1 Clusters de Atropelamentos por Affinity Propagation

library(leaflet.extras)
library(apcluster)
library(magrittr)
library(dplyr)   
library(leaflet)
library(rgdal)
library(rgeos)
library(geojsonio)
library(mapview)
library(contoureR)
library(geosphere)
library(cluster)
library(sp)
library(rgdal)
library(RColorBrewer)
library(sp)
library(foreign)
anoscorte = 0

1.1 Carga de Dados

dados = read.dbf("/Users/fagne/OneDrive/r-files/CIET/acidentes2020/_Base/acidentes_2014a2020_WGS84.dbf")
dados = dados[dados$ANO > 2014, ]
table(dados$TIPO_ACID)
## 
##   ABALROAMENTO  ATROPELAMENTO      CAPOTAGEM         CHOQUE        COLISAO 
##          36700           4514            256           6024          24419 
##       EVENTUAL       INCENDIO NAO CADASTRADO          QUEDA     TOMBAMENTO 
##           1038             23              4           1944            180
table(dados$FERIDOS)
## 
##    -1     0     1     2     3     4     5     6     7     8     9    19    21 
##     1 50751 20508  3112   505   134    49    14    15     4     3     1     1 
##    25    35 
##     3     1
dados = dados[dados$TIPO_ACID == "ATROPELAMENTO", ]
sort(unique(dados$ANO))
## [1] 2015 2016 2017 2018 2019 2020
anos = length(unique(dados$ANO))
anos
## [1] 6
class(dados)
## [1] "data.frame"
x2 <- cbind(dados$LONGITUDE, dados$LATITUDE)
x2 <- x2[complete.cases(x2), ]
dim(x2)
## [1] 4514    2
head(x2)
##           [,1]      [,2]
## [1,] -51.06018 -30.23187
## [2,] -51.08561 -30.14308
## [3,] -51.08814 -30.15189
## [4,] -51.08883 -30.14002
## [5,] -51.08980 -30.23747
## [6,] -51.09070 -30.13943

1.2 Preparação

        # x1 <- x2
        # #x2 <- x2[sample(nrow(x2), nrow(dados)), ]
        # x2 = as.data.frame(x2)
        # names(x2) = c("LONGITUDE", "LATITUDE" )
        # head(x2)
        # save(x2, file = "data/x2-atropelamentos-999.rda")
        # dim(x1)
        # dim(x2)

1.3 Treino

        # apres <- apcluster(negDistMat(r=2), x2, q=.999)
        # plot(apres, x2)
        # summary(apres)
        # save(apres, file = "data/apres2-atropelamentos-999.rda")
load("data/x2-atropelamentos-999.rda")
load("data/apres2-atropelamentos-999.rda")

1.4 Obtenção de Centróides

centroides = unique(apres@exemplars)
poly = data.frame()
centr_indice = 0
for (i in centroides){
  centr_indice = centr_indice + 1
  centr_lat=x2[i,1]
  centr_lon=x2[i,2]
  poly = rbind(poly, c(centr_lat, centr_lon, centr_indice))
}
names(poly) = c("Lat", "Lon", "Cluster")
head(poly)
dim(poly)
## [1] 1997    3
exemplars = poly
save(exemplars, file = "data/exemplars-atropelamentos-999.rda")

1.5 Classificação Global

dados$cluster = 0
controle = 0
for (i in 1:length(apres@exemplars)) {
    a = unlist(apres@clusters[i])
    if (length(a) >= anoscorte) {#atualizar anos
      controle = controle + 1
      for (item in 1:length(a)) {
        dados$cluster[as.numeric(a[item])] = i
      }
    }
}

1.6 Acidentes por Cluster

pal <- colorFactor(
  palette = 'Dark2',
  domain = dados$cluster
)

leaflet(dados) %>%
  addTiles(group="Mapa") %>% 
  addCircles(group="Acidentes", ~LONGITUDE, ~LATITUDE, weight = 0.1, radius=7, color=~pal(cluster),
             stroke = TRUE, fillOpacity = 0.8, popup=~paste("Cluster Nº: ", cluster,  
            "<br>Ano: ", ANO, "<br>Tipo: ", TIPO_ACID, "<br>Local: ", LOG1,  "<br>UPS: ", UPS,   sep = " ")) %>% 
  addLegend(group="Legenda", "topright", colors= "", labels=paste("Classificados em meio a ", summary(apres)[1], "Clusters"), title="Running over in Porto Alegre") %>% 
  addLayersControl(overlayGroups = c("Mapa", "Acidentes", "Legenda"),
                   options = layersControlOptions(collapsed = FALSE)) %>% 
  addProviderTiles(providers$CartoDB.DarkMatter)

A caption

1.7 Enriquecimento Informacional

#dados = dados[dados$cluster >0 ,]
#rm(apres)
clusters_encontrados = sort(unique(dados$cluster))
#clusters_encontrados
parq = dados
poly = data.frame()
for (i in clusters_encontrados){
  temp = parq[parq$"cluster" == i,  ]
  ch1 = convexHullAM_Indexes(temp[,2],temp[,3], includeColinear=FALSE,zeroBased = FALSE)
  #print(i)
  #print(ch1)
  poligono = temp[ch1, 2:3 ]
  area <- geosphere::areaPolygon(x = poligono)
  acidentes = nrow(temp)
  pol = temp
  coordinates(pol) = ~LONGITUDE+LATITUDE
  centr_lat=gCentroid(pol, byid=FALSE)$x
  centr_lon=gCentroid(pol, byid=FALSE)$y
  if(nrow(temp) >= anoscorte) { #anos atualizar
    for (ii in ch1) {
    polying = temp[ii,]
    polying$area = area
    polying$acidentes = acidentes
    polying$centroide_lat = centr_lat
    polying$UPS = sum(temp$UPS)
    polying$centroide_lon = centr_lon
    poly = rbind(poly, polying)
    }  
  }
}
head(poly)
tail(poly)
mean(poly$area)
## [1] 525.602
median(poly$area)
## [1] 58.76589
minimoquantil = quantile(poly$area, probs = 0.01)
maximoquantil = quantile(poly$area, probs = 0.99)
quantile(poly$area, probs = c(0.01, 0.25, 0.5,0.75,0.99))
##         1%        25%        50%        75%        99% 
##    0.00000    0.00000   58.76589  363.48168 6420.23330
#poly = poly[(poly$area < maximoquantil) & (poly$area > minimoquantil), ]
dim(poly)
## [1] 4651   48
class(poly)
## [1] "data.frame"
pol = poly

