library(leaflet.extras)
library(apcluster)
library(magrittr)
library(dplyr)
library(leaflet)
library(rgdal)
library(rgeos)
library(geojsonio)
library(mapview)
library(contoureR)
library(geosphere)
library(cluster)
library(sp)
library(rgdal)
library(RColorBrewer)
library(sp)
library(foreign)
dados = read.dbf("/Users/fagne/OneDrive/r-files/CIET/acidentes2020/_Base/acidentes_2014a2020_WGS84.dbf")
dados = dados[dados$ANO > 2014, ]
table(dados$TIPO_ACID)
##
## ABALROAMENTO ATROPELAMENTO CAPOTAGEM CHOQUE COLISAO
## 36700 4514 256 6024 24419
## EVENTUAL INCENDIO NAO CADASTRADO QUEDA TOMBAMENTO
## 1038 23 4 1944 180
table(dados$FERIDOS)
##
## -1 0 1 2 3 4 5 6 7 8 9 19 21
## 1 50751 20508 3112 505 134 49 14 15 4 3 1 1
## 25 35
## 3 1
dados = dados[(dados$FERIDOS > 0) | (dados$FATAIS >0), ]
sort(unique(dados$ANO))
## [1] 2015 2016 2017 2018 2019 2020
anos = length(unique(dados$ANO))
anos
## [1] 6
class(dados)
## [1] "data.frame"
x2 <- cbind(dados$LONGITUDE, dados$LATITUDE)
x2 <- x2[complete.cases(x2), ]
dim(x2)
## [1] 24716 2
head(x2)
## [,1] [,2]
## [1,] -51.01213 -30.19741
## [2,] -51.03732 -30.21369
## [3,] -51.05466 -30.23513
## [4,] -51.05470 -30.23517
## [5,] -51.05470 -30.23517
## [6,] -51.05470 -30.23517
x1 <- x2
x2 <- x2[sample(nrow(x2), 5000), ]
x2 = as.data.frame(x2)
names(x2) = c("LONGITUDE", "LATITUDE" )
head(x2)
save(x2, file = "data/x2-feridos-999.rda")
dim(x1)
## [1] 24716 2
dim(x2)
## [1] 5000 2
apres <- apcluster(negDistMat(r=2), x2, q=0.999)
plot(apres, x2)
A caption
summary(apres)
## Length Class Mode
## 1800 APResult S4
save(apres, file = "data/apres2-feridos-999.rda")
centroides = unique(apres@exemplars)
poly = data.frame()
centr_indice = 0
for (i in centroides){
centr_indice = centr_indice + 1
centr_lat=x2[i,1]
centr_lon=x2[i,2]
poly = rbind(poly, c(centr_lat, centr_lon, centr_indice))
}
names(poly) = c("Lat", "Lon", "Cluster")
head(poly)
dim(poly)
## [1] 1800 3
exemplars = poly
save(exemplars, file = "data/exemplars-feridos-999.rda")
predict.apcluster <- function(s, exemplars, newdata){
simMat <- s(rbind(exemplars, newdata), sel=(1:nrow(newdata)) + nrow(exemplars))[1:nrow(exemplars), ]
unname(apply(simMat, 2, which.max))
}
resultado <- list()
dados$cluster = 0
for(i in seq(from=1, to=length(dados$ID)-1000, by=1000)){
inicio = i
final = i+999
resultado = predict.apcluster(negDistMat(r=2), x2[apres@exemplars, ], dados[inicio:final, 2:3])
dados$cluster[inicio:final] = resultado
}
controle = length(dados$cluster) - final
resultado = predict.apcluster(negDistMat(r=2), x2[apres@exemplars, ], dados[(final + 1):length(dados$cluster), 2:3])
dados$cluster[(final + 1):length(dados$cluster)] = resultado
head(dados)
tail(dados)
save(dados, file = "data/acidentes-feridos-999.rda")
pal <- colorFactor(
palette = 'Dark2',
domain = dados$cluster
)
leaflet(dados) %>%
addTiles(group="Mapa") %>%
addCircles(group="Acidentes", ~LONGITUDE, ~LATITUDE, weight = 0.1, radius=7, color=~pal(cluster),
stroke = TRUE, fillOpacity = 0.8, popup=~paste("Cluster Nº: ", cluster,
"<br>Ano: ", ANO, "<br>Tipo: ", TIPO_ACID, "<br>Local: ", LOG1, "<br>UPS: ", UPS, sep = " ")) %>%
addLegend(group="Legenda", "topright", colors= "", labels=paste("Classificados em meio a ", summary(apres)[1], "Clusters"), title="Acidentes em Porto Alegre") %>%
addLayersControl(overlayGroups = c("Mapa", "Acidentes", "Legenda"),
options = layersControlOptions(collapsed = FALSE)) %>%
addProviderTiles(providers$CartoDB.DarkMatter)
A caption
dados = dados[dados$cluster >0 ,]
pal <- colorFactor(
palette = 'Dark2',
domain = dados$cluster
)
leaflet(dados) %>%
addTiles(group="Mapa") %>%
addCircles(group="Acidentes", ~LONGITUDE, ~LATITUDE, weight = 0.1, radius=7, color=~pal(cluster),
stroke = TRUE, fillOpacity = 0.8, popup=~paste("Cluster Nº: ", cluster,
"<br>Ano: ", ANO, "<br>Tipo: ", TIPO_ACID, "<br>Local: ", LOG1, "<br>UPS: ", UPS, sep = " ")) %>%
addLegend(group="Legenda", "topright", colors= "", labels=paste("Classificados em meio a ", summary(apres)[1], "Clusters"), title="Acidentes em Porto Alegre") %>%
addLayersControl(overlayGroups = c("Mapa", "Acidentes", "Legenda"),
options = layersControlOptions(collapsed = FALSE)) %>%
addProviderTiles(providers$CartoDB.DarkMatter)
A caption
dados = dados[dados$cluster >0 ,]
rm(apres)
clusters_encontrados = sort(unique(dados$cluster))
#clusters_encontrados
parq = dados
poly = data.frame()
for (i in clusters_encontrados){
temp = parq[parq$"cluster" == i, ]
ch1 = convexHullAM_Indexes(temp[,2],temp[,3], includeColinear=FALSE,zeroBased = FALSE)
#print(i)
#print(ch1)
poligono = temp[ch1, 2:3 ]
area <- geosphere::areaPolygon(x = poligono)
acidentes = nrow(temp)
pol = temp
coordinates(pol) = ~LONGITUDE+LATITUDE
centr_lat=gCentroid(pol, byid=FALSE)$x
centr_lon=gCentroid(pol, byid=FALSE)$y
if(nrow(temp) >= anos) {
for (ii in ch1) {
polying = temp[ii,]
polying$area = area
polying$acidentes = acidentes
polying$centroide_lat = centr_lat
polying$UPS = sum(temp$UPS)
polying$centroide_lon = centr_lon
poly = rbind(poly, polying)
}
}
}
head(poly)
tail(poly)
mean(poly$area)
## [1] 26846.39
median(poly$area)
## [1] 14280.19
minimoquantil = quantile(poly$area, probs = 0.01)
maximoquantil = quantile(poly$area, probs = 0.90)
quantile(poly$area, probs = c(0.01, 0.25, 0.5,0.75,0.99))
## 1% 25% 50% 75% 99%
## 172.313 5577.720 14280.187 27018.101 248371.655
poly = poly[(poly$area < maximoquantil) & (poly$area > minimoquantil), ]
dim(poly)
## [1] 7732 48
class(poly)
## [1] "data.frame"
pol = poly
areas = poly[!duplicated(poly$cluster),]
summary(areas$area)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 175.2 4826.0 12313.2 14856.0 22000.9 51006.9
summary(areas$UPS)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 30.00 50.00 75.00 87.86 111.00 355.00
#save(pol, file = "data/pol.Rds")
#load("data/acidentes.rda")
#load("data/apres2.rda")
#load("data/exemplars.rda")
#load("data/x2.rda")
dados = poly[,c(1:9, 11:13,38,41,44:48)]
head(dados)
names(dados) = c("ID","lat", "lon", "log1", "Log2", "Pred", "Local", "Tipo", "Via", "Data", "Dia", "Hora",
"Fx_horaria","UPS", "box_id", "Area", "Acidentes", "CentLon", "CentLat")
dados$id = (dados$box_id * 11)
dados$group = dados$id
head(dados)
dadostemp = dados[, c(15:21)]
coordinates(dados)=c("lat","lon")
