iter  50 value 937.300216
## iter  60 value 936.594948
## iter  70 value 936.484798
## iter  80 value 936.372492
## iter  90 value 936.363202
## iter 100 value 936.350188
## final  value 936.350188 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1804.026652 
## iter  10 value 1257.988918
## iter  20 value 998.597581
## iter  30 value 970.694365
## iter  40 value 946.850829
## iter  50 value 939.301281
## iter  60 value 937.690310
## iter  70 value 937.140362
## iter  80 value 936.572964
## iter  90 value 936.434930
## iter 100 value 936.414858
## final  value 936.414858 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1666.493694 
## iter  10 value 1493.124797
## iter  20 value 994.119209
## iter  30 value 971.687754
## iter  40 value 947.030596
## iter  50 value 939.618675
## iter  60 value 937.966036
## iter  70 value 937.074992
## iter  80 value 936.548723
## iter  90 value 936.507808
## iter 100 value 936.435665
## final  value 936.435665 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1785.966644 
## iter  10 value 1646.916641
## iter  20 value 1530.686308
## iter  30 value 1179.982010
## iter  40 value 953.676108
## iter  50 value 938.357773
## iter  60 value 937.657103
## iter  70 value 937.247039
## iter  80 value 936.948266
## iter  90 value 936.934109
## iter 100 value 936.732163
## final  value 936.732163 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1690.765375 
## iter  10 value 1452.044730
## iter  20 value 960.349493
## iter  30 value 949.280900
## iter  40 value 939.526529
## iter  50 value 937.410576
## iter  60 value 937.160978
## iter  70 value 936.614813
## iter  80 value 936.475347
## iter  90 value 936.441026
## iter 100 value 936.357723
## final  value 936.357723 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1894.566029 
## iter  10 value 1065.386444
## iter  20 value 956.632713
## iter  30 value 944.135311
## iter  40 value 939.188490
## iter  50 value 937.010652
## iter  60 value 936.756130
## iter  70 value 936.491247
## iter  80 value 936.454048
## iter  90 value 936.390434
## iter 100 value 936.333306
## final  value 936.333306 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1904.997477 
## iter  10 value 1623.624555
## iter  20 value 1093.914049
## iter  30 value 1025.325794
## iter  40 value 1004.655178
## iter  50 value 998.327116
## iter  60 value 990.215887
## iter  70 value 978.968902
## iter  80 value 971.167802
## iter  90 value 938.081147
## iter 100 value 931.430667
## final  value 931.430667 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 1674.724150 
## iter  10 value 1529.120939
## iter  20 value 968.191915
## iter  30 value 920.112565
## iter  40 value 913.042178
## iter  50 value 905.329169
## iter  60 value 902.641438
## iter  70 value 900.998471
## iter  80 value 899.928432
## iter  90 value 899.681509
## iter 100 value 899.210359
## final  value 899.210359 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1955.236571 
## iter  10 value 1594.127804
## iter  20 value 1005.641938
## iter  30 value 935.816699
## iter  40 value 927.295285
## iter  50 value 922.013933
## iter  60 value 920.137497
## iter  70 value 919.637438
## iter  80 value 918.338545
## iter  90 value 917.030610
## iter 100 value 916.624074
## final  value 916.624074 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1757.636156 
## iter  10 value 1366.377225
## iter  20 value 1024.759788
## iter  30 value 977.399912
## iter  40 value 960.563083
## iter  50 value 937.991354
## iter  60 value 925.922459
## iter  70 value 918.768134
## iter  80 value 915.264385
## iter  90 value 913.087681
## iter 100 value 911.821258
## final  value 911.821258 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 1759.645448 
## iter  10 value 1440.633286
## iter  20 value 1121.544934
## iter  30 value 934.545214
## iter  40 value 918.435285
## iter  50 value 913.414484
## iter  60 value 909.373619
## iter  70 value 907.239797
## iter  80 value 902.933438
## iter  90 value 900.895319
## iter 100 value 899.862944
## final  value 899.862944 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1863.526037 
## final  value 1664.999974 
## converged
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 1688.324236 
## iter  10 value 1118.305902
## iter  20 value 959.107757
## iter  30 value 942.497697
## iter  40 value 936.369112
## iter  50 value 935.419415
## iter  60 value 934.646847
## iter  70 value 934.364521
## iter  80 value 933.924145
## iter  90 value 932.559964
## iter 100 value 932.436729
## final  value 932.436729 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1756.397323 
## iter  10 value 1111.188346
## iter  20 value 988.811725
## iter  30 value 931.029750
## iter  40 value 909.081887
## iter  50 value 899.170146
## iter  60 value 888.714135
## iter  70 value 879.657763
## iter  80 value 873.098036
## iter  90 value 869.203367
## iter 100 value 866.506583
## final  value 866.506583 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1699.979739 
## iter  10 value 1033.245276
## iter  20 value 940.401703
## iter  30 value 914.565093
## iter  40 value 903.086106
## iter  50 value 895.931804
## iter  60 value 888.090235
## iter  70 value 882.857768
## iter  80 value 878.761744
## iter  90 value 875.943569
## iter 100 value 874.688249
## final  value 874.688249 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1745.562756 
## iter  10 value 1321.875309
## iter  20 value 1002.958017
## iter  30 value 963.101156
## iter  40 value 952.357793
## iter  50 value 950.669628
## final  value 950.669611 
## converged
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1718.492456 
## iter  10 value 1437.402089
## iter  20 value 1056.999116
## iter  30 value 972.629372
## iter  40 value 953.507589
## iter  50 value 950.676262
## final  value 950.669636 
## converged
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1712.803460 
## iter  10 value 1542.158986
## iter  20 value 1204.248391
## iter  30 value 987.439673
## iter  40 value 959.367144
## iter  50 value 950.942247
## final  value 950.669611 
## converged
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1691.797031 
## iter  10 value 1467.730891
## iter  20 value 1051.465042
## iter  30 value 972.158965
## iter  40 value 957.706494
## iter  50 value 950.753333
## final  value 950.669614 
## converged
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1674.181243 
## iter  10 value 1461.420637
## iter  20 value 1028.024410
## iter  30 value 962.107903
## iter  40 value 953.337200
## iter  50 value 950.980811
## final  value 950.977025 
## converged
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1724.421641 