1.7.1 Área

resumo = poly[!duplicated(poly$cluster),]
summary(resumo$area)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##     0.00     0.00     0.00   254.73    57.59 15458.66

1.7.2 UPS

summary(resumo$UPS)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00    5.00    5.00   12.14   15.00   98.00

1.8 Combinando Informações

dados = poly[,c(1:9, 11:13,38,41,44:48)]
head(dados)
names(dados) = c("ID","lat", "lon", "log1", "Log2", "Pred", "Local", "Tipo", "Via", "Data", "Dia", "Hora", 
                 "Fx_horaria","UPS", "box_id", "Area", "Acidentes", "CentLon", "CentLat")
dados$id = (dados$box_id * 11)
dados$group = dados$id
head(dados)
dadostemp = dados[, c(15:21)]
dadosplot = dados
coordinates(dados)=c("lat","lon")
df = dados
df
## class       : SpatialPointsDataFrame 
## features    : 4651 
## extent      : -51.27422, -51.06018, -30.24154, -29.9684  (xmin, xmax, ymin, ymax)
## crs         : NA 
## variables   : 19
## names       :     ID,                  log1,            Log2,  Pred,      Local,          Tipo,                                    Via,       Data,         Dia,  Hora, Fx_horaria, UPS, box_id,             Area, Acidentes, ... 
## min values  : 601002, AC B VILA DO BARRACAO, AV ALBERTO BINS,     0, Cruzamento, ATROPELAMENTO,                           0 AV NITEROI, 01/01/2015,     DOMINGO, 00:00,          0,   1,      1,                0,         1, ... 
## max values  : 683118,         TRAV SAO JOAO,     VDT OBIRICI, 24108, Logradouro, ATROPELAMENTO, TRAV GERMANO GARCIA & AV OTTO NIEMEYER, 31/12/2015, TERCA-FEIRA, 23:59,         23,  98,   1997, 15458.6635937032,        18, ...
data <- data.frame(box_id=unique(df$box_id),row.names=unique(df$id))
head(data)
dadostemp2 = dados[!duplicated(dados$id),]
#head(dadostemp2, 15)
data = as.data.frame(cbind(data, dadostemp2@data))
dadosplot = dadosplot[order(dadosplot$UPS),]
pal <- colorFactor(
  palette = 'Dark2',
  domain = dadosplot$UPS
)
clusters = length(unique(dadosplot$UPS))
head(dadosplot)
dfs = as.data.frame(table(dadosplot$UPS))
head(dfs)
dadosplot$n = 0
for (i in dfs$Var1) {
  dados <- within(dadosplot, n[UPS == i] <- as.numeric(dfs[dfs$Var1 == i, ][2]))
}
dadosplot <- dadosplot %>% mutate(Quartiles = ntile(n, 10))

pal <- colorNumeric(rev(c("#a50026", "#d73027", "#f46d43", "#fdae61", "#fee090", 
                       "#ffffbf", "#abd9e9", "#74add1", "#4575b4", "#313695")), dados$Quartiles, n = 10)

pal <- colorFactor(
  palette = 'YlOrRd',
  domain = dadosplot$UPS
)

leaflet(dadosplot) %>%
  addTiles(group="Mapa") %>% 
  addCircles(group="Acidentes", ~lat, ~lon, weight = 0.1, radius=7, color=~pal(UPS),
             stroke = TRUE, fillOpacity = 0.8, popup=~paste("Cluster Nº: ", box_id,"<br>UPS: ", UPS,
                                                            "<br>Tipo: ", Tipo, "<br>Local: ", log1,  sep = " ")) %>% 
  addLegend(group="Legenda", "bottomleft", colors= "", labels=paste("Classified into ", clusters, "Clusters"), title="Running over in Porto Alegre") %>% 
  #addLayersControl(overlayGroups = c("Mapa", "Acidentes", "Legenda"), options = layersControlOptions(collapsed = FALSE)) %>% 
  addProviderTiles(providers$CartoDB.Positron)%>%
  addLegend(pal = (pal), values = ~UPS, opacity = 1, labels="UPS Quantiles")

A caption

dadosplot$densidade = round(dadosplot$Acidentes/dadosplot$Area, 3)
dadosplot = dadosplot[order(dadosplot$densidade),]
pal <- colorFactor(
  palette = 'Dark2',
  domain = dadosplot$densidade
)
clusters = length(unique(dadosplot$densidade))
head(dadosplot)
dfs = as.data.frame(table(dadosplot$densidade))
head(dfs)
dadosplot$n = 0
for (i in dfs$Var1) {
  dados <- within(dadosplot, n[densidade == i] <- as.numeric(dfs[dfs$Var1 == i, ][2]))
}
dadosplot <- dadosplot %>% mutate(Quartiles = ntile(n, 10))

pal <- colorNumeric(rev(c("#a50026", "#d73027", "#f46d43", "#fdae61", "#fee090", 
                       "#ffffbf", "#abd9e9", "#74add1", "#4575b4", "#313695")), dados$Quartiles, n = 10)

leaflet(dadosplot) %>%
  addTiles(group="Mapa") %>% 
  addCircles(group="Acidentes", ~lat, ~lon, weight = 0.1, radius=7, color=~pal(Quartiles),
             stroke = TRUE, fillOpacity = 0.8, popup=~paste("Cluster Nº: ", box_id,"<br>UPS: ", UPS,"<br>Densidade: ", densidade,
                                                            "<br>Tipo: ", Tipo, "<br>Local: ", log1,  sep = " ")) %>% 
  addLegend(group="Legenda", "bottomleft", colors= "", labels=paste("Classified into ", clusters, "Clusters"), title="Running over in Porto Alegre") %>% 
  #addLayersControl(overlayGroups = c("Mapa", "Acidentes", "Legenda"), options = layersControlOptions(collapsed = FALSE)) %>% 
  addProviderTiles(providers$CartoDB.Positron)%>%
  addLegend(pal = (pal), values = ~Quartiles, opacity = 1, labels="Accident Quantiles")

A caption

1.9 Criação de Polígonos

points2polygons <- function(df,data) {
  get.grpPoly <- function(group,ID,df) {
    Polygon(coordinates(df[df$id==ID & df$group==group,]))
  }
  get.spPoly  <- function(ID,df) {
    Polygons(lapply(unique(df[df$id==ID,]$group),get.grpPoly,ID,df),ID)
  }
  spPolygons  <- SpatialPolygons(lapply(unique(df$id),get.spPoly,df))
  SpatialPolygonsDataFrame(spPolygons,match.ID=T,data=data)
}