df = dados
df
## class : SpatialPointsDataFrame
## features : 7732
## extent : -51.25981, -51.05466, -30.23944, -29.9684 (xmin, xmax, ymin, ymax)
## crs : NA
## variables : 19
## names : ID, log1, Log2, Pred, Local, Tipo, Via, Data, Dia, Hora, Fx_horaria, UPS, box_id, Area, Acidentes, ...
## min values : 601007, AC B CONJ RES ALTO PETROPOLIS, AC SEIS TREVO ASSIS BRASIL, 0, Cruzamento, ABALROAMENTO, 0 AV ANTONIO CARVALHO, 01/01/2015, DOMINGO, 00:00, 0, 30, 1, 175.14956940175, 6, ...
## max values : 683126, VDT IMPERATRIZ LEOPOLDINA, VDT OBIRICI, 15555, Logradouro, TOMBAMENTO, VDT IMPERATRIZ LEOPOLDINA, 31/12/2019, TERCA-FEIRA, 23:59, 23, 355, 1799, 51006.9507346377, 71, ...
data <- data.frame(box_id=unique(df$box_id),row.names=unique(df$id))
head(data)
dadostemp2 = dados[!duplicated(dados$id),]
#head(dadostemp2, 15)
data = as.data.frame(cbind(data, dadostemp2@data))
points2polygons <- function(df,data) {
get.grpPoly <- function(group,ID,df) {
Polygon(coordinates(df[df$id==ID & df$group==group,]))
}
get.spPoly <- function(ID,df) {
Polygons(lapply(unique(df[df$id==ID,]$group),get.grpPoly,ID,df),ID)
}
spPolygons <- SpatialPolygons(lapply(unique(df$id),get.spPoly,df))
SpatialPolygonsDataFrame(spPolygons,match.ID=T,data=data)
}
#Criamos o SpatialPolygonsDataFrame
data$Log2 = NULL
spDF <- points2polygons(df,data)
spDF
## class : SpatialPolygonsDataFrame
## features : 1230
## extent : -51.25981, -51.05466, -30.23944, -29.9684 (xmin, xmax, ymin, ymax)
## crs : NA
## variables : 19
## names : box_id, ID, log1, Pred, Local, Tipo, Via, Data, Dia, Hora, Fx_horaria, UPS, box_id.1, Area, Acidentes, ...
## min values : 1, 601114, AC B VILA NOVA BRASILIA, 0, Cruzamento, ABALROAMENTO, 0 AV BELEM VELHO, 01/03/2015, DOMINGO, 00:00, 0, 30, 1, 175.14956940175, 6, ...
## max values : 1799, 683092, VDT ABDIAS DO NASCIMENTO, 12000, Logradouro, TOMBAMENTO, VDT ABDIAS DO NASCIMENTO & AV EDVALDO PEREIRA PAIVA, 31/10/2020, TERCA-FEIRA, 23:50, 23, 355, 1799, 51006.9507346377, 71, ...
class(spDF)
## [1] "SpatialPolygonsDataFrame"
## attr(,"package")
## [1] "sp"
spDF@data$group = 1
spDF@data$box_id = NULL
dim(spDF@data)
## [1] 1230 18
dadostemp = unique(dadostemp)
spDF@data = merge(spDF@data, dadostemp, by = "box_id")
dim(spDF@data)
## [1] 1230 24
spDF$log1 = spDF$Pred = spDF$CentLon.x = spDF$CentLat.x = spDF$CentLon.y = spDF$CentLat.y = spDF$id.y = spDF$group.y = spDF$Tipo = spDF$Via = spDF$Tipo = spDF$Dia = spDF$Data= spDF$group.x = spDF$Local= spDF$Hora= spDF$Area.x= spDF$Fx_horaria = NULL
plot(spDF,col=spDF$box_id+1)
A caption
library(rgdal)
rgdal::writeOGR(obj = spDF,
dsn = "data/feridos.json",
layer = "myParq",
driver = "GeoJSON",
overwrite_layer = TRUE)
Acidentes por Cluster
#carregamos os dados SpatialPolygonsDataFrame
parqs <- geojsonio::geojson_read("data/feridos.json", what = "sp")
#Verificamos o objeto
parqs
## class : SpatialPolygonsDataFrame
## features : 1230
## extent : -51.25981, -51.05466, -30.23944, -29.9684 (xmin, xmax, ymin, ymax)
## crs : +proj=longlat +datum=WGS84 +no_defs
## variables : 7
## names : box_id, ID, UPS, Acidentes.x, id.x, Area.y, Acidentes.y
## min values : 1, 601114, 30, 6, 11, 175.14956940175, 6
## max values : 1799, 683092, 355, 71, 19789, 51006.9507346377, 71
dim(parqs)
## [1] 1230 7
library(raster)
projection(parqs)
## [1] "+proj=longlat +datum=WGS84 +no_defs"
library(mapview)
mapviewPalette(name = "Viridis")
library(RColorBrewer)
mapview(parqs, zcol = "Acidentes.x", col.regions=brewer.pal(9, "YlOrRd"))
Acidentes por m2
parqs@data$densidade = (parqs@data$Acidentes.x/parqs@data$Area.y)*1000000
mapview(parqs, zcol = "densidade", col.regions=brewer.pal(9, "YlOrRd"))
Acidentes por poligono
hist(parqs@data$Acidentes.x, col = "magenta")
A caption
Acidentes por KM2
hist(parqs@data$densidade, col = "orange")
A caption
Locais mais densos
quantile(parqs$densidade, probs = 0.99)
## 99%
## 41117.32
temp = parqs[parqs$densidade > quantile(parqs$densidade, probs = 0.001), ] # Atualziar
mapview(temp, zcol = "densidade")
projection(parqs)
## [1] "+proj=longlat +datum=WGS84 +no_defs"
parqstemp = parqs
require(sf)
shape <- read_sf(dsn = ".", layer = "mercator_32722_2014_2019")
projection(shape)
## [1] "+proj=utm +zone=22 +south +datum=WGS84 +units=m +no_defs"
projection(parqstemp) = projection(shape)
ccods = coordinates(parqs)
temps = as.data.frame(ccods)
cord.dec = SpatialPoints(cbind(temps$V1, temps$V2), proj4string=CRS("+proj=longlat"))
cord.UTM <- spTransform(cord.dec, CRS("+init=epsg:32722"))
ccods = as.data.frame(cord.UTM)
points = cbind(ccods[,1],ccods[,2])
head(points)
## [,1] [,2]
## [1,] 485287.0 6676398
## [2,] 485670.9 6680329
## [3,] 480549.0 6681996
## [4,] 485755.0 6681562
## [5,] 480202.3 6673730
## [6,] 483409.9 6674016
library(spdep)
distNeighbors = 400
dnb = dnearneigh(points,0,distNeighbors)
class(dnb)
## [1] "nb"
subsets = as.data.frame(matrix(dnb))
class(subsets)
## [1] "data.frame"
subsets = subsets$V1
lengths(subsets)