## iter  10 value 1554.026770
## iter  20 value 1207.685205
## iter  30 value 1022.657171
## iter  40 value 963.337023
## iter  50 value 944.742477
## iter  60 value 936.405208
## iter  70 value 932.516426
## iter  80 value 929.132717
## iter  90 value 927.774590
## iter 100 value 922.586685
## final  value 922.586685 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1857.570337 
## iter  10 value 1477.421058
## iter  20 value 972.992409
## iter  30 value 939.889341
## iter  40 value 935.372084
## iter  50 value 924.936903
## iter  60 value 921.999616
## iter  70 value 918.476280
## iter  80 value 917.231425
## iter  90 value 917.214268
## iter 100 value 917.203056
## final  value 917.203056 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 2008.134339 
## iter  10 value 1397.290448
## iter  20 value 997.892569
## iter  30 value 959.399509
## iter  40 value 948.554066
## iter  50 value 939.030503
## iter  60 value 930.259795
## iter  70 value 924.700783
## iter  80 value 922.698423
## iter  90 value 921.274365
## iter 100 value 920.943392
## final  value 920.943392 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1758.645969 
## iter  10 value 1502.568847
## iter  20 value 1054.433292
## iter  30 value 964.068321
## iter  40 value 942.471480
## iter  50 value 931.106864
## iter  60 value 922.661695
## iter  70 value 919.391663
## iter  80 value 918.684335
## iter  90 value 918.509906
## iter 100 value 918.457094
## final  value 918.457094 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1947.732872 
## iter  10 value 1293.323498
## iter  20 value 1079.153143
## iter  30 value 983.924475
## iter  40 value 945.649082
## iter  50 value 935.429591
## iter  60 value 926.324596
## iter  70 value 924.551992
## iter  80 value 922.248012
## iter  90 value 921.706058
## final  value 921.701811 
## converged
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 1756.357463 
## iter  10 value 1133.206645
## iter  20 value 1013.905845
## iter  30 value 958.841145
## iter  40 value 947.281191
## iter  50 value 938.154292
## iter  60 value 930.474010
## iter  70 value 926.507073
## iter  80 value 921.840601
## iter  90 value 918.302216
## iter 100 value 911.886208
## final  value 911.886208 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1935.314563 
## iter  10 value 1267.664109
## iter  20 value 1040.204588
## iter  30 value 969.643632
## iter  40 value 949.739446
## iter  50 value 937.421906
## iter  60 value 921.154916
## iter  70 value 912.676869
## iter  80 value 908.399581
## iter  90 value 904.430003
## iter 100 value 901.930951
## final  value 901.930951 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 1763.125623 
## iter  10 value 1000.109026
## iter  20 value 939.253350
## iter  30 value 931.518710
## iter  40 value 926.216184
## iter  50 value 921.349173
## iter  60 value 916.700972
## iter  70 value 915.158485
## iter  80 value 910.114025
## iter  90 value 907.237462
## iter 100 value 905.088405
## final  value 905.088405 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1975.840960 
## iter  10 value 1352.620243
## iter  20 value 1048.081136
## iter  30 value 981.418075
## iter  40 value 952.245552
## iter  50 value 935.576251
## iter  60 value 918.053834
## iter  70 value 908.191853
## iter  80 value 905.666949
## iter  90 value 903.502969
## iter 100 value 901.582579
## final  value 901.582579 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1682.007647 
## iter  10 value 1152.522033
## iter  20 value 1013.942294
## iter  30 value 951.174434
## iter  40 value 933.259167
## iter  50 value 924.920592
## iter  60 value 919.454548
## iter  70 value 918.370189
## iter  80 value 918.266114
## iter  90 value 918.247726
## iter 100 value 918.154860
## final  value 918.154860 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1750.238787 
## iter  10 value 1358.171318
## iter  20 value 1056.970920
## iter  30 value 1038.546529
## iter  40 value 977.136824
## iter  50 value 960.490817
## iter  60 value 944.801817
## iter  70 value 939.871863
## iter  80 value 939.058259
## iter  90 value 937.464126
## iter 100 value 937.216439
## final  value 937.216439 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1689.740232 
## iter  10 value 1103.977485
## iter  20 value 997.523066
## iter  30 value 967.262727
## iter  40 value 950.561018
## iter  50 value 940.368340
## iter  60 value 938.304091
## iter  70 value 937.108415
## iter  80 value 936.634351
## iter  90 value 936.587661
## iter 100 value 936.489177
## final  value 936.489177 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1691.046067 
## iter  10 value 1408.425210
## iter  20 value 1273.172442
## iter  30 value 1154.968465
## iter  40 value 1062.870498
## iter  50 value 1056.401460
## iter  60 value 1037.651435
## iter  70 value 1032.806928
## iter  80 value 1029.103507
## iter  90 value 1018.674038
## iter 100 value 1014.906877
## final  value 1014.906877 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1685.042660 
## iter  10 value 1238.272132
## iter  20 value 1028.098877
## iter  30 value 961.044514
## iter  40 value 957.231779
## iter  50 value 953.641755
## iter  60 value 939.597324
## iter  70 value 937.417627
## iter  80 value 937.047055
## iter  90 value 936.656406
## iter 100 value 936.488465
## final  value 936.488465 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1840.303723 
## iter  10 value 1286.061766
## iter  20 value 1002.539611
## iter  30 value 982.388260
## iter  40 value 969.648101
## iter  50 value 958.849669
## iter  60 value 957.141429
## iter  70 value 955.079892
## iter  80 value 948.602023
## iter  90 value 937.334040
## iter 100 value 937.102220
## final  value 937.102220 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1715.197695 
## iter  10 value 1226.757220
## iter  20 value 962.977280
## iter  30 value 936.177170
## iter  40 value 927.277612
## iter  50 value 923.586482
## iter  60 value 920.329622
## iter  70 value 919.659485
## iter  80 value 915.027239
## iter  90 value 911.121313
## iter 100 value 909.888629
## final  value 909.888629 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1709.736997 
## iter  10 value 1602.418250
## iter  20 value 1303.793085
## iter  30 value 1079.366993
## iter  40 value 949.398790
## iter  50 value 922.262000
## iter  60 value 916.646940
## iter  70 value 914.279965
## iter  80 value 912.997302
## iter  90 value 912.782055
## iter 100 value 912.391324
## final  value 912.391324 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 1760.166703 
## iter  10 value 1186.972983
## iter  20 value 1000.560423
## iter  30 value 976.548804
## iter  40 value 958.487156
## iter  50 value 942.999307
## iter  60 value 937.134798
## iter  70 value 