#Criamos o SpatialPolygonsDataFrame
data$Log2 = NULL
spDF <- points2polygons(df,data)
spDF
## class       : SpatialPolygonsDataFrame 
## features    : 1997 
## extent      : -51.27422, -51.06018, -30.24154, -29.9684  (xmin, xmax, ymin, ymax)
## crs         : NA 
## variables   : 19
## names       : box_id,     ID,                  log1,  Pred,      Local,          Tipo,                           Via,       Data,         Dia,  Hora, Fx_horaria, UPS, box_id.1,             Area, Acidentes, ... 
## min values  :      1, 601042, AC B VILA DO BARRACAO,     0, Cruzamento, ATROPELAMENTO,      10 AV BORGES DE MEDEIROS, 01/01/2015,     DOMINGO, 00:00,          0,   1,        1,                0,         1, ... 
## max values  :   1997, 683118,         TRAV SAO JOAO, 24108, Logradouro, ATROPELAMENTO, TRAV CAMERUM & AV BENNO MENTZ, 31/10/2019, TERCA-FEIRA, 23:59,         23,  98,     1997, 15458.6635937032,        18, ...
class(spDF)
## [1] "SpatialPolygonsDataFrame"
## attr(,"package")
## [1] "sp"
spDF@data$group = 1
spDF@data$box_id = NULL
dim(spDF@data)
## [1] 1997   18
dadostemp = unique(dadostemp)
spDF@data = merge(spDF@data, dadostemp, by = "box_id")
dim(spDF@data)
## [1] 1997   24
spDF$log1 = spDF$Pred = spDF$CentLon.x = spDF$CentLat.x = spDF$CentLon.y = spDF$CentLat.y   = spDF$id.y = spDF$group.y  = spDF$Tipo = spDF$Via = spDF$Tipo = spDF$Dia =  spDF$Data= spDF$group.x =  spDF$Local=   spDF$Hora= spDF$Area.x=   spDF$Fx_horaria = NULL
plot(spDF,col=spDF$box_id+1)
A caption

A caption

library(rgdal)
rgdal::writeOGR(obj = spDF,
                dsn = "data/atropelamenos.json",
                layer = "myParq",
                driver = "GeoJSON",
                overwrite_layer = TRUE)

Acidentes por Cluster

#carregamos os dados SpatialPolygonsDataFrame
parqs <- geojsonio::geojson_read("data/atropelamenos.json", what = "sp")
#Verificamos o objeto
parqs
## class       : SpatialPolygonsDataFrame 
## features    : 1997 
## extent      : -51.27422, -51.06018, -30.24154, -29.9684  (xmin, xmax, ymin, ymax)
## crs         : +proj=longlat +datum=WGS84 +no_defs 
## variables   : 7
## names       : box_id,     ID, UPS, Acidentes.x,  id.x,           Area.y, Acidentes.y 
## min values  :      1, 601042,   1,           1,    11,                0,           1 
## max values  :   1997, 683118,  98,          18, 21967, 15458.6635937032,          18
dim(parqs)
## [1] 1997    7
library(raster)
projection(parqs)
## [1] "+proj=longlat +datum=WGS84 +no_defs"
library(mapview)
mapviewPalette(name = "Viridis")
library(RColorBrewer)
mapview(parqs, zcol = "Acidentes.x", col.regions=brewer.pal(9, "YlOrRd"))

Acidentes por m2

parqs@data$Area.y = ifelse(parqs@data$Area.y== 0, 1, parqs@data$Area.y)
parqs@data$densidade = (parqs@data$Acidentes.x/parqs@data$Area.y)*1000000
parqs@data$densidade = ifelse(is.infinite(parqs@data$densidade), max(is.infinite(parqs@data$densidade))*2,parqs@data$densidade)
mapview(parqs, zcol = "densidade", col.regions=brewer.pal(9, "YlOrRd"))

Acidentes por poligono

hist(parqs@data$Acidentes.x, col = "magenta")
A caption

A caption

Acidentes por KM2

hist(parqs@data$densidade, col = "orange")
A caption

A caption

Locais mais densos

quantile(parqs$densidade, probs = 0.99)
##   99% 
## 4e+06
temp = parqs[parqs$densidade > quantile(parqs$densidade, probs = 0.001), ] # Atualziar
mapview(temp, zcol = "densidade")

1.10 Calculando a matriz de vizinhanças

projection(parqs)
## [1] "+proj=longlat +datum=WGS84 +no_defs"
parqstemp = parqs
require(sf)
shape <- read_sf(dsn = ".", layer = "mercator_32722_2014_2019")
projection(shape)
## [1] "+proj=utm +zone=22 +south +datum=WGS84 +units=m +no_defs"
projection(parqstemp) = projection(shape)