## [1] 9 4 1 3 4 5 5 2 2 5 1 2 2 1 1 4 6 1 2 3 3 1 3 4
## [25] 4 2 4 4 8 6 9 4 1 3 7 2 6 3 5 1 3 3 2 6 3 3 1 3
## [49] 9 4 3 4 8 4 5 1 5 1 7 5 3 2 9 5 7 2 12 6 8 1 3 3
## [73] 1 1 1 1 1 3 6 1 5 5 8 6 14 5 2 2 5 7 3 1 7 1 1 3
## [97] 1 5 1 1 4 5 1 1 7 7 2 8 6 2 8 6 2 8 5 9 9 3 1 7
## [121] 1 7 9 3 1 2 2 5 2 9 11 3 2 2 1 1 4 12 6 4 5 7 2 3
## [145] 5 3 2 3 6 6 3 1 1 9 7 3 1 3 11 3 7 6 10 10 9 9 2 3
## [169] 5 7 8 5 8 3 5 3 3 6 6 2 4 2 5 1 7 4 1 6 1 3 3 5
## [193] 1 10 2 1 3 1 3 5 9 6 2 12 1 2 4 1 6 5 3 3 2 1 9 1
## [217] 5 3 1 4 1 6 2 1 5 5 2 2 2 2 5 3 4 3 9 5 6 1 2 5
## [241] 5 5 4 4 4 8 2 1 2 5 1 1 7 1 1 5 2 2 7 7 8 1 8 5
## [265] 1 5 5 5 5 8 5 1 5 10 4 1 4 2 6 4 2 1 9 6 3 4 8 6
## [289] 8 1 3 5 10 7 4 5 9 3 11 5 9 1 1 8 7 5 5 4 6 3 10 5
## [313] 5 4 6 1 3 3 8 3 5 7 1 3 4 3 9 1 4 4 4 5 6 2 1 3
## [337] 1 1 5 5 7 2 1 11 8 7 2 6 2 1 3 2 5 6 10 7 10 11 1 4
## [361] 7 6 4 3 1 7 5 4 1 3 7 3 8 1 2 3 3 7 2 2 1 7 7 3
## [385] 1 2 4 7 6 4 3 11 2 2 4 3 4 8 2 6 9 4 8 4 3 3 3 1
## [409] 6 7 5 2 6 2 10 7 2 2 6 6 4 1 4 7 11 3 1 4 5 5 4 5
## [433] 3 2 5 1 8 2 5 2 1 6 3 2 4 6 1 7 5 6 5 5 1 7 5 4
## [457] 8 6 7 2 8 7 6 6 5 6 6 6 8 4 2 10 2 2 1 4 9 7 1 7
## [481] 8 2 8 1 2 9 4 8 1 8 6 10 1 2 2 1 1 6 3 5 1 6 10 8
## [505] 2 9 9 2 3 6 8 6 1 3 3 2 4 3 1 9 2 2 5 3 7 1 1 7
## [529] 4 3 6 4 1 3 8 7 3 4 5 1 5 1 4 1 6 3 3 1 5 5 4 10
## [553] 5 3 2 1 9 4 11 2 9 2 2 10 4 5 10 3 2 6 4 2 10 7 4 9
## [577] 5 1 5 5 6 6 2 3 2 5 5 3 6 8 7 2 2 1 6 4 5 9 3 1
## [601] 6 3 4 4 5 10 5 7 1 8 4 3 1 12 11 1 6 3 4 3 9 3 10 3
## [625] 2 6 3 7 5 8 9 3 6 7 9 6 1 3 1 4 3 2 4 2 2 8 2 5
## [649] 4 8 3 2 6 4 1 2 4 3 4 3 5 1 4 2 5 7 8 3 9 3 6 5
## [673] 4 3 3 11 5 7 4 10 2 4 3 7 6 6 9 4 5 3 2 5 2 5 3 2
## [697] 1 3 2 4 3 7 6 3 4 6 1 5 5 1 1 3 1 5 2 3 7 3 1 4
## [721] 3 8 4 6 7 1 8 1 5 4 10 3 9 7 6 2 1 2 2 3 9 5 2 4
## [745] 2 3 5 4 5 4 4 2 4 4 3 1 1 7 2 8 3 1 6 3 2 6 1 1
## [769] 7 4 7 6 4 9 7 8 1 7 5 2 2 2 3 4 6 1 1 1 5 6 8 6
## [793] 3 5 4 6 3 3 5 2 7 1 1 12 6 6 4 5 1 2 1 1 2 4 5 5
## [817] 1 5 5 4 4 6 1 6 1 1 2 4 6 7 2 4 8 5 2 7 2 4 8 3
## [841] 5 2 4 3 4 1 10 2 2 5 2 2 5 1 4 6 5 9 3 7 7 8 6 7
## [865] 4 3 7 5 5 1 2 10 2 3 3 2 1 2 5 5 3 6 1 3 2 3 2 8
## [889] 5 1 1 2 3 2 6 6 10 7 8 3 7 7 1 1 11 1 11 7 5 3 6 1
## [913] 3 3 2 4 3 2 2 1 1 1 2 10 6 1 3 2 1 2 1 2 6 7 8 9
## [937] 4 1 8 1 4 3 4 2 3 1 2 4 4 2 2 2 4 2 4 3 4 6 1 1
## [961] 8 2 1 2 1 2 2 7 3 3 1 5 3 1 4 1 10 9 1 5 9 4 1 4
## [985] 7 7 5 3 4 7 4 1 1 13 1 3 5 5 6 2 8 4 1 4 4 4 4 3
## [1009] 1 7 2 6 1 4 3 1 4 5 7 6 2 2 1 6 2 12 6 2 7 4 1 10
## [1033] 5 1 8 6 8 2 2 1 5 2 6 3 5 5 4 2 11 8 7 6 3 3 10 3
## [1057] 5 7 1 4 4 8 8 9 3 5 2 1 6 1 7 6 2 7 7 7 9 2 6 5
## [1081] 2 6 6 3 4 4 1 2 8 4 1 6 5 4 8 1 1 3 1 6 4 2 4 5
## [1105] 3 7 5 3 5 8 4 2 1 11 2 4 2 1 3 6 1 3 1 6 6 2 1 4
## [1129] 1 5 3 6 6 8 5 3 5 3 5 8 8 8 6 1 7 6 3 7 3 7 4 5
## [1153] 5 8 1 3 9 2 1 4 1 2 6 3 7 4 3 11 4 6 4 3 5 2 2 2
## [1177] 9 2 4 2 2 5 1 3 5 6 4 5 5 3 2 4 7 2 1 2 4 6 2 6
## [1201] 5 2 2 6 3 6 5 11 6 3 4 1 7 4 3 7 1 9 13 6 6 4 7 3
## [1225] 3 4 8 1 2 2
parqs$n = 1
sub = which(subsets == '0')
sub
## [1] 22 40 47 56 70 74 76 97 100 121 135 152 153 157 187
## [16] 189 193 196 205 216 219 248 254 290 302 303 316 335 337 343
## [31] 359 365 381 408 422 427 453 479 484 544 556 578 594 613 639
## [46] 655 662 711 726 757 788 803 812 817 823 854 890 891 904 912
## [61] 920 921 946 963 965 971 1009 1016 1023 1031 1097 1113 1161 1195
parqs$n[sub] = 0
length(parqs)
## [1] 1230
parqs = parqs[parqs$n > 0,]
length(parqs)
## [1] 1156
length(dnb)
## [1] 1230
#dim(ccods)
ccods = ccods[-sub, ]
dim(ccods)
## [1] 1156 2
points = cbind(ccods[,1],ccods[,2])
head(points)
## [,1] [,2]
## [1,] 485287.0 6676398
## [2,] 485670.9 6680329
## [3,] 480549.0 6681996
## [4,] 485755.0 6681562
## [5,] 480202.3 6673730
## [6,] 483409.9 6674016
#dnb = dnearneigh(points,0,2000)
dnb = dnearneigh(points,0,distNeighbors)
dnb
## Neighbour list object:
## Number of regions: 1156
## Number of nonzero links: 5220
## Percentage nonzero weights: 0.3906203
## Average number of links: 4.515571
length(dnb)
## [1] 1156
W.Bin= nb2mat(neighbours = dnb, style = "B")
#parqs <- parqs[!sub,]
W.Normal= nb2mat(neighbours = dnb, style = "W")
#head(W.Normal)
vizinhos_4 <- knearneigh(points, k = 4)
class(vizinhos_4)
## [1] "knn"
head(vizinhos_4$nn)
## [,1] [,2] [,3] [,4]
## [1,] 622 862 1069 36
## [2,] 611 887 205 215
## [3,] 454 970 1110 474
## [4,] 123 199 1148 899
## [5,] 172 71 871 764
## [6,] 549 1061 700 676
vizinhanca_4 <- knn2nb(vizinhos_4)
class(vizinhanca_4)
## [1] "nb"
Preparação para Análisis Global e Local
mv_simpl = st_as_sf(parqs)
plot(mv_simpl)
A caption
class(mv_simpl)
## [1] "sf" "data.frame"
library(dplyr)
mv_simpl = mv_simpl %>% dplyr::select(Acidentes.y)
#mv_simpl <- st_simplify(mv_simpl, preserveTopology = FALSE, dTolerance = 1)
class(mv_simpl)
## [1] "sf" "data.frame"
mapview::mapview(mv_simpl)
sf::sf_use_s2(FALSE)#trips and tiks
## Spherical geometry (s2) switched off
mv_simpl = st_as_sf(mv_simpl)
vizinhanca_neig <- poly2nb(mv_simpl)
ShapeNEIG = parqs
ShapeNEIG$vizinhos = card(vizinhanca_neig)