934.398832
## iter  80 value 933.707171
## iter  90 value 930.741150
## iter 100 value 927.452208
## final  value 927.452208 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1848.254943 
## iter  10 value 1512.071819
## iter  20 value 1170.589128
## iter  30 value 1055.615381
## iter  40 value 971.042665
## iter  50 value 943.826066
## iter  60 value 938.561112
## iter  70 value 937.242490
## iter  80 value 936.813943
## iter  90 value 936.578997
## iter 100 value 936.496015
## final  value 936.496015 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1764.528928 
## iter  10 value 1231.741601
## iter  20 value 1058.201151
## iter  30 value 945.722896
## iter  40 value 926.401401
## iter  50 value 915.954723
## iter  60 value 912.598264
## iter  70 value 911.018314
## iter  80 value 910.250518
## iter  90 value 907.739004
## iter 100 value 906.482892
## final  value 906.482892 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 1972.262402 
## iter  10 value 1175.334485
## iter  20 value 981.723294
## iter  30 value 938.658259
## iter  40 value 925.392131
## iter  50 value 918.200302
## iter  60 value 908.801400
## iter  70 value 901.219600
## iter  80 value 892.169924
## iter  90 value 887.622609
## iter 100 value 884.550616
## final  value 884.550616 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1885.950231 
## iter  10 value 1477.351892
## iter  20 value 1176.245364
## iter  30 value 989.839520
## iter  40 value 944.899318
## iter  50 value 922.631565
## iter  60 value 913.133790
## iter  70 value 909.756537
## iter  80 value 907.466313
## iter  90 value 906.249118
## iter 100 value 905.509039
## final  value 905.509039 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 1845.322538 
## iter  10 value 1338.072674
## iter  20 value 1036.338597
## iter  30 value 928.345385
## iter  40 value 911.050368
## iter  50 value 903.579626
## iter  60 value 897.913067
## iter  70 value 894.609436
## iter  80 value 891.938488
## iter  90 value 890.897729
## iter 100 value 889.655515
## final  value 889.655515 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1837.218937 
## iter  10 value 1292.804168
## iter  20 value 945.208854
## iter  30 value 918.028015
## iter  40 value 907.100697
## iter  50 value 902.902103
## iter  60 value 900.447592
## iter  70 value 899.521028
## iter  80 value 898.729240
## iter  90 value 898.235204
## iter 100 value 898.080770
## final  value 898.080770 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1843.496604 
## iter  10 value 1254.111996
## iter  20 value 975.563331
## iter  30 value 946.393298
## iter  40 value 917.059322
## iter  50 value 900.367896
## iter  60 value 898.112148
## iter  70 value 892.509822
## iter  80 value 887.495744
## iter  90 value 882.944612
## iter 100 value 878.113335
## final  value 878.113335 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1745.111654 
## iter  10 value 1465.932516
## iter  20 value 1132.029147
## iter  30 value 1026.994132
## iter  40 value 978.452910
## iter  50 value 971.276422
## iter  60 value 970.942047
## iter  70 value 970.867066
## final  value 970.866682 
## converged
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1871.950628 
## iter  10 value 1484.158981
## iter  20 value 1031.194762
## iter  30 value 968.686647
## iter  40 value 956.028403
## iter  50 value 950.081890
## iter  60 value 949.075669
## iter  70 value 948.352673
## iter  80 value 948.067769
## iter  90 value 948.017631
## iter 100 value 947.956523
## final  value 947.956523 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1774.505549 
## iter  10 value 1307.829728
## iter  20 value 1001.065408
## iter  30 value 952.369075
## iter  40 value 949.289065
## iter  50 value 948.355527
## iter  60 value 948.075895
## iter  70 value 948.071234
## iter  80 value 947.971534
## iter  90 value 947.932174
## final  value 947.932040 
## converged
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1758.779745 
## iter  10 value 1614.248074
## iter  20 value 1366.060260
## iter  30 value 1328.038747
## iter  40 value 1286.521991
## iter  50 value 1189.521933
## iter  60 value 1162.428429
## iter  70 value 1139.594138
## iter  80 value 1135.525742
## iter  90 value 1129.968582
## iter 100 value 1127.034463
## final  value 1127.034463 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1747.874979 
## iter  10 value 1590.607592
## iter  20 value 1461.083183
## iter  30 value 1387.376294
## iter  40 value 1328.584861
## iter  50 value 1161.624848
## iter  60 value 1126.698818
## iter  70 value 1070.011180
## iter  80 value 1056.255721
## iter  90 value 1051.092334
## iter 100 value 1051.026921
## final  value 1051.026921 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1761.824762 
## iter  10 value 1642.091159
## iter  20 value 1114.563252
## iter  30 value 962.571420
## iter  40 value 953.144377
## iter  50 value 949.178115
## iter  60 value 948.259457
## iter  70 value 947.822761
## iter  80 value 947.689305
## final  value 947.680081 
## converged
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1725.001759 
## iter  10 value 1166.719846
## iter  20 value 998.354272
## iter  30 value 951.661614
## iter  40 value 944.443182
## iter  50 value 939.794882
## iter  60 value 933.617671
## iter  70 value 932.498685
## iter  80 value 932.040016
## iter  90 value 930.595763
## iter 100 value 929.359034
## final  value 929.359034 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 1716.922245 
## iter  10 value 1108.338090
## iter  20 value 974.356807
## iter  30 value 951.295735
## iter  40 value 946.935743
## iter  50 value 943.849209
## iter  60 value 942.945210
## iter  70 value 942.556297
## iter  80 value 942.309620
## iter  90 value 941.785458
## iter 100 value 940.941190
## final  value 940.941190 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1839.321725 
## iter  10 value 1514.672343
## iter  20 value 1095.523627
## iter  30 value 990.936178
## iter  40 value 965.644095
## iter  50 value 954.210280
## iter  60 value 950.320122
## iter  70 value 949.081889
## iter  80 value 948.688351
## iter  90 value 948.139106
## iter 100 value 948.003658
## final  value 948.003658 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1849.827042 
## iter  10 value 1077.853578
## iter  20 value 966.009792
## iter  30 value 945.078125
## iter  40 value 928.577086
## iter  50 value 924.300489
## iter  60 value 920.706262
## iter  70 value 915.800994
## iter  80 value 914.751064
## iter  90 value 913.153760
## iter 100 value 910.152266
## final  value 910.152266 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 1692.380815 
## iter  10 value 1104.341160
## iter  20 value 970.889070
## iter  30 