ccods = coordinates(parqs)
temps = as.data.frame(ccods)
cord.dec = SpatialPoints(cbind(temps$V1, temps$V2), proj4string=CRS("+proj=longlat"))
cord.UTM <- spTransform(cord.dec, CRS("+init=epsg:32722"))
ccods = as.data.frame(cord.UTM)
points = cbind(ccods[,1],ccods[,2])
head(points)
##          [,1]    [,2]
## [1,] 494209.3 6655520
## [2,] 491755.2 6665357
## [3,] 491511.9 6664381
## [4,] 491444.5 6665696
## [5,] 491359.6 6654897
## [6,] 491264.4 6665761
library(spdep)
distNeighbors = 400
dnb = dnearneigh(points,0,distNeighbors)
class(dnb)
## [1] "nb"
subsets = as.data.frame(matrix(dnb))
class(subsets)
## [1] "data.frame"
subsets = subsets$V1
lengths(subsets)
##    [1]  1  1  1  1  1  1  3  3  1  1  2  1  4  4  3  4  3  3  3  3  2  3  3  4
##   [25]  1  4  3  2  5  4  4  2  6  7  2  7  3  3  1  6  2  7  3  6  6  4  7  3
##   [49]  3  8  8  8  3  2  9  1  7  4  7  5  8  1  8  8  2  7  5  6  6  4  9  9
##   [73]  4  9  8  3  6  6  3  3  6  5  6  4  8  4  4  7  1  8  5  4  1  4  7  5
##   [97]  8  8 10  2  5  4  3  4  4  5  4  9  8  5  5  3  3  4  2  7 10  1  1  3
##  [121]  8  9 11  6  3  3  3  4  8  1  6  2  7  3 10  6 12  4  1  4  2  3  9  9
##  [145]  3  4  4  5 11  5 12  5  3 13 12  1  4  6  6  5  3 13  5  8 13  3  1  5
##  [169] 12  3  4  1 11  6  5  1  3  4  4  4  7  5 10  1  7  1  3  4  4  1  8  1
##  [193]  3  6  5  1  9  5  4  7  2  1  5  7  5  5  5  4  1  6  4  1  5  6  3  3
##  [217]  2  4  6  3  5  6  5  3  6  1  4  3  6  5  3  3  4  4  8  5  6  6  7  7
##  [241]  5  3  1  2  3  4  3  2  3  2  3  1  5  2  2  8  5  1  1  3  2  6  4  3
##  [265]  6  3  2  6  3  4  6  6  4  5  1  2  4  1 11  5  2  4  4  1  3  8  5  2
##  [289]  1  1  6  3  4  1  2  1  1  4  1  6  5  2  5  2  1  3  6  6  7  1  7  8
##  [313]  7  5  5  5  5  1  5  1  7  4  7  5  2  4  1  5  1  8  8 10  2  1  4  5
##  [337]  3  6  3  6  5  2  3  3  9  6  5  2  4  2  4  5  8  8  3  1  1  5  1  5
##  [361]  5  7  3  1  6  3  3  6  5  3  2  3  4  5  5  7  6  5  2  7  7  8  6  2
##  [385]  2  7  9  2  8  6  7  1  3  2  7  8  8  8  4  9  3  9  1  8  6 10  4  3
##  [409]  4  9  5  7  6 10  7  5  5  1  2  5  2  4  1  5  3  5  4  1  7 11  4  9
##  [433]  3  2  7  8  6  4  3  5  5  1  2  5  8  1  4 10 10  3  3  9  3  3  8  6
##  [457] 11  4  6  4  1  9  9  5  1  3 10  1  3  7  5  7  7 10  9  1  4  5  2  4
##  [481]  3  5  2  7 10  1  2 12  5  1  4  1  4  4  7  2  5  9 12  4  5  5 14  5
##  [505] 11 13  7  4  1  3  7 12  5  1 13  7  5  8 13  2  3  5  1 11  6  6 12  4
##  [529]  9  1  3 13  6  3  3  4 12  4 10  1  6  7  4  3  4  8 12  7  2  2  5  4
##  [553] 10  4  1  2  7 11  4  4  2  8  2  3  1  1  3  4  6  8  1  2  5  1  2  1
##  [577]  2  2  7  3  1  5  3  8  1  4  6  6  4  8  9  2  8  3  6  3  8  6  3  5
##  [601]  3  7  8  4  9  9  4  4  4  5  7  6  6  1  2  9  8  3  8  5  4  6  3 10
##  [625]  1  1  3  4  2  8  9  5  3  9  8  8 10  1  3  9 13  3  2  5  5  2  7  4
##  [649]  2  3  8  4 12  6  2  2  1 13 10  3  7  4  2  8 12  9  3  2  8  5 11  8
##  [673]  8 12  4  9  7 10  7  5  7  9 13  6 12  8  6  7  6 10  8  5  8  6  4  8
##  [697]  5  5 10 11 10  5  6  9  6  8  2  5  6  8  9  1 10  6  8  1 11  3  3  8
##  [721] 11  7  4 10  2  6  9  6  8  8  9  1  4  4  9  8  7  5 10  1 10  9  5  9
##  [745]  9  7  5  4 10  5  4  7  9 10  2  6  5  5  5  6  5  6 10  8  5  4  8  9
##  [769]  4  3  1  7  8 12  8  7  4  5  4 11  2  7  7  3  5  6  5  8  5  9 12  8
##  [793]  7 10  5  1  8  7  3  6 10 11  7 10  7  9  9  3 10  7  6 11  3 10  2  4
##  [817]  9  9  4  5  5  4 11  6  4 10  1 12 12  7 13  4 10  8  4  3 10  4 11 14
##  [841]  6  3  7 11 11 11  4  6  9  6  9 12  5  9 13 10  6  2  6  3 12 11  5 10
##  [865] 15 12  4  8 10 13  8  2 13  1 11  4  7 13 10  7  3  6 11 10  7 10 11 12
##  [889]  8  8  8 11  9  3  1  8  7  3 10  4  5  7 10  7  9  2  6  9  8 14  4 10
##  [913] 10 12 10  8  2 13 11  7 12  8  3  9  1  4 12  3  9 10  9  6  6 11  2 13
##  [937] 13  9  3  7  7  8  4  3 13  9  7 11 15 12  4 10  4  5  6 14  5  7 10 11
##  [961]  8  5 10  5  1  6 11  4 10 16 11  4 12  3  9  9 16 17 17 10 19  9  2  8
##  [985] 13  8 12  1  5  3 18  1 14  8  7  1 16 19 18 21  6 14 20 19  8 13 22  6
## [1009]  8 15 12 13 15 20 20 12 11 11 16  6 19 18 15 25 25 14  5  8  7 14 16  5
## [1033] 13 21  6  5 18 14  9 17  3 14 11 14  5  5 14 19 16 14 13  4  5 15 10 18
## [1057] 18 13 15 20 13 15 13  7  9 18 16 10 17 10 12  5 12  3 16  9  9 17  3  6
## [1081] 15  5 10 13  5  1 14 18 15  8 15 19 10 11  5 14  7 12  4 18 12 18 11 17
## [1105]  7  3 14  8  4 17  1  3  6  6 15 11 21  7 20  4  6 17  7  3 19 12 10  5
## [1129] 19  6  8  2 10 19  4  4 11 10  3 12 11  6 13 16 14  6 11 14  7  3 17 11
## [1153]  1  3  4  2  5 18 13  1  5  7  4 21  5 15 19 18  4 20  5  9  6 15  3  6
## [1177] 23  7 15 12  6 21  4 11 12  4 17 15  5  4 10 10  6 15  1 25 13  4  6 25
## [1201] 15 27  5 18  3  9  6  4 26 18 11 23 20 11  3  4 25 12 10  6  1  5  2  2
## [1225]  4  1  8 29  1 13 26 24 20  5  7  7  4  3 17  4  7 15  5  5 23  5 26 13
## [1249] 13 13  8 27  7  5  7  1 22  5 19 13  9 27  7  3 13 25  7 17  4 13 27 15
## [1273] 11  6 11  8 23 26 29 11  9 16  6  9 26  3 13 13  6 14 17 10 12  7  2  5
## [1297]  6  8  6  4 11  5  1 12 27 20 12 11 11  7 16  7 18  8  8 22  9 22  8 11
## [1321] 22  8  5  4 11  4 11  3  6 16  8 16  9 11 10  7  7 12 14  9 13  2 21  2
## [1345] 11 12 10  3 10  6 15  1  9  7  2  5 16  6  2  5  2  1 15 13 10  9  6 12
## [1369]  9 10 16 12 10  5  8  8  7 12  6  9  5 14  8  9  5  7 11  3  9  1  5 10
## [1393]  9  7 10  5  1  8  5  4  4  1  6  6  6  6  5  3  7  1  6  1  2  1  5  4
## [1417]  4  6  4  4  6  5  3  1  1  2  2  2  2  3  3  1  1  1  4  2  3  5  5  3
## [1441]  5  4  4  1  1  1  7  5  6  4  2  1 17  4  1  6  7  8  2  1  3  8  8  9
## [1465]  9  7  8  5 10  7  2  2  1  4 10 16 10  5  8 11  8  5  4  9  6  9  8 15
## [1489]  4  9  8  9  5  8 17  5  5 18  6 12  6 10  9  1 13 14  5  1  1  4  5  3
## [1513] 10  9  9  9  4  1  1  6  5  4  1  1  1  3  2  2  4  1  8 16  1  4  4  1
## [1537]  9  2  2  5  1  8  7  7  2  4  3  6  5 23 19  4  1  1  6  5  2  9  9  3
## [1561]  9  4 17  8  8 14  9  2  6  4  5  6  8 16 17 14  8 11  2 10  2  1  1  5
## [1585]  1  3  2  9 15  7  8  4  5 10 14  3  3  6 12  1  6  6  2  2  2  6  7 19
## [1609] 13 21 10  6  4  8  5  4  3  8  8  3 19 17 20  4  1  5  7  5 31 10  9  5
## [1633]  5  4  7  7  9  6  3  3  3  6  2 17 16 11  6  5  9  4  2  5  2  8 14  6
## [1657] 12 12 13  7  3  8 10 18  3  4 16 23  8  4  6  4  6  6  4  6  6  2  6  7
## [1681]  4  4  5  9  8 11 24  2  5 18 19 18  3  3  1  2 10 10  9  1  6 29  6  8
## [1705]  4  7  4  6 10  3  6  4  4  8  9  4  5 10 22  1 27  1 25  3  5  5  5  4
## [1729]  3 12 17  5 14 14 10  7  2  4  4  7 11  6  6  5  7  4  4  3  5  3  1  1
## [1753]  3  2 10 20  1  7  5  5  1  1 11  9  9  3  3  5  3  6  7  7  3  1 11  3
## [1777]  1  5  6 14 25  5  6 11  5  1 19 10  9 15 23  1  1 10  6  7  7  2  6  2
## [1801]  3  4  4  4  5  4  5  5  2  7  6  9 12  5  1  1  4  3  3 27 11  9 13  6
## [1825]  4 18  8  8  1 11  8 26  5 11  5  9  2  3  4  2  8  5 19  3  6  6 31 11
## [1849]  4  9 12  5  5  5  8  3  6  7  5  8 13  4  3  5  5  6  3  5  2  5 17 10
## [1873]  5  8 14  3  3 14  5 11  8  7  2  7 17 23  2  7 12  2  4  8  6  6 24  7
## [1897]  7 13  4 13  1 17  5  2  9  4  3  7  2  4 10  7  5  8  6  7  4  4 13  1
## [1921]  7  4  1  5  3  1  6  7  2  8  9  6  3  5  3  7  2  4  9  5  6 15  5  6
## [1945]  3  3  2  5  6 10  3  1  8  1  3  7  9  8  5  4  4 11  7  4  1  3  3  4
## [1969] 10 21  7  5  8  6  7  5  4 10 12  4  6  5  4 14  2  8 10  7 13 13  6  1
## [1993]  1  9  1  1  1
parqs$n = 1
sub = which(subsets == '0')
sub
##  [1]    1    2    3    5    9   89   93  119  130  156  167  176  186  192  196
## [16]  209  226  252  258  259  284  290  294  296  305  310  318  320  357  364
## [31]  403  423  442  476  509  530  540  555  566  581  638  657  712  740  771
## [46]  796  895  965  988  996 1226 1229 1303 1352 1412 1433 1444 1446 1455 1460
## [61] 1504 1518 1536 1553 1582 1625 1695 1751 1752 1757 1777 1829 1901 1920 1923
## [76] 1926 1954 1965 1992 1993 1995
parqs$n[sub] = 0
length(parqs)
## [1] 1997
parqs = parqs[parqs$n > 0,]
length(parqs)
## [1] 1916
length(dnb)
## [1] 1997
#dim(ccods)
ccods = ccods[-sub, ]
dim(ccods)
## [1] 1916    2
points = cbind(ccods[,1],ccods[,2])
head(points)
##          [,1]    [,2]
## [1,] 491444.5 6665696
## [2,] 491264.4 6665761
## [3,] 491250.8 6680878
## [4,] 491249.7 6680562
## [5,] 491218.8 6678609
## [6,] 491176.7 6678722
#dnb = dnearneigh(points,0,2000)
dnb = dnearneigh(points,0,distNeighbors)
dnb
## Neighbour list object:
## Number of regions: 1916 
## Number of nonzero links: 13960 
## Percentage nonzero weights: 0.3802721 
## Average number of links: 7.286013
length(dnb)
## [1] 1916