ShapeNEIG <- subset(ShapeNEIG, parqs$vizinhos != 0)
#vizinhanca2neig <- poly2nb(ShapeNEIG)
Os índices de autocorrelção espacial global calculados pelos testes de normalidade e permutação.
moran.test(parqs$Acidentes.y,listw=nb2listw(dnb, style = "W"), randomisation= FALSE)
##
## Moran I test under normality
##
## data: parqs$Acidentes.y
## weights: nb2listw(dnb, style = "W")
##
## Moran I statistic standard deviate = 6.6669, p-value = 1.306e-11
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.1557432380 -0.0008658009 0.0005518080
moran.test(parqs$Acidentes.y,listw=nb2listw(dnb, style = "W"), randomisation= TRUE)
##
## Moran I test under randomisation
##
## data: parqs$Acidentes.y
## weights: nb2listw(dnb, style = "W")
##
## Moran I statistic standard deviate = 6.6756, p-value = 1.231e-11
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.1557432380 -0.0008658009 0.0005503751
moran.mc(parqs$Acidentes.y, listw=nb2listw(dnb, style = "W"), nsim=999)
##
## Monte-Carlo simulation of Moran I
##
## data: parqs$Acidentes.y
## weights: nb2listw(dnb, style = "W")
## number of simulations + 1: 1000
##
## statistic = 0.15574, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
Diferente dos demais testes globais o teste para o EBI é exclusivo para taxas e tem-se apenas a opção de teste da permutação
EBImoran.mc(parqs$Acidentes.y,parqs$Area.y,
nb2listw(dnb, style="B", zero.policy=TRUE), nsim=999, zero.policy=TRUE)
##
## Monte-Carlo simulation of Empirical Bayes Index (mean subtracted)
##
## data: cases: parqs$Acidentes.y, risk population: parqs$Area.y
## weights: nb2listw(dnb, style = "B", zero.policy = TRUE)
## number of simulations + 1: 1000
##
## statistic = 0.13123, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
shapeCG.p=parqs$Acidentes.y/parqs$Area.y
moran.mc(shapeCG.p, nb2listw(dnb, style="B", zero.policy=TRUE),
nsim=999, zero.policy=TRUE)
##
## Monte-Carlo simulation of Moran I
##
## data: shapeCG.p
## weights: nb2listw(dnb, style = "B", zero.policy = TRUE)
## number of simulations + 1: 1000
##
## statistic = 0.12462, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
geary.test(parqs$Acidentes.y, listw=nb2listw(dnb, style = "W"), randomisation= FALSE)
##
## Geary C test under normality
##
## data: parqs$Acidentes.y
## weights: nb2listw(dnb, style = "W")
##
## Geary C statistic standard deviate = 6.0692, p-value = 6.426e-10
## alternative hypothesis: Expectation greater than statistic
## sample estimates:
## Geary C statistic Expectation Variance
## 0.8514728988 1.0000000000 0.0005988857
geary.test(parqs$Acidentes.y, listw=nb2listw(dnb, style = "W"), randomisation=TRUE)
##
## Geary C test under randomisation
##
## data: parqs$Acidentes.y
## weights: nb2listw(dnb, style = "W")
##
## Geary C statistic standard deviate = 5.7405, p-value = 4.719e-09
## alternative hypothesis: Expectation greater than statistic
## sample estimates:
## Geary C statistic Expectation Variance
## 0.8514728988 1.0000000000 0.0006694349
geary.mc(parqs$Acidentes.y, listw=nb2listw(dnb, style = "W"),nsim=999)
##
## Monte-Carlo simulation of Geary C
##
## data: parqs$Acidentes.y
## weights: nb2listw(dnb, style = "W")
## number of simulations + 1: 1000
##
## statistic = 0.85147, observed rank = 1, p-value = 0.001
## alternative hypothesis: greater
Getis-Ord é um indicador que mede a concentração local de uma variável de atributo distribuída espacialmente
globalG.test(parqs$Acidentes.y, nb2listw(dnb, style="B"))
##
## Getis-Ord global G statistic
##
## data: parqs$Acidentes.y
## weights: nb2listw(dnb, style = "B")
##
## standard deviate = 8.5427, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Global G statistic Expectation Variance
## 4.609752e-03 3.909585e-03 6.717645e-09
localG(parqs$Acidentes.y, nb2listw(dnb, style="B"), zero.policy=NULL, spChk=NULL, return_internals=FALSE)
## [1] 0.9633108667 1.6377966338 -0.8220634488 0.3868558844 1.3963183863
## [6] 0.0011388656 2.2811477515 0.4997229297 -0.1223367266 -0.8302360238
## [11] -0.9201263775 1.1916453737 -0.9533616508 -0.6251462608 0.1568862196
## [16] -0.1683556788 1.2694760525 -1.1154049199 -0.6066221898 -1.3658270675
## [21] -0.9725412989 4.4426411011 -0.6170323028 -1.0088695713 2.9927772235
## [26] 0.1698092858 -1.3007417192 1.1115866593 -0.2130683846 1.0343480867
## [31] 1.0984403189 -1.1154049199 -0.3483698103 -0.5777747377 1.1915197822
## [36] 0.9060813736 -0.2368170675 0.0914847387 0.7247013611 0.1059842698
## [41] -0.2609060173 0.5057955672 -1.0831950692 1.0075818244 0.1025423779
## [46] 0.8027322958 0.4149784392 -1.0266486147 -0.8605557794 2.8774848576
## [51] -0.9561081071 4.1260655292 -0.3062076754 0.5485058039 0.8254798018
## [56] 0.4401070147 4.1765973134 -1.2321084353 0.3472595544 0.1772516984
## [61] 1.1646154751 -1.1628619148 2.1395142654 -1.3328758838 0.5494382235
## [66] 0.7311760422 1.0653958182 -0.5270554951 -0.0381241213 0.8439473202
## [71] 0.2740760628 -0.4140796704 -0.1368958176 0.0451724184 0.0888315150
## [76] -0.1421404497 2.6281561189 1.6555118658 -1.2265582268 