value 950.980470
## iter  40 value 945.670516
## iter  50 value 944.347618
## iter  60 value 944.016651
## iter  70 value 941.550488
## iter  80 value 939.698220
## iter  90 value 937.592604
## iter 100 value 935.095872
## final  value 935.095872 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1809.215462 
## iter  10 value 997.681978
## iter  20 value 966.975834
## iter  30 value 948.201933
## iter  40 value 932.597003
## iter  50 value 922.045472
## iter  60 value 916.626807
## iter  70 value 912.717184
## iter  80 value 909.845203
## iter  90 value 906.367612
## iter 100 value 904.214291
## final  value 904.214291 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 2084.393636 
## iter  10 value 1058.643829
## iter  20 value 972.013014
## iter  30 value 948.128980
## iter  40 value 930.640383
## iter  50 value 924.886575
## iter  60 value 922.290008
## iter  70 value 921.236353
## iter  80 value 920.534643
## iter  90 value 919.195235
## iter 100 value 918.532016
## final  value 918.532016 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1691.218624 
## iter  10 value 1486.750318
## iter  20 value 1121.756142
## iter  30 value 991.127937
## iter  40 value 945.581249
## iter  50 value 929.403377
## iter  60 value 922.415078
## iter  70 value 919.630939
## iter  80 value 913.990592
## iter  90 value 911.967914
## iter 100 value 909.036137
## final  value 909.036137 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1723.382846 
## iter  10 value 1248.734041
## iter  20 value 988.212923
## iter  30 value 976.588272
## iter  40 value 973.707552
## iter  50 value 965.055847
## iter  60 value 962.795534
## iter  70 value 958.244811
## iter  80 value 945.417908
## iter  90 value 943.347317
## iter 100 value 939.732998
## final  value 939.732998 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1704.132284 
## iter  10 value 1529.975713
## iter  20 value 1009.371656
## iter  30 value 967.943613
## iter  40 value 962.979545
## iter  50 value 962.212915
## final  value 962.212867 
## converged
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1797.830155 
## iter  10 value 1290.582868
## iter  20 value 1028.406712
## iter  30 value 966.919295
## iter  40 value 965.146050
## iter  50 value 962.218186
## final  value 962.212868 
## converged
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1765.706060 
## iter  10 value 1345.419809
## iter  20 value 1000.886791
## iter  30 value 966.764099
## iter  40 value 962.394635
## iter  50 value 961.603844
## iter  50 value 961.603834
## iter  50 value 961.603834
## final  value 961.603834 
## converged
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1731.934857 
## iter  10 value 1383.702247
## iter  20 value 974.587344
## iter  30 value 965.139841
## iter  40 value 961.953828
## final  value 961.603834 
## converged
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1798.700522 
## iter  10 value 1357.728374
## iter  20 value 985.473713
## iter  30 value 967.906917
## iter  40 value 963.198378
## iter  50 value 962.212868
## iter  50 value 962.212868
## iter  50 value 962.212868
## final  value 962.212868 
## converged
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1810.869975 
## iter  10 value 1221.806592
## iter  20 value 1009.552317
## iter  30 value 971.929176
## iter  40 value 964.678609
## iter  50 value 962.473529
## iter  60 value 961.940840
## iter  70 value 960.202690
## iter  80 value 948.655071
## iter  90 value 944.719649
## iter 100 value 943.941156
## final  value 943.941156 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1748.719524 
## iter  10 value 1064.033623
## iter  20 value 1017.686253
## iter  30 value 980.466004
## iter  40 value 950.864877
## iter  50 value 943.218459
## iter  60 value 936.513148
## iter  70 value 933.498292
## iter  80 value 931.860608
## iter  90 value 931.050133
## iter 100 value 930.945683
## final  value 930.945683 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 1908.311441 
## iter  10 value 1094.922586
## iter  20 value 975.971324
## iter  30 value 963.131390
## iter  40 value 950.793946
## iter  50 value 948.778712
## iter  60 value 948.008724
## iter  70 value 946.685434
## iter  80 value 944.224791
## iter  90 value 940.847030
## iter 100 value 939.746229
## final  value 939.746229 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1811.294648 
## iter  10 value 1006.304041
## iter  20 value 970.857106
## iter  30 value 957.731565
## iter  40 value 954.202370
## iter  50 value 951.473760
## iter  60 value 951.111254
## iter  70 value 949.840257
## iter  80 value 949.246051
## iter  90 value 944.533026
## iter 100 value 940.634044
## final  value 940.634044 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1748.925124 
## iter  10 value 1225.202480
## iter  20 value 1006.777008
## iter  30 value 973.947333
## iter  40 value 961.850926
## iter  50 value 952.800558
## iter  60 value 949.831627
## iter  70 value 947.432542
## iter  80 value 946.491650
## iter  90 value 945.623823
## iter 100 value 945.497147
## final  value 945.497147 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 1985.489437 
## iter  10 value 1425.720236
## iter  20 value 1103.841244
## iter  30 value 1013.749872
## iter  40 value 971.688101
## iter  50 value 952.123834
## iter  60 value 938.895431
## iter  70 value 926.593873
## iter  80 value 919.306711
## iter  90 value 916.338825
## iter 100 value 915.645156
## final  value 915.645156 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1849.485128 
## iter  10 value 1421.129957
## iter  20 value 1054.943765
## iter  30 value 973.938044
## iter  40 value 953.569384
## iter  50 value 946.537102
## iter  60 value 938.760817
## iter  70 value 929.933136
## iter  80 value 922.874892
## iter  90 value 919.906687
## iter 100 value 918.284385
## final  value 918.284385 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 1658.868104 
## iter  10 value 1000.493307
## iter  20 value 973.282406
## iter  30 value 956.164450
## iter  40 value 951.740810
## iter  50 value 948.173429
## iter  60 value 944.802490
## iter  70 value 939.133450
## iter  80 value 932.865720
## iter  90 value 932.022614
## iter 100 value 929.921225
## final  value 929.921225 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1854.290468 
## iter  10 value 1180.161996
## iter  20 value 1044.179990
## iter  30 value 975.404029
## iter  40 value 962.960428
## iter  50 value 957.963982
## iter  60 value 949.921320
## iter  70 value 940.208356
## iter  80 value 933.232977
## iter  90 value 924.644125
## iter 100 value 923.379024
## final  value 923.379024 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1764.535727 
## iter  10 value 