1.11 Matriz de Vizinhanca

1.11.1 Matriz Binária

W.Bin= nb2mat(neighbours = dnb, style = "B")
#parqs <- parqs[!sub,]

1.11.2 Matriz Normalizada

W.Normal= nb2mat(neighbours = dnb, style = "W")
#head(W.Normal)

1.12 KNN

vizinhos_4 <- knearneigh(points, k = 4)
class(vizinhos_4)
## [1] "knn"
head(vizinhos_4$nn)
##      [,1] [,2] [,3] [,4]
## [1,]    2   13   14   21
## [2,]    1   13   14   21
## [3,]    4   12    8   29
## [4,]    8    3   10   12
## [5,]    6   26   16   40
## [6,]    5   16   26   40
vizinhanca_4 <- knn2nb(vizinhos_4)
class(vizinhanca_4)
## [1] "nb"

Preparação para Análisis Global e Local

mv_simpl = st_as_sf(parqs)
plot(mv_simpl)
A caption

A caption

class(mv_simpl)
## [1] "sf"         "data.frame"
library(dplyr)
mv_simpl =  mv_simpl %>% dplyr::select(Acidentes.y)
#mv_simpl <- st_simplify(mv_simpl, preserveTopology = FALSE,                  dTolerance = 1)
class(mv_simpl)
## [1] "sf"         "data.frame"
mapview::mapview(mv_simpl)
sf::sf_use_s2(FALSE)#trips and tiks
## Spherical geometry (s2) switched off
mv_simpl = st_as_sf(mv_simpl)
vizinhanca_neig <- poly2nb(mv_simpl)
ShapeNEIG = parqs
ShapeNEIG$vizinhos = card(vizinhanca_neig)
ShapeNEIG <- subset(ShapeNEIG, parqs$vizinhos != 0)
#vizinhanca2neig <- poly2nb(ShapeNEIG)

1.13 Calculando o Índice de Moran Global

Os índices de autocorrelção espacial global calculados pelos testes de normalidade e permutação.