0.1526084891
## [81] -1.3009339328 2.6783011376 -0.2854250323 -0.6318474553 -1.1157483493
## [86] 0.7134608263 -1.1159340175 -0.6252355892 0.5564908678 1.7563212044
## [91] -0.0383810417 0.0732221147 2.3691758054 -1.0163918969 -0.6249537939
## [96] 0.5674789028 1.0122213809 -0.4005722760 0.5176888806 4.1905142199
## [101] -1.5078952409 1.7317339636 0.5453356827 -0.2621132071 3.7625419597
## [106] -1.3586660463 -0.0795132886 -0.2145408889 -0.3480911612 -0.4304835814
## [111] 1.8282934155 -1.0300225544 -0.6068236052 -0.7460581989 -0.6255347259
## [116] -0.8157965091 -0.8157965091 1.2725758034 -0.1218880126 -0.1475018283
## [121] 1.6194731678 -0.1227828482 -0.3989686966 -1.4403363101 -0.4299189980
## [126] -0.7631744257 3.1602989918 -0.8133968301 -0.9578162032 -0.7865886017
## [131] 0.7927897436 -0.8860684939 -0.5761765129 -1.8819819074 -0.0665355958
## [136] 0.7085819706 -0.3491170156 -0.4541149977 -1.5744454156 -0.9707917581
## [141] 2.4742664502 1.5306503256 0.8501784060 -0.4052034368 0.4440956590
## [146] 1.7429214317 0.2325994369 -0.2545869318 2.0070147721 1.6499221746
## [151] 0.8326842782 0.7032589292 -0.1920234621 -0.1214801807 -0.2148996844
## [156] -1.2884912624 -0.3168607979 -0.5674064943 -0.7355764634 -0.6305779481
## [161] 2.3690624687 0.9514430068 -0.2910114198 0.1458050974 0.1474554724
## [166] -0.2623807863 0.3728005660 -1.2325609015 -0.1746503790 1.0379653702
## [171] 0.9793800211 0.4703835676 -0.4132424403 1.0644226545 1.8072044268
## [176] -0.9187103552 -0.0594424878 0.0840344652 0.3295750135 -0.8220634488
## [181] -1.2538544226 -0.4358972299 1.5231222612 -0.0921431043 0.4298080567
## [186] 1.6546642585 -0.5369262006 -0.7631744257 0.6470045283 -0.0915353193
## [191] 0.1323166458 1.5172731807 -0.0098404880 -0.9553207006 0.8427070896
## [196] 1.7822216048 -0.6550793373 -0.3496001800 0.5104858864 -1.0176850576
## [201] 0.5473800058 -1.3007396685 -0.0378700657 -1.2247641823 1.3219323605
## [206] -0.7459119746 -0.1241641073 -0.3987925460 -0.3995764208 0.2672754999
## [211] -0.9696136863 0.2163105974 -0.9162023538 0.2151536044 0.8840717970
## [216] -0.1342558806 -0.3324765557 -0.9545750793 2.5341954622 1.3175596288
## [221] -0.1742464333 0.9607862913 0.8071811353 -0.3221962070 1.2788959721
## [226] 1.1919512624 -0.6755338391 -0.7880949796 0.3532043380 -0.3325886146
## [231] 1.9010526244 -0.5278924430 1.6686474716 -0.3293626810 -0.9547495507
## [236] 1.9007100307 -1.3979084258 -0.3531179743 -0.9196455091 1.3878853187
## [241] 1.7603290924 -0.7238860983 -1.1399802390 0.7050800112 -0.7408890279
## [246] 0.1761690780 0.6532111381 1.6246058513 -0.1362399891 -1.7533379354
## [251] 0.2223131714 -0.9589481909 -0.8220634488 -0.7627668248 -0.9531790472
## [256] 1.0676187910 2.8136489042 0.0154024747 0.3529843409 -0.4104157969
## [261] 1.4691313963 -0.1791779039 1.1478447800 0.8639511888 1.1076531959
## [266] 0.8639511888 -1.5355667048 0.1390702735 1.4035414610 0.9793800211
## [271] -1.7916239784 -0.6537179246 1.1380075119 -1.0825001487 0.6739211595
## [276] 0.1323166458 0.3806083823 -0.2099230471 0.3056872233 -1.2253605845
## [281] -0.4809533956 1.2028580922 -0.0957180847 -1.0278501084 4.5081418429
## [286] -0.7444872167 0.1759936911 -0.3704610627 -0.1734477592 0.2759465547
## [291] 0.4416768612 0.5149269637 0.5558921035 0.9225058947 1.8261360279
## [296] -0.9199584156 -0.0674416764 0.5619729487 -0.9135557058 0.1468240052
## [301] -0.9189971883 -0.4695859201 -0.0273578706 -0.5651259818 -1.1386106630
## [306] -1.0530937637 -0.2616042708 -1.3677787385 -0.8216272536 0.0882816250
## [311] 0.3539363599 -1.6219678000 -0.2614824789 2.1840632693 1.0393871898
## [316] 1.2725986075 -1.1633024319 0.1454045245 -0.7460311476 -1.1159340175
## [321] -0.7430447418 -1.3011390255 -0.4790001997 -0.6955079082 0.6880310831
## [326] 1.0518846308 2.0678426263 1.6531111573 -0.4699986098 -1.1758102746
## [331] -0.6136188097 -1.4970481262 1.5198849992 1.4184542554 -0.7860410467
## [336] 0.5591180644 -0.8222225576 -1.0278501084 -0.8418697364 0.8422129101
## [341] -1.5326893995 -0.5277819153 -0.1242942203 1.9690635992 -1.1974938460
## [346] -1.7711877350 -0.5396432303 -1.3015817340 0.1940003196 0.3466986778
## [351] 0.2723511740 1.5275799199 -1.4403363101 -0.0278688580 -1.4751217813
## [356] -0.2136917101 -0.5667940337 -1.4222141592 1.8598546585 -1.0930409150
## [361] -0.1241641073 -1.2048983983 0.0468513500 -1.7439776726 1.0022811734
## [366] 1.3303089458 0.3059619090 -1.5216819646 2.0790610774 1.5655386270
## [371] -0.5673862350 -1.0840433041 -0.8591863622 1.3504426685 1.0670450358
## [376] -0.4002382913 -1.3114219341 1.5381611938 -0.0048163967 -0.4700914156
## [381] 3.3358036463 0.0467464739 2.2301391413 0.4993161953 1.6667431713
## [386] 0.0678044645 -0.7600815854 -0.2739536859 4.4224429754 0.1970390599
## [391] -0.6891042919 1.1963216876 1.7117473242 0.7022660880 -1.2517523598
## [396] -1.1388655774 -0.8010074463 0.4998349642 0.0455479446 0.1571814578
## [401] -0.6284340758 2.0921614271 1.0999046908 -1.1626562044 -0.6252355892
## [406] -0.1319814117 1.2909621109 -0.8164491517 0.5102260098 2.7926890430
## [411] -0.6257601431 -1.0267097208 0.2643915075 -0.2533088325 -1.4460743541
## [416] 1.2831006039 -0.8789515588 2.3249940762 1.0507475335 -0.5236244263
## [421] 0.5887681414 1.3094039175 -1.1626562044 1.5232712902 0.4564708816
## [426] -0.2959977729 -0.8551749754 1.2307116859 -0.0893621743 0.6679171362
## [431] 0.4657521180 -0.4537669314 -0.8115641624 -0.5374536988 0.9642417889
## [436] 0.1529305959 -0.1923825222 -0.6262735151 0.6571493910 0.9640309385
## [441] 0.3434067893 -0.0654118149 1.2796711220 0.7779815305 -0.6277303844
## [446] -0.5394835095 2.7645015980 0.2170971310 1.1483907231 -0.9196455091
## [451] -1.8432239206 -1.1354493958 2.6893748483 -1.0175252145 -1.2999305004
## [456] -1.5073463019 0.8427995825 -0.9199584156 -0.5729905718 1.4610383108
## [461] 0.2207267024 0.9402628188 0.3084766485 0.1277549976 0.4796126879
## [466] -0.5398074604 0.7037528153 1.4875376069 -0.3989686966 1.4599409851
## [471] 1.6672948080 1.4524303762 1.5489463823 -1.1140387407 -0.2351390550
## [476] -1.5942548492 -1.2300882592 2.2271182014 -0.9162023538 -1.0173738456
## [481] 1.7500700947 -1.0925482868 -0.6082608793 0.3087671448 3.3833563670
## [486] -0.0624836476 -1.0180301975 -1.0176850576 -0.2481259741 -0.0779087620
## [491] -1.7066411693 1.9076606304 -0.9575024899 -0.2343874777 -0.6318474553
## [496] 1.2782904390 -1.0263728411 0.6689797970 -0.4699986098 -0.7444872167
## [501] -0.8216272536 2.5934651459 -0.8216272536 -0.7115041583 0.3052047917
## [506] -0.1807424050 0.1634290555 -0.6246182587 0.1780026035 0.0890162362
## [511] -0.1262058875 2.1792133835 0.4414127172 -0.5761765129 0.0145667195
## [516] 1.1928536090 -0.8596757530 0.6161729062 -0.4699446544 1.3249334894
## [521] 3.3384738816 -0.1927559748 0.4111042700 0.1181361620 -1.6203681293
## [526] 1.4339401294 -1.3093808870 -0.1923825222 -0.6920801729 2.8626464841
## [531] -0.8164491517 0.1280240741 -1.8089462015 0.1184571638 0.6036961985
## [536] -0.4368984256 0.6176168877 -0.8297103301 0.0296586447 -0.1321827151
## [541] -0.0539390249 -1.1413417641 -1.1610311121 -0.2573158240 -0.2997872439
## [546] 1.3475059577 1.1525425377 -0.5581004618 0.6043213351 2.6455397925
## [551] 3.7548670348 -0.2950734164 -0.9596218234 1.4918217838 -0.2464775490
## [556] 0.1033960827 0.8421891881 1.9873253041 0.0462706121 -0.4205823298
## [561] -1.5948460593 0.2668621217 0.2802703065 0.6149874118 -0.1746186130
## [566] 1.0379907587 2.0078827341 -0.3221962070 -1.2525532055 0.4103045303
## [571] 1.5980700957 3.8773022884 0.2649694742 1.7496163408 -0.9095473963
## [576] 0.1589671074 3.4521270188 -0.6891042919 -0.3363926396 -0.7454709721
## [581] 1.1310629123 1.0738798480 -0.0099876832 1.7160543072 2.1060230886
## [586] -0.0026140725 -0.6675312348 -1.5942548492 0.9940526890 -1.0249678019
## [591] -0.6082981291 0.8674467668 1.7237133757 -0.9162023538 0.2674408201
## [596] -1.2535109917 0.5689457630 -1.7421934612 -0.6781362713 -0.4010006884
## [601] 2.8409322970 -0.8855126742 0.8873192752 -0.6645893115 0.4459308324
## [606] 0.5557539443 -0.2622459009 -0.6960208799 0.4137158177 -0.6075886708
## [611] 1.0526763610 -0.2357217506 1.0982903610 -0.6885626334 -0.0871425073
## [616] -0.6662735188 -0.1925054030 -1.4896361752 0.8278379408 0.8277065214
## [621] -0.8587729036 0.7027883476 -0.7443178395 1.1474880882 -0.0427074592
## [626] -1.8413961526 2.0256245724 -0.4070377739 0.7050847090 -0.4332989962
## [631] -0.2881905096 2.0787533021 2.7054401059 -0.3307037173 3.1077357956
## [636] -0.5753013674 -0.1773929529 0.1864502383 -1.4931698967 0.1161453677
## [641] 3.3548686292 -0.7429474247 -1.1397415236 0.8461779825 4.0796751217
## [646] -0.4014592671 1.4496783090 0.8386113371 -0.8846000086 -0.8212526206
## [651] 0.3853419157 0.0152827237 -0.5178008359 -0.7458562357 0.3081347015
## [656] -1.4576199644 -1.3090372348 -0.2233165713 0.2673493493 -0.2329834673
## [661] -0.0863590351 -1.6221036647 5.2482992424 0.6140886680 -0.8214955433
## [666] 2.2375427786 -0.9553207006 -1.4816598366 0.2304742970 0.2160658542
## [671] -0.4296232185 -0.3223843278 -0.5199914877 0.5500514748 0.9517408695
## [676] -0.1311868903 0.1693201831 -1.8434931608 0.3553479080 -0.3920608085
## [681] -0.1241648212 1.6517506829 0.2162039668 3.9457141863 1.2342298299
## [686] -0.2931380069 -0.8162757978 -0.5283785483 -0.4007117366 -0.4005722760
## [691] 0.3294360396 3.4193889125 0.3551919695 0.5689457630 -0.2711518748
## [696] -0.6071416909 0.1595156476 0.9270053053 0.4129169995 -1.3568728789
## [701] -1.1039648256 0.0201137000 0.0843859301 -1.2517523598 2.3284632486
## [706] 1.4079595920 -0.9191115680 0.3827879482 -0.4707177366 -1.5630963727
## [711] 0.1025423779 -0.7241684820 1.1095829909 -0.7433704928 1.8151546728
## [716] 1.6672948080 -0.7238860983 -0.6261373422 1.3812117553 -0.5667940337
## [721] 0.1966511049 1.1083077748 0.3656068322 -0.3401054559 0.4173605921
## [726] 0.6552683571 -1.0172309436 0.3488361803 -0.4783301887 -0.6763666319