1235.771747
## iter  20 value 1032.493002
## iter  30 value 971.632341
## iter  40 value 953.628573
## iter  50 value 945.732783
## iter  60 value 943.679635
## iter  70 value 942.241922
## iter  80 value 939.803781
## iter  90 value 937.780976
## iter 100 value 935.785223
## final  value 935.785223 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1711.881309 
## iter  10 value 1572.888634
## iter  20 value 1438.314335
## iter  30 value 1061.170913
## iter  40 value 964.397721
## iter  50 value 953.345607
## iter  60 value 950.090944
## iter  70 value 948.464611
## iter  80 value 948.283483
## iter  90 value 948.116610
## iter 100 value 948.010708
## final  value 948.010708 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1711.047098 
## iter  10 value 1545.834423
## iter  20 value 1097.880362
## iter  30 value 988.586974
## iter  40 value 967.652655
## iter  50 value 956.932289
## iter  60 value 950.327059
## iter  70 value 948.732225
## iter  80 value 948.564054
## iter  90 value 948.104017
## iter 100 value 948.030179
## final  value 948.030179 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1680.103787 
## iter  10 value 1196.822983
## iter  20 value 956.600971
## iter  30 value 950.214450
## iter  40 value 949.913709
## iter  50 value 948.475307
## iter  60 value 948.139794
## iter  70 value 948.099765
## iter  80 value 948.023755
## iter  90 value 947.991716
## iter  90 value 947.991711
## final  value 947.991580 
## converged
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1717.899709 
## iter  10 value 1507.983570
## iter  20 value 1055.455932
## iter  30 value 1024.259724
## iter  40 value 1023.778627
## iter  50 value 1018.564940
## iter  60 value 989.840060
## iter  70 value 981.318399
## iter  80 value 978.256491
## iter  90 value 975.294514
## iter 100 value 974.863602
## final  value 974.863602 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1760.055416 
## iter  10 value 1498.862717
## iter  20 value 1066.429356
## iter  30 value 970.080060
## iter  40 value 959.992689
## iter  50 value 951.423048
## iter  60 value 949.268762
## iter  70 value 948.867401
## iter  80 value 948.234554
## final  value 948.052322 
## converged
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1732.270072 
## iter  10 value 1321.142435
## iter  20 value 1035.251989
## iter  30 value 969.183291
## iter  40 value 952.205225
## iter  50 value 945.610595
## iter  60 value 941.878139
## iter  70 value 937.231936
## iter  80 value 936.233796
## iter  90 value 932.175543
## iter 100 value 928.385460
## final  value 928.385460 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1868.669844 
## iter  10 value 1030.874156
## iter  20 value 952.568751
## iter  30 value 942.769980
## iter  40 value 938.807138
## iter  50 value 937.868170
## iter  60 value 933.114487
## iter  70 value 923.668407
## iter  80 value 919.537071
## iter  90 value 918.050784
## iter 100 value 915.720931
## final  value 915.720931 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 1786.346912 
## iter  10 value 1200.442009
## iter  20 value 1026.557464
## iter  30 value 957.659618
## iter  40 value 945.420874
## iter  50 value 934.957953
## iter  60 value 927.092323
## iter  70 value 925.187838
## iter  80 value 924.551838
## iter  90 value 924.110604
## iter 100 value 922.780682
## final  value 922.780682 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1737.461562 
## iter  10 value 1659.733730
## iter  20 value 1278.796634
## iter  30 value 974.031679
## iter  40 value 950.399128
## iter  50 value 944.893507
## iter  60 value 942.750670
## iter  70 value 941.640337
## iter  80 value 940.701151
## iter  90 value 940.418663
## iter 100 value 940.373543
## final  value 940.373543 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1781.154584 
## iter  10 value 1060.167639
## iter  20 value 953.679401
## iter  30 value 946.605851
## iter  40 value 942.728443
## iter  50 value 940.786562
## iter  60 value 937.216037
## iter  70 value 934.152693
## iter  80 value 933.379969
## iter  90 value 932.626735
## iter 100 value 931.541343
## final  value 931.541343 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 1779.185787 
## iter  10 value 1387.992480
## iter  20 value 985.504301
## iter  30 value 946.734940
## iter  40 value 929.450107
## iter  50 value 920.527254
## iter  60 value 918.080904
## iter  70 value 914.746582
## iter  80 value 910.353320
## iter  90 value 909.401933
## iter 100 value 906.689640
## final  value 906.689640 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1953.271378 
## iter  10 value 1406.075347
## iter  20 value 1142.286361
## iter  30 value 970.906578
## iter  40 value 943.257565
## iter  50 value 929.149515
## iter  60 value 921.246388
## iter  70 value 918.561231
## iter  80 value 916.711023
## iter  90 value 913.816288
## iter 100 value 902.960453
## final  value 902.960453 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 1812.520107 
## iter  10 value 1124.687340
## iter  20 value 1024.111584
## iter  30 value 984.722427
## iter  40 value 973.230683
## iter  50 value 954.625908
## iter  60 value 946.386511
## iter  70 value 937.324675
## iter  80 value 935.241526
## iter  90 value 931.859595
## iter 100 value 930.860162
## final  value 930.860162 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1780.056451 
## iter  10 value 1388.754165
## iter  20 value 970.194254
## iter  30 value 959.265530
## iter  40 value 944.619406
## iter  50 value 937.883946
## iter  60 value 920.871626
## iter  70 value 909.160999
## iter  80 value 904.609242
## iter  90 value 899.479336
## iter 100 value 897.179713
## final  value 897.179713 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1861.009430 
## iter  10 value 1604.209880
## iter  20 value 1388.301043
## iter  30 value 1303.651976
## iter  40 value 1293.418477
## iter  50 value 1076.141037
## iter  60 value 994.479481
## iter  70 value 963.085780
## iter  80 value 951.929225
## iter  90 value 948.534820
## iter 100 value 945.455455
## final  value 945.455455 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1708.143165 
## iter  10 value 1450.776063
## iter  20 value 1045.995888
## iter  30 value 1021.679551
## iter  40 value 1021.323015
## iter  50 value 1020.818275
## iter  60 value 1014.027826
## iter  70 value 1009.774246
## iter  80 value 1007.581961
## iter  90 value 1004.879670
## iter 100 value 1000.004397
## final  value 1000.004397 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1691.613959 
## iter  10 value 1373.325418
## iter  20 value 1219.237847
## iter  30 value 1191.344156
## iter  40 value 1168.062454
## iter  50 value 1120.494383
## iter  60 value 1113.588375