1.13.1 Pelo teste de Normalidade

moran.test(parqs$Acidentes.y,listw=nb2listw(dnb, style = "W"), randomisation= FALSE)
## 
##  Moran I test under normality
## 
## data:  parqs$Acidentes.y  
## weights: nb2listw(dnb, style = "W")    
## 
## Moran I statistic standard deviate = 15.384, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      0.2327230669     -0.0005221932      0.0002298601

1.13.2 Pelo teste de Permutação ou Teste de pseudo-significˆancia

 moran.test(parqs$Acidentes.y,listw=nb2listw(dnb, style = "W"), randomisation= TRUE)
## 
##  Moran I test under randomisation
## 
## data:  parqs$Acidentes.y  
## weights: nb2listw(dnb, style = "W")    
## 
## Moran I statistic standard deviate = 15.412, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      0.2327230669     -0.0005221932      0.0002290270

1.13.3 Por simulação de Monte-Carlo

moran.mc(parqs$Acidentes.y, listw=nb2listw(dnb, style = "W"), nsim=999)
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  parqs$Acidentes.y 
## weights: nb2listw(dnb, style = "W")  
## number of simulations + 1: 1000 
## 
## statistic = 0.23272, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater

1.13.4 Pelo teste de Permutação

Diferente dos demais testes globais o teste para o EBI é exclusivo para taxas e tem-se apenas a opção de teste da permutação

EBImoran.mc(parqs$Acidentes.y,parqs$Area.y,
            nb2listw(dnb, style="B", zero.policy=TRUE), nsim=999, zero.policy=TRUE)
## 
##  Monte-Carlo simulation of Empirical Bayes Index (mean subtracted)
## 
## data:  cases: parqs$Acidentes.y, risk population: parqs$Area.y
## weights: nb2listw(dnb, style = "B", zero.policy = TRUE)
## number of simulations + 1: 1000
## 
## statistic = -0.002523, observed rank = 218, p-value = 0.782
## alternative hypothesis: greater

1.13.5 Por simulação de Monte-Carlo

shapeCG.p=parqs$Acidentes.y/parqs$Area.y
moran.mc(shapeCG.p, nb2listw(dnb, style="B", zero.policy=TRUE),
         nsim=999, zero.policy=TRUE)
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  shapeCG.p 
## weights: nb2listw(dnb, style = "B", zero.policy = TRUE)  
## number of simulations + 1: 1000 
## 
## statistic = -0.0012042, observed rank = 344, p-value = 0.656
## alternative hypothesis: greater

1.14 Calculando a Estatística C de Geary Global

1.14.1 Pelo teste de Normalidade

geary.test(parqs$Acidentes.y, listw=nb2listw(dnb, style = "W"), randomisation= FALSE)
## 
##  Geary C test under normality
## 
## data:  parqs$Acidentes.y 
## weights: nb2listw(dnb, style = "W") 
## 
## Geary C statistic standard deviate = 14.151, p-value < 2.2e-16
## alternative hypothesis: Expectation greater than statistic
## sample estimates:
## Geary C statistic       Expectation          Variance 
##      0.7771204829      1.0000000000      0.0002480809

1.14.2 Pelo teste de Permutação

geary.test(parqs$Acidentes.y, listw=nb2listw(dnb, style = "W"), randomisation=TRUE)
## 
##  Geary C test under randomisation
## 
## data:  parqs$Acidentes.y 
## weights: nb2listw(dnb, style = "W") 
## 
## Geary C statistic standard deviate = 12.632, p-value < 2.2e-16
## alternative hypothesis: Expectation greater than statistic
## sample estimates:
## Geary C statistic       Expectation          Variance 
##      0.7771204829      1.0000000000      0.0003112911

1.14.3 Por simulação de Monte-Carlo

geary.mc(parqs$Acidentes.y, listw=nb2listw(dnb, style = "W"),nsim=999)
## 
##  Monte-Carlo simulation of Geary C
## 
## data:  parqs$Acidentes.y 
## weights: nb2listw(dnb, style = "W") 
## number of simulations + 1: 1000 
## 
## statistic = 0.77712, observed rank = 1, p-value = 0.001
## alternative hypothesis: greater

1.15 Calculando Índice de Getis e Ord Global

Getis-Ord é um indicador que mede a concentração local de uma variável de atributo distribuída espacialmente

globalG.test(parqs$Acidentes.y, nb2listw(dnb, style="B"))
## 
##  Getis-Ord global G statistic
## 
## data:  parqs$Acidentes.y 
## weights: nb2listw(dnb, style = "B") 
## 
## standard deviate = 27.349, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Global G statistic        Expectation           Variance 
##       6.848907e-03       3.804706e-03       1.238964e-08