## [731] 0.3608503596 0.7826711878 -0.9159725725 -0.5680210718 0.6674833315
## [736] -0.1358057168 0.8423494846 0.1780026035 -0.2143310379 1.0007163225
## [741] -0.9724282964 1.0724346515 -1.4006339989 -0.8596757530 1.7070028036
## [746] -0.2357217506 0.6750729137 -0.3486119550 0.0851077197 -0.3233894903
## [751] -0.3308721195 3.8404843108 1.1472980924 -0.5724394718 -0.8620884577
## [756] -0.4818468049 0.0611369994 -0.4693967361 -0.3325886146 -0.9555270233
## [761] -0.1233579405 -0.6122651264 -0.7011269702 1.6675019840 -0.4379907718
## [766] -0.8613885237 0.4124787058 1.0670450358 -1.4566368449 0.1583789887
## [771] -0.7241684820 -1.0936153943 -1.4505241320 0.3476330354 1.1225451085
## [776] -0.5374536988 1.3445127851 1.5909722499 -0.4382202518 -0.9528209816
## [781] 1.1625345870 0.1555057232 -0.7616961305 2.4753467610 -0.9139482863
## [786] -1.3994722616 -0.3314788187 -1.4972412472 1.2341734465 -0.5680210718
## [791] -0.2340989364 -0.1199585380 2.0921614271 0.0846237131 -0.5241640159
## [796] -1.0223298430 -0.2625178673 -0.1298116421 -1.2054458154 0.0741781098
## [801] 1.8425614986 0.4508368214 0.1619219473 0.5294688250 1.6055305385
## [806] -0.9085371730 -0.3351168656 -1.9566229991 -0.4200011518 1.9125186318
## [811] -1.5837031738 1.0144494694 -1.0514315893 -0.3323672767 -0.6075886708
## [816] 0.4412598099 0.8473963226 0.8382310044 0.8951551839 -1.1626562044
## [821] 1.0380247624 0.9844998122 -1.3151114332 -0.2605515441 -0.3497670687
## [826] -0.1342558806 -0.8203380699 0.2745584774 -0.9555270233 0.8379132128
## [831] -1.3691522491 1.4186965530 0.0003797403 0.2935984249 0.1033960827
## [836] 0.6391959103 0.8261431606 1.3644347612 -0.4303556423 -0.2428855827
## [841] 0.1680449997 -1.8754933057 -0.4341868216 1.0840539722 -1.0180301975
## [846] 0.3473988810 0.7443876584 2.4856721613 0.8249059629 0.9666856147
## [851] -0.1235422531 0.0645056658 -0.6313771565 -0.2932108648 0.9145861119
## [856] -0.9573575432 -0.5157327377 -0.0521807632 -0.3307037173 -0.9196455091
## [861] -0.2594994299 0.1943841142 -0.1738677069 -0.4304835814 -0.4037763259
## [866] -1.4392055042 -0.4299189980 -1.0938251139 0.7462040703 1.5380654287
## [871] 1.8677707716 1.1594196110 2.1294833272 1.2934288471 -0.2212329873
## [876] -0.8222225576 1.9986452784 -1.0173738456 -0.0773824206 -0.3479561590
## [881] 0.2712257893 1.4000811790 2.3650804947 0.0833500196 -1.3016920005
## [886] -0.2717980178 0.9144888800 1.1228307020 -0.5394835095 0.0719912504
## [891] 0.0154024747 0.5146950951 2.7042749435 2.3728909409 -0.5355772004
## [896] -0.0367207301 -0.6257601431 -1.1807810623 -0.1239070334 -0.1921415548
## [901] 0.0845044724 -1.2998010547 -0.6217494157 2.0843821484 0.2163438637
## [906] -1.5758455721 0.6125783019 -0.7238860983 1.7394353444 -0.4302469821
## [911] 1.1526275328 0.2510244328 -1.0178533825 2.3689687872 1.7291305231
## [916] 1.0495253800 -0.1367026980 -1.3511453841 -1.1051523607 0.9034785050
## [921] -1.3564620808 -0.2938900894 2.9663316626 0.2690256482 2.0801423978
## [926] -0.1358057168 -0.4288130820 4.2260000699 -0.8217658037 -0.1220490660
## [931] -0.4809533956 -0.3901554196 1.4266803031 -0.5378152292 1.2803638844
## [936] 0.4126213939 -0.3327034576 -1.6444216509 1.7409018683 -1.4466869306
## [941] -1.1055138642 -0.6873698880 1.4995445454 -0.7470389214 0.1462104396
## [946] 0.0616047983 0.2199173873 -0.0077875347 0.1669927577 0.6206746537
## [951] 0.3050728412 1.0692678434 -0.4705552537 -0.6776434079 -0.9326612935
## [956] -0.8855126742 1.3157221309 -0.1329987623 -1.1630773206 1.1961190473
## [961] -0.5673862350 1.3401197659 -0.3874285169 0.6465199583 -1.0446069997
## [966] -0.4545565098 0.3112827647 -0.3310788708 0.9841864840 -1.1142440801
## [971] -0.6114371909 -0.1902573130 0.8268273150 -0.9704917686 -0.3047745236
## [976] 1.2295355780 -0.4695859201 -0.6774904138 0.6178178676 0.8644550146
## [981] 0.9801171388 0.7073091474 -0.9725412989 -0.5199914877 3.5457699695
## [986] 0.8943810838 1.1412678641 -0.2103996888 -0.7238860983 0.7085620750
## [991] 1.1005109240 0.9331120871 -0.0385166365 0.4099528840 -0.9718853113
## [996] -1.5343915985 1.8841795951 -0.7240242711 0.2738934328 -0.9195005496
## [1001] -0.8071952827 0.4654008992 0.1536087633 0.0879481266 -0.2881905096
## [1006] 0.8989066932 2.9827224448 -1.0245729072 1.5155109961 1.7548566343
## [1011] -0.7451812020 -0.5722652433 -0.5296116252 0.5587326067 -1.4970481262
## [1016] 0.4613466312 -0.7235077500 -1.0924022355 2.7393637241 -1.8906900396
## [1021] -0.8222225576 0.5451769175 -0.9158607077 1.4910418354 2.1553128143
## [1026] -0.3322607736 -0.9135557058 0.0619888388 1.0303528640 -0.0268489615
## [1031] -0.8157965091 1.6872807610 -0.3904728006 -0.2928860050 0.0858588252
## [1036] 0.3526056269 -0.8024161432 1.2784127917 -0.8385120937 0.4146004383
## [1041] 0.2940395530 3.9918711569 0.3611660528 0.7648792477 -0.4696628789
## [1046] -1.1157483493 0.2723511740 2.5671044785 -1.1155719864 -1.4234926864
## [1051] -0.0388157692 0.3057688559 -0.8120895049 -1.0221512063 -1.1149594195