## iter  70 value 1072.225114
## iter  80 value 1047.733184
## iter  90 value 1045.100368
## iter 100 value 1044.649721
## final  value 1044.649721 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1758.245386 
## iter  10 value 1508.181624
## iter  20 value 1140.587818
## iter  30 value 1064.382857
## iter  40 value 1054.965429
## iter  50 value 1046.809520
## iter  60 value 1024.415824
## iter  70 value 1020.329666
## iter  80 value 1019.387567
## iter  90 value 1015.087043
## iter 100 value 1013.611363
## final  value 1013.611363 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1699.156897 
## iter  10 value 1384.366889
## iter  20 value 1029.167203
## iter  30 value 988.389116
## iter  40 value 970.910428
## iter  50 value 955.911067
## iter  60 value 952.480535
## iter  70 value 947.725229
## iter  80 value 947.564115
## iter  90 value 947.473585
## iter 100 value 947.237264
## final  value 947.237264 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1831.269399 
## iter  10 value 1133.008419
## iter  20 value 983.216231
## iter  30 value 964.620288
## iter  40 value 955.924621
## iter  50 value 949.906520
## iter  60 value 948.478514
## iter  70 value 947.962395
## iter  80 value 947.486519
## iter  90 value 947.404725
## iter 100 value 947.102552
## final  value 947.102552 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1714.779939 
## iter  10 value 1503.441387
## iter  20 value 1105.097492
## iter  30 value 952.977809
## iter  40 value 943.973976
## iter  50 value 937.618271
## iter  60 value 934.106873
## iter  70 value 930.916527
## iter  80 value 927.928585
## iter  90 value 927.094334
## iter 100 value 925.234129
## final  value 925.234129 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1693.598173 
## iter  10 value 1233.543001
## iter  20 value 981.886821
## iter  30 value 937.754567
## iter  40 value 926.216087
## iter  50 value 923.397529
## iter  60 value 921.671974
## iter  70 value 920.918809
## iter  80 value 920.313196
## iter  90 value 918.802660
## iter 100 value 913.746106
## final  value 913.746106 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 1936.274658 
## iter  10 value 1030.231904
## iter  20 value 968.733446
## iter  30 value 958.467446
## iter  40 value 950.250917
## iter  50 value 947.962375
## iter  60 value 944.851724
## iter  70 value 934.664597
## iter  80 value 933.279551
## iter  90 value 932.095880
## iter 100 value 931.574217
## final  value 931.574217 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1951.585602 
## iter  10 value 1259.501005
## iter  20 value 998.783335
## iter  30 value 947.433208
## iter  40 value 933.061384
## iter  50 value 923.083637
## iter  60 value 918.785454
## iter  70 value 916.733783
## iter  80 value 916.257936
## iter  90 value 915.259946
## iter 100 value 913.207582
## final  value 913.207582 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1968.995728 
## iter  10 value 1105.826296
## iter  20 value 967.911349
## iter  30 value 934.240570
## iter  40 value 920.308771
## iter  50 value 916.423077
## iter  60 value 914.179112
## iter  70 value 912.931799
## iter  80 value 910.949162
## iter  90 value 908.446112
## iter 100 value 907.212981
## final  value 907.212981 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 2006.849026 
## iter  10 value 1177.246961
## iter  20 value 970.221962
## iter  30 value 953.677182
## iter  40 value 931.704503
## iter  50 value 922.933556
## iter  60 value 918.299823
## iter  70 value 913.822908
## iter  80 value 912.151562
## iter  90 value 911.293542
## iter 100 value 910.794456
## final  value 910.794456 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1743.414075 
## iter  10 value 1234.347755
## iter  20 value 958.035108
## iter  30 value 943.509129
## iter  40 value 917.696138
## iter  50 value 907.507408
## iter  60 value 901.879182
## iter  70 value 894.901036
## iter  80 value 892.511722
## iter  90 value 891.750088
## iter 100 value 890.819039
## final  value 890.819039 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 1829.306041 
## iter  10 value 1093.667380
## iter  20 value 952.917986
## iter  30 value 929.290078
## iter  40 value 914.434919
## iter  50 value 905.794270
## iter  60 value 900.905235
## iter  70 value 898.485220
## iter  80 value 894.995320
## iter  90 value 893.564667
## iter 100 value 891.325813
## final  value 891.325813 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1799.302517 
## iter  10 value 1495.683020
## iter  20 value 1270.770009
## iter  30 value 955.054053
## iter  40 value 945.110964
## iter  50 value 941.714288
## iter  60 value 940.203627
## iter  70 value 939.274212
## iter  80 value 930.059714
## iter  90 value 928.827642
## iter 100 value 927.770403
## final  value 927.770403 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1840.650387 
## iter  10 value 1537.495119
## iter  20 value 1244.910028
## iter  30 value 1016.901062
## iter  40 value 958.659410
## iter  50 value 936.637937
## iter  60 value 923.811552
## iter  70 value 918.692648
## iter  80 value 912.922911
## iter  90 value 907.479961
## iter 100 value 894.892419
## final  value 894.892419 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1748.929322 
## iter  10 value 1560.143394
## iter  20 value 1294.748311
## iter  30 value 1005.259088
## iter  40 value 971.842742
## iter  50 value 962.679550
## iter  60 value 962.299414
## iter  60 value 962.299414
## final  value 962.299414 
## converged
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1662.055524 
## iter  10 value 1201.983935
## iter  20 value 993.827989
## iter  30 value 967.537019
## iter  40 value 963.504399
## iter  50 value 962.481003
## final  value 962.299411 
## converged
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1702.655148 
## iter  10 value 1359.560845
## iter  20 value 992.613598
## iter  30 value 966.429552
## iter  40 value 962.304079
## final  value 962.299410 
## converged
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1678.860811 
## iter  10 value 1296.377907
## iter  20 value 1024.394644
## iter  30 value 966.224714
## iter  40 value 963.620623
## final  value 963.278397 
## converged
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1692.877747 
## iter  10 value 1634.569760
## iter  20 value 1504.502182
## iter  30 value 1056.831618
## iter  40 value 981.777686
## iter  50 value 966.516893
## iter  60 value 962.979460
## final  value 962.784202 
## converged
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 2016.404851 
## iter  10 value 1306.160465
## iter  20 value 1034.057925
## iter  30 value 979.321430
## iter  40 value 960.291167
## iter  50 value 954.492620
## iter  60 value 950.600422
## iter  70 value 945.639755
## iter  80 value 943.477126
## iter  90 value 942.242323
## iter 100 value 941.609399
## final  value 941.609399 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1696.402025 
## iter  10 value 1193.115238
## iter  20 value 1000.289993
## iter  30 value 967.224160
## iter  40 value 954.358611
## iter  50 value 945.966952
## iter  60 value 941.848691
## iter  70 value 940.557986
## iter  80 value 939.745013
## iter  90 value 936.968492
## iter 100 value 934.550025
## final  value 934.550025 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 2048.343774 
## iter  10 value 1441.544875
## iter  20 value 1048.947365
## iter  30 value 972.180943
## iter  40 value 960.883504
## iter  50 value 955.235082
## iter  60 value 944.072031
## iter  70 value 938.701822
## iter  80 value 937.327784
## iter  90 value 936.591630
## iter 100 value 935.836875
## final  value 935.836875 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1702.718776 
## iter  10 value 1157.856390
## iter  20 value 1005.384466
## iter  30 value 962.713459
## iter  40 value 944.427815
## iter  50 value 934.537383
## iter  60 value 931.973013
## iter  70 value 931.522119
## iter  80 value 929.448884
## iter  90 value 927.751951
## iter 100 value 927.549898
## final  value 927.549898 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1730.178443 
## iter  10 value 1146.478566
## iter  20 value 1016.260381
## iter  30 value 981.679516
## iter  40 value 969.323033
## iter  50 value 952.657396
## iter  60 value 943.814427
## iter  70 value 939.134897
## iter  80 value 935.464322
## iter  90 value 926.346968
## iter 100 value 921.234845
## final  value 921.234845 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 1885.087719 
## iter  10 value 1124.187971
## iter  20 value 1038.605566
## iter  30 value 974.742922
## iter  40 value 966.073269
## iter  50 value 945.886354
## iter  60 value 939.673810
## iter  70 value 928.450258
## iter  80 value 923.315574
## iter  90 value 920.199505
## iter 100 value 917.879676
## final  value 917.879676 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1978.151080 
## iter  10 value 1182.288251
## iter  20 value 1042.891741
## iter  30 value 976.652816
## iter  40 value 950.476477
## iter  50 value 943.412613
## iter  60 value 941.513220
## iter  70 value 939.089185
## iter  80 value 937.089228
## iter  90 value 935.588536
## iter 100 value 929.966257
## final  value 929.966257 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 1689.951876 
## iter  10 value 1011.380737
## iter  20 value 966.003661
## iter  30 value 954.865199
## iter  40 value 946.412727
## iter  50 value 938.669532
## iter  60 value 937.351665
## iter  70 value 929.672521
## iter  80 value 922.841472
## iter  90 value 920.902921
## iter 100 value 919.026334
## final  value 919.026334 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1764.669525 
## iter  10 value 1180.051300
## iter  20 value 1040.681992
## iter  30 value 972.497828
## iter  40 value 956.715071
## iter  50 value 953.368074
## iter  60 value 944.031003
## iter  70 value 937.925167
## iter  80 value 933.151365
## iter  90 value 932.133955
## iter 100 value 930.356237
## final  value 930.356237 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1780.901536 
## iter  10 value 1203.214097
## iter  20 value 1063.378396
## iter  30 value 963.806433
## iter  40 value 950.006735
## iter  50 value 940.852131
## iter  60 value 937.135953
## iter  70 value 935.540067
## iter  80 value 933.054156
## iter  90 value 931.541687
## iter 100 value 930.975278
## final  value 930.975278 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  13
## initial  value 1806.077621 
## iter  10 value 1238.416058
## iter  20 value 978.836811
## iter  30 value 967.613085
## iter  40 value 953.642408
## iter  50 value 949.003146
## iter  60 value 948.528315
## iter  70 value 947.616515
## iter  80 value 947.390454
## iter  90 value 947.302723
## iter 100 value 947.125067
## final  value 947.125067 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  13
## initial  value 1983.312249 
## iter  10 value 1326.624737
## iter  20 value 1011.216799
## iter  30 value 996.160881
## iter  40 value 991.929798
## iter  50 value 957.804088
## iter  60 value 954.199540
## iter  70 value 953.667655
## iter  80 value 950.608491
## iter  90 value 950.019199
## iter 100 value 949.755181
## final  value 949.755181 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  13
## initial  value 1734.617032 
## iter  10 value 1172.195044
## iter  20 value 976.227646
## iter  30 value 955.991928
## iter  40 value 949.859821
## iter  50 value 947.960889
## iter  60 value 947.828929
## iter  70 value 947.344650
## iter  80 value 947.260590
## final  value 947.260561 
## converged
## Fitting Repeat 4 
## 
## # weights:  13
## initial  value 1789.769400 
## iter  10 value 1423.435688
## iter  20 value 1007.214746
## iter  30 value 981.051229
## iter  40 value 963.000301
## iter  50 value 952.243633
## iter  60 value 950.974503
## iter  70 value 948.405057
## iter  80 value 947.239785
## iter  90 value 947.178854
## iter 100 value 947.091395
## final  value 947.091395 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  13
## initial  value 1731.475257 
## iter  10 value 1046.495069
## iter  20 value 980.232626
## iter  30 value 961.330253
## iter  40 value 954.515923
## iter  50 value 952.041914
## iter  60 value 948.624242
## iter  70 value 948.001634
## iter  80 value 947.557267
## iter  90 value 947.295003
## iter 100 value 947.237211
## final  value 947.237211 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 1670.995873 
## iter  10 value 979.148430
## iter  20 value 957.329912
## iter  30 value 935.795364
## iter  40 value 924.803077
## iter  50 value 914.603508
## iter  60 value 911.024533
## iter  70 value 909.308244
## iter  80 value 908.077272
## iter  90 value 906.210644
## iter 100 value 905.650538
## final  value 905.650538 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 1950.120612 
## iter  10 value 1503.885312
## iter  20 value 1095.348164
## iter  30 value 1012.152492
## iter  40 value 995.972991
## iter  50 value 976.225612
## iter  60 value 970.979789
## iter  70 value 969.910306
## iter  80 value 969.760542
## iter  90 value 969.216108
## iter 100 value 969.156700
## final  value 969.156700 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 1804.668878 
## iter  10 value 1339.712580
## iter  20 value 1055.226530
## iter  30 value 964.433209
## iter  40 value 940.429079
## iter  50 value 933.941504
## iter  60 value 931.608585
## iter  70 value 929.955143
## iter  80 value 929.628527
## iter  90 value 925.590838