## [1056] 0.1202922416 -0.1354785809 0.7034864003 -0.6325480881 0.6683731496
## [1061] -0.8959918439 1.6978851647 0.0905202825 -0.0652142400 -0.1261335088
## [1066] -1.5382285630 0.0447983129 0.7620041316 -0.2814238174 -0.7330347491
## [1071] 1.4696842617 -0.3327034576 -0.7304183897 0.9922213826 -0.9695401199
## [1076] -0.5465741568 -0.6331289405 -0.2510989073 0.6601779484 -0.9617454100
## [1081] 0.8351753809 0.4800108237 -1.0168529781 -0.9157504438 2.4378300100
## [1086] 1.0730651914 -1.0178533825 1.9826496123 -0.7457989894 -0.4136541883
## [1091] -0.1807424050 0.1935809029 -0.4675957938 -1.1983354962 1.8879899639
## [1096] 0.3631923169 -0.8927726065 -0.7638335376 -1.0280386904 2.1963327833
## [1101] 0.8463056517 -0.4005722760 -1.5082448273 0.8660222043 -1.5090945173
## [1106] -0.2701071158 -0.9553207006 -1.0936153943 1.6672185682 0.1568156424
## [1111] -0.2935455458 -0.6129396284 0.9127446244 0.0228222323 -0.3894182123
## [1116] 0.8404959870 1.2903628438 0.0150435910 2.2256060741 0.3802768561
## [1121] -0.5394835095 -0.2623807863 -0.7638335376 -0.5716156182 0.0155223527
## [1126] 0.7077322720 1.9757299221 -0.6090596671 -1.1620971550 -1.2573402762
## [1131] -0.9698826441 4.2520689583 1.2309434620 3.1649779190 -0.0149782709
## [1136] -1.2544477047 -1.7923957711 1.4294674206 0.2308841621 -1.2539056051
## [1141] 3.2133563814 -1.7708764187 -0.8212526206 0.3447536014 0.9584145590
## [1146] -0.2944061952 -0.0909341191 0.0229930806 -0.2114787565 -1.5355667048
## [1151] -0.0668353285 -1.5482456915 0.0979277241 -0.1357222488 -1.4396218466
## [1156] -1.1626562044
## attr(,"gstari")
## [1] FALSE
## attr(,"call")
## localG(x = parqs$Acidentes.y, listw = nb2listw(dnb, style = "B"),
## zero.policy = NULL, spChk = NULL, return_internals = FALSE)
## attr(,"class")
## [1] "localG"
Todas as análises feitas até o momento foram de escala global. No entanto, é necessário que seja feita também uma análise local do estudo. Essa análise pode ser feita pelo índice local de autocorrelaçãoo espacial (LISA). Para isso é preciso calcular o índice de Moran local.
ShapePB.mloc <- localmoran(parqs$Acidentes.y, listw=nb2listw(dnb, style="W"))
head(ShapePB.mloc)
## Ii E.Ii Var.Ii Z.Ii Pr(z != E(Ii))
## 1 -0.3577780863 -1.076097e-03 0.13711285 -0.963310867 0.3353915
## 2 -0.4317744934 -2.409054e-04 0.06942394 -1.637796634 0.1014641
## 3 0.8350954204 -8.954134e-04 1.03417100 0.822063449 0.4110408
## 4 0.0570184992 -5.658953e-05 0.02176681 0.386855884 0.6988629
## 5 0.7913454324 -1.118688e-03 0.32209969 1.396318386 0.1626186
## 6 -0.0008207396 -4.529261e-04 0.10430627 -0.001138866 0.9990913
Por meio dos valor-p do éndice de Moran local é possível construir um mapa de probabilidades.
library(classInt)
INT4 <- classIntervals(ShapePB.mloc[,5], style="fixed",
fixedBreaks=c(0,0.01, 0.05, 0.10))
CORES.4 <- c(rev(brewer.pal(3, "Reds")), brewer.pal(3, "Blues"))
COL4 <- findColours(INT4, CORES.4)
parqs$COL = COL4
parqs$p_valor = ifelse(parqs$COL == "#DE2D26", "[0,0.01)", ifelse(parqs$COL == "#EEE5E4", "[0.01,0.05)", "[0.05,0.1]"))
plot(parqs, col=COL4)
title("P-valores do I de Moran Local por Distäncia de Centróides")
TB4 <- attr(COL4, "table")
legtext <- paste(names(TB4))
legend("bottomright", fill=attr(COL4, "palette"), legend=legtext,
bty="n", cex=0.7, y.inter=0.7)
A caption
mapview(parqs, zcol = "p_valor", col.regions=c("red", "orange", "green"))
temp = parqs[parqs$p_valor != "[0.05,0.1]", ]
mapview(temp, zcol = "p_valor", col.regions=c("red", "orange"))
ShapeCG.nb1.mat <- nb2mat(dnb)
Acidentes_SD <- scale(parqs$Acidentes.y)
Acidentes_W <- ShapeCG.nb1.mat %*% Acidentes_SD
plot(Acidentes_SD, Acidentes_W,xlab="Z",ylab="WZ")
abline(v=0, h=0)
title("Diagrama de Espalhamento de Moran por Distancia de Centróides")
A caption
Q <- vector(mode = "numeric", length = nrow(ShapePB.mloc))
Q[(Acidentes_SD>0 & Acidentes_W > 0)] <- 1
Q[(Acidentes_SD<0 & Acidentes_W < 0)] <- 2
Q[(Acidentes_SD>=0 & Acidentes_W < 0)] <- 3
Q[(Acidentes_SD<0 & Acidentes_W >= 0)]<- 4
signif=0.05
parqs$Q = Q
Q[ShapePB.mloc[,5]>signif]<-5
CORES.5 <- c("blue", "green" , "red", "yellow", "gray", rgb(0.95,0.95,0.95))
#CORES.5 <- c(1:5, rgb(0.95,0.95,0.95))
parqs$cores5Q = CORES.5[Q]
plot(parqs, col=CORES.5[Q])
title("Mapa LISA por Distancia Centroides")
legend("bottomright", c("Q1(+/+)", "Q2(-/-)", "Q3(+/-)", "Q4(-/+)","NS"),
fill=CORES.5)
A caption
CORES.5[Q][1:5]
## [1] "gray" "gray" "gray" "gray" "gray"
head(CORES.5[Q])
## [1] "gray" "gray" "gray" "gray" "gray" "gray"
#save(parqs, file = "parqsFinal-975.Rds")
parqs$cores5 = ifelse(parqs$cores5Q == "blue", "A-A", ifelse(parqs$cores5Q == "green", "B-B",
ifelse(parqs$cores5Q == "red", "A-B", ifelse(parqs$cores5Q == "yellow", "B-A", "NA"))))
mapview(parqs, zcol = "cores5", col.regions=c("red", "orange", "green", "yellow", "grey"))
temp = parqs[parqs$cores5 == "A-A", ]
mapview(temp, zcol = "cores5", col.regions=c("red", "orange", "green", "yellow", "grey"))
mapview(temp, zcol = "Acidentes.x", col.regions=brewer.pal(9, "YlOrRd"))