## iter 100 value 922.371286
## final  value 922.371286 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 1720.912022 
## iter  10 value 1176.881147
## iter  20 value 987.054337
## iter  30 value 950.136649
## iter  40 value 947.996573
## iter  50 value 943.311056
## iter  60 value 937.936636
## iter  70 value 937.748038
## iter  80 value 937.670743
## iter  90 value 937.029229
## iter 100 value 936.684463
## final  value 936.684463 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 1714.319868 
## iter  10 value 1151.228547
## iter  20 value 988.513967
## iter  30 value 960.131948
## iter  40 value 950.329711
## iter  50 value 943.170550
## iter  60 value 938.373359
## iter  70 value 928.371023
## iter  80 value 924.271059
## iter  90 value 921.798697
## iter 100 value 920.814497
## final  value 920.814497 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  57
## initial  value 1735.713283 
## iter  10 value 1321.453032
## iter  20 value 1000.725111
## iter  30 value 956.206253
## iter  40 value 914.626972
## iter  50 value 910.819835
## iter  60 value 909.814438
## iter  70 value 908.717476
## iter  80 value 903.065411
## iter  90 value 899.331130
## iter 100 value 896.154026
## final  value 896.154026 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  57
## initial  value 1735.348951 
## iter  10 value 1335.782058
## iter  20 value 1009.184369
## iter  30 value 958.009714
## iter  40 value 936.577287
## iter  50 value 920.037728
## iter  60 value 909.509800
## iter  70 value 905.811714
## iter  80 value 902.622162
## iter  90 value 900.799973
## iter 100 value 899.714025
## final  value 899.714025 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  57
## initial  value 2031.363802 
## iter  10 value 1433.259931
## iter  20 value 962.769160
## iter  30 value 937.999297
## iter  40 value 927.351422
## iter  50 value 922.587132
## iter  60 value 912.142129
## iter  70 value 904.553452
## iter  80 value 896.557826
## iter  90 value 888.923973
## iter 100 value 886.295875
## final  value 886.295875 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  57
## initial  value 1825.243179 
## iter  10 value 1454.241656
## iter  20 value 1077.026351
## iter  30 value 973.614499
## iter  40 value 961.144813
## iter  50 value 950.502855
## iter  60 value 943.263268
## iter  70 value 939.850031
## iter  80 value 936.967646
## iter  90 value 934.813709
## iter 100 value 933.596312
## final  value 933.596312 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  57
## initial  value 1685.114499 
## iter  10 value 1011.315936
## iter  20 value 951.224473
## iter  30 value 926.075133
## iter  40 value 916.405326
## iter  50 value 907.255151
## iter  60 value 903.143447
## iter  70 value 898.724484
## iter  80 value 896.406989
## iter  90 value 894.767769
## iter 100 value 894.150307
## final  value 894.150307 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  35
## initial  value 2105.308771 
## iter  10 value 1570.411578
## iter  20 value 1272.459146
## iter  30 value 1178.120475
## iter  40 value 1171.780830
## iter  50 value 1171.235279
## iter  60 value 1170.340637
## iter  70 value 1169.424999
## iter  80 value 1168.908520
## iter  90 value 1168.770002
## iter 100 value 1168.693803
## final  value 1168.693803 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  35
## initial  value 2212.722540 
## iter  10 value 1578.348762
## iter  20 value 1247.761619
## iter  30 value 1213.918327
## iter  40 value 1173.342641
## iter  50 value 1160.262639
## iter  60 value 1150.418290
## iter  70 value 1144.752802
## iter  80 value 1142.467367
## iter  90 value 1141.349703
## iter 100 value 1140.368982
## final  value 1140.368982 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  35
## initial  value 2119.377290 
## iter  10 value 1922.231608
## iter  20 value 1621.639466
## iter  30 value 1317.942898
## iter  40 value 1305.784682
## iter  50 value 1291.864127
## iter  60 value 1291.730357
## iter  70 value 1291.704277
## iter  80 value 1288.348579
## iter  90 value 1286.054606
## iter 100 value 1285.967290
## final  value 1285.967290 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  35
## initial  value 2313.582439 
## iter  10 value 1647.089490
## iter  20 value 1225.431116
## iter  30 value 1179.905558
## iter  40 value 1173.553388
## iter  50 value 1171.980751
## iter  60 value 1171.508513
## iter  70 value 1171.184864
## iter  80 value 1171.149360
## iter  90 value 1171.114320
## iter 100 value 1171.031448
## final  value 1171.031448 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  35
## initial  value 2133.386286 
## iter  10 value 1739.662742
## iter  20 value 1216.901918
## iter  30 value 1176.612593
## iter  40 value 1165.765904
## iter  50 value 1162.909150
## iter  60 value 1161.181240
## iter  70 value 1160.716294
## iter  80 value 1160.608446
## iter  90 value 1160.539443
## iter 100 value 1160.397183
## final  value 1160.397183 
## stopped after 100 iterations
data.frame(train = confusionMatrix(predict(mod, dat_train),
                dat_train$arr_delay)$overall[1],
           test = confusionMatrix(predict(mod, dat_test),
                dat_test$arr_delay)$overall[1])
##              train     test
## Accuracy 0.8032196 0.791807
ctrl = trainControl(method = "cv", number = 5)
mod2 <- train(arr_delay ~ dep_delay + dewp + temp + humid +
               wind_dir + wind_speed + precip +
               visib, data = new_dataset,
             method = "rf",
             preProcess = "scale",
             trControl = ctrl)
submission <- data.frame(id = seq(nrow(data_test)), arr_status = rep("", nrow(data_test)))

paste0("F",submission$id) -> submission$id
submission$arr_status = predict(mod2, data_test)
write.csv(submission, file = "submission.csv", row.names = F)

Conclusion

Write the conclusion of your capstone project Is your goal achieved? Is the problem can be solved by machine learning? What model did you use and how is the performance? What is the potential business implementation of your capstone project?

Hasil akhir dari pemodelan Logistic Regression dan Random Forest menunjukkan bahwa model Random Forest memiliki skor yang lebih baik daripada Logistic Regression walaupun pada test set masih menunjukkan skor Recall yang belum optimal.

Analisis dari dataset ini sangat berguna untuk mendeteksi delay serta mengetahui hal - hal yang paling menyebabkan terjadinya delay sehingga dapat dilakukan antisipasi.

Pada intepretasi Feature Importance hanya memeperlihatkan fitur mana yang paling berpengaruh sedangkan pada LIME menunjukkan fitur yang berpengaruh serta menunjukkan nilai komponen yang paling berpengaruh sehingga lebih mendetail.