1.16 Getis e Ord Local

localG(parqs$Acidentes.y, nb2listw(dnb, style="B"), zero.policy=NULL, spChk=NULL, return_internals=FALSE)
##    [1] -0.149944552 -0.642995490 -1.114843481 -1.114843481 -0.643318808
##    [6] -0.212109036 -0.149944552 -1.287647140 -1.286999997 -0.829844780
##   [11] -0.546433592 -1.114843481 -0.829844780 -0.829844780 -0.829844780
##   [16] -0.560296379 -0.543911183  0.026042259 -0.547005087  0.343429704
##   [21] -1.286999997 -1.114283186 -0.909228921 -1.219135491  0.440517649
##   [26] -0.546433592 -0.910027944  0.237280077 -1.144422932 -0.910027944
##   [31] -1.517964762 -0.259847379 -0.829844780  0.343429704 -0.365900079
##   [36]  0.136850418 -0.770881102 -1.114843481 -0.972085521 -1.174499522
##   [41] -1.039654915 -0.768052251 -1.114843481 -0.829844780 -1.298654879
##   [46] -1.472528414 -1.298654879 -0.829844780 -0.910027944 -0.285973843
##   [51]  0.343652237 -1.144422932 -0.547005087 -1.143623399 -1.440010086
##   [56] -1.298654879 -0.643318808 -1.298654879 -1.822000705 -0.910027944
##   [61] -1.702815374 -0.998260896 -1.174499522 -1.174499522 -1.287647140
##   [66] -1.109988151 -0.945185289 -0.793885771 -1.109988151 -1.123056124
##   [71] -0.544846080 -0.771133922 -0.771133922 -0.829313594 -1.114843481
##   [76] -0.569451122 -0.998260896 -0.971477986 -0.547005087  0.623639059
##   [81] -1.039654915 -1.040766456 -0.955675624 -0.599638902 -0.335637112
##   [86]  0.440517649 -0.793289061 -0.583367884 -1.217888167 -0.421555623
##   [91] -0.599638902  0.463804714 -0.909570584  0.547861266 -1.039072111
##   [96]  1.166573123 -0.793885771 -1.286516559 -0.554823272  0.194132812
##  [101] -0.119612695  0.274131070 -0.114762518 -0.555878229 -0.259847379
##  [106] -0.259847379 -1.286196668 -0.910027944  0.723286216  0.307433935
##  [111] -0.643318808 -0.259847379 -0.599638902 -0.117387696  0.247126279
##  [116] -1.172691848 -0.259847379 -1.113587664 -0.259847379 -0.793885771
##  [121]  0.973147047 -0.971477986 -0.910027944 -0.770881102 -1.114283186
##  [126] -0.470995432 -0.367768322  0.050421452 -1.287647140 -0.643318808
##  [131] -0.300124403 -0.910027944 -0.259847379 -0.780382428 -0.780382428
##  [136] -0.258934462 -0.545499008 -1.040766456 -0.998260896  0.097978210
##  [141] -1.440010086  0.621765129 -0.776730264  0.310150022  0.418543128
##  [146] -0.235250386 -1.286999997 -1.576479724 -0.972816722 -1.219135491
##  [151] -0.828887905 -0.127744452 -1.440010086 -0.947613719 -0.540430178
##  [156] -1.114843481 -0.998260896 -0.090617367  0.310150022 -0.299578124
##  [161]  0.343918452  0.549043963 -0.972816722  0.107257197 -0.828887905
##  [166] -0.052722656 -1.039654915  0.687398333  0.351082736 -0.113600364
##  [171]  1.244969212  0.836803960  0.349744387 -1.113864626 -0.546433592
##  [176] -0.547005087  0.343429704  1.149272488 -0.829844780  0.038786327
##  [181] -0.335637112  2.186069081 -0.776730264 -1.286999997  2.220971755
##  [186] -0.909570584 -0.149944552 -0.997030607  1.847297453 -0.556511707
##  [191]  0.768735861 -1.438387984 -0.547005087 -0.568761120 -1.040766456
##  [196] -0.643318808 -0.555315485 -0.568761120 -0.544344003 -0.259847379
##  [201] -0.910027944  1.428040385  2.258987361 -0.258527369 -0.777386302
##  [206]  1.851185285 -1.219135491 -1.114283186  0.035597277 -0.547005087
##  [211]  0.595148723  0.845155714  3.860980185 -0.829844780 -0.829844780
##  [216] -0.052208337  1.674921069 -0.067745361  2.756607212  1.850742476
##  [221] -1.375409921  2.777766280  2.777766280 -0.997582299 -0.544846080
##  [226] -0.643318808  0.137568704  0.025595180 -1.040766456 -1.114843481
##  [231]  0.485809871  0.595148723  0.485809871 -0.543252778 -0.777386302
##  [236]  0.487440470 -0.211363837 -0.243980257 -0.111446730 -1.113452323
##  [241] -0.561068490 -1.174499522  3.403854685 -0.829844780  0.842328477
##  [246] -0.829844780  1.184366330 -0.972816722 -1.114283186  3.896847225
##  [251]  0.640645677 -0.972816722 -1.040144529 -1.439286369 -0.643318808
##  [256] -0.909228921  1.674921069 -0.642995490 -0.647762138 -0.775354392
##  [261] -0.561068490  0.200489988 -1.286999997 -0.829844780  1.497409031
##  [266] -1.219135491  0.485809871 -0.149944552 -1.577865122  0.596532927
##  [271] -1.040766456 -0.909570584  4.783798008  0.194132812  0.343429704
##  [276] -0.771133922  0.327529911 -0.212109036 -0.556511707 -0.909228921
##  [281] -0.829313594  0.846132158 -0.166085522 -1.515832366  1.843911705
##  [286] -0.599638902  1.657654177 -0.335637112 -0.335637112 -0.997582299
##  [291] -0.997582299  0.989610455  1.098108780  0.444187196  1.471621802
##  [296]  0.326986671 -0.910027944 -0.793885771 -0.149417754 -0.998260896
##  [301]  0.345423048 -0.074639252  0.099377076  1.089287832  0.486124663
##  [306]  0.343918452 -1.287647140 -0.998260896 -0.259374411  0.237280077
##  [311]  0.025151321 -1.577865122 -0.335637112  0.137568704 -0.543911183
##  [316] -0.543252778 -0.780382428 -0.566393506 -0.114174159 -0.910027944
##  [321] -1.287647140 -0.910027944  1.675823174 -0.554050024  2.720686991
##  [326]  2.720686991 -1.114843481  0.836976101 -0.775354392 -0.643318808
##  [331]  0.547861266  0.547861266  0.723286216 -1.114843481  0.842874283
##  [336]  1.450925865  0.026042259  1.447376877 -0.556511707  0.027404550
##  [341] -0.212109036 -0.259847379 -0.053243719 -0.335637112  1.652234239
##  [346]  1.843911705 -0.166085522  3.419230996  1.532688233  2.964537195
##  [351]  2.594646058 -1.473408874  0.035597277 -0.910027944 -0.909002841
##  [356]  1.659313504  1.698508236  0.137954120 -1.122354236  1.059213857
##  [361] -0.770881102 -0.643318808  0.880147423 -0.212109036 -0.023112369
##  [366]  3.943964952 -1.473408874 -1.473408874 -1.039654915 -1.932304366
##  [371] -1.114843481 -1.604396735  3.778486555  2.660944636 -1.726379085
##  [376] -1.287647140 -1.114843481  4.149465278  3.855200604 -0.555315485
##  [381]  2.404224450  1.450418688  2.655099239 -1.331193847 -0.998260896
##  [386] -0.998260896 -0.643318808 -0.211363837  0.547861266 -0.561068490
##  [391]  0.687398333 -0.997582299 -0.829844780 -0.114762518 -1.287647140
##  [396] -0.643318808  3.907550604  1.143639942 -1.287647140  2.845764367
##  [401] -1.114283186 -0.211363837  0.349744387  1.152428598  3.665887675
##  [406] -1.287647140 -0.544846080 -1.440010086 -0.335637112 -0.561068490
##  [411] -0.335026194  1.847458347 -0.643318808 -0.053243719  2.029505263
##  [416]  1.244969212  0.025595180 -0.829844780  0.543391656 -0.829313594
##  [421]  0.310150022 -0.424884907  0.441647065  1.742651671 -0.792103873
##  [426]  1.045194473 -0.300124403 -0.643318808  1.198708520  2.358574853
##  [431]  2.536050260 -0.643318808 -0.543911183  1.566525791 -0.643318808
##  [436] -0.829844780 -0.956871561  1.874979686 -0.770881102 -0.584110187
##  [441]  2.026902975  3.014250105 -0.053243719  0.106677876 -0.560296379
##  [446] -0.547005087 -0.259847379 -1.439286369 -0.211722960  2.030682620
##  [451]  3.747591083 -0.149671627 -0.561068490  2.052963614  1.874979686
##  [456] -0.643318808 -0.793885771 -0.149671627 -0.791910263 -0.793885771
##  [461] -1.329725862 -0.561068490 -0.335026194 -1.109988151  1.627330725
##  [466] -0.793885771 -0.998260896  1.214292969  2.094112318  2.314858023
##  [471]  1.591049643  3.164519392 -0.957652017  1.675265621 -1.114843481
##  [476] -0.957652017  3.483298614  0.548972318 -0.643318808  2.889374028
##  [481]  0.723286216  1.879003414  1.673494039  3.166944096 -0.910027944
##  [486] -0.829844780  2.535732618 -0.642516042  2.186051184  0.640645677
##  [491] -1.173747721  2.195810257 -0.052722656  1.860220954 -1.114843481
##  [496]  1.524256082 -0.972816722 -0.829844780  0.885005196 -0.793289061
##  [501]  1.339999996 -0.300124403 -0.162511560 -1.173145232 -1.331193847
##  [506] -1.287647140  0.595148723  0.690502399 -1.473408874  0.621765129
##  [511] -0.957652017 -0.910027944 -0.561068490  0.990086016 -0.300124403
##  [516]  1.245658611 -1.039297448 -0.910027944 -0.957652017 -1.093408565
##  [521] -0.053243719 -0.053243719 -0.560646772 -0.073192285 -0.910027944
##  [526] -0.829313594 -0.643318808 -0.829844780 -0.052722656 -0.569451122
##  [531] -0.424111542 -0.643318808 -0.561068490 -0.775354392  0.343429704
##  [536] -0.910027944 -0.643318808 -0.910027944 -0.910027944 -0.395943308
##  [541] -1.114843481 -0.998260896  0.595148723  0.099377076 -0.643318808
##  [546] -0.793885771 -0.367768322 -1.174499522 -1.287647140  0.099377076
##  [551]  1.033118049 -0.910027944 -0.424884907 -0.544846080 -0.970395961
##  [556] -0.829313594 -0.073911133 -1.577865122 -1.114843481 -1.440010086
##  [561] -1.114843481 -0.584110187 -1.123900885 -1.286516559  2.021834222
##  [566]  1.530498340 -0.793885771 -1.040766456 -1.040766456 -0.556511707
##  [571]  2.964537195  0.438962877 -0.771133922 -0.643318808 -0.910027944
##  [576]  1.203458273 -0.250130913 -0.829844780  0.274131070 -0.996307317
##  [581] -0.300124403 -0.569451122  0.025151321 -0.314405805 -0.643318808
##  [586] -0.643318808 -1.114843481 -0.546433592 -0.561068490 -0.250130913
##  [591] -1.274791012 -0.998260896  0.311018980 -0.945185289 -1.123900885
##  [596] -1.473408874  3.133460703 -0.543911183  2.680477666  0.284091617
##  [601]  1.450144824 -0.212109036 -0.998260896 -0.334457925 -0.909570584
##  [606]  2.031157854 -1.040144529  0.485809871 -0.544846080 -1.647264560
##  [611]  0.935238240  2.916288461 -1.173145232 -0.910027944 -0.910027944
##  [616]  0.284091617  0.463035450 -1.114843481  1.470369876  0.935896312
##  [621] -0.211363837  1.147901042  0.481650536  2.683002683 -0.544846080
##  [626] -0.910027944  2.021671014 -1.219135491  0.545422418  1.151229340
##  [631]  2.545932997 -0.659785160 -0.051700568  1.364480802  0.539437394
##  [636]  1.560309780  1.096828046 -1.219135491 -0.396616045  1.200775725
##  [641]  0.144006361  2.455790876  0.052207537  3.070194980 -0.771133922
##  [646] -0.957652017 -0.971477986  1.246506355 -0.250130913 -0.335637112
##  [651]  1.498753522  1.044011277 -1.039072111  0.291107091 -0.998260896
##  [656] -0.998260896  0.620175493  0.545422418  3.747157252 -1.217888167
##  [661] -0.367768322  1.197251911 -0.166085522 -0.422726515 -0.910027944
##  [666]  3.864657046 -0.970395961  0.973147047  3.010083389  0.308258205
##  [671]  0.842328477  0.099377076  0.343429704  0.396274349 -0.544846080
##  [676] -0.829844780 -0.075376919  0.844489019  0.162973472 -0.547005087
##  [681] -0.943532301 -0.910027944 -0.567598022  0.707254410 -0.569451122
##  [686] -1.648162868  3.943964952  3.504491974 -0.643318808 -0.547005087
##  [691] -0.547005087 -1.604396735 -0.599638902  1.843911705 -0.554823272
##  [696]  0.162278595 -1.256273860  2.350871942 -0.998260896 -1.437005191
##  [701]  2.022659279 -1.142969351  1.431359645  1.181554685  2.184754506
##  [706] -0.997030607 -0.300124403  0.910057131  0.208434742  0.778317310
##  [711] -0.910027944 -1.174499522  0.326986671 -0.997030607 -1.219135491
##  [716] -1.174499522  0.326986671 -0.367768322  2.184754506 -0.772873201
##  [721] -0.114762518 -1.286999997 -0.250130913  1.033918368 -1.286999997
##  [726] -0.829844780 -0.955008401  1.147901042 -0.231752324  0.799041475
##  [731]  1.284150500 -1.040766456 -0.333932094 -0.300124403 -0.498614069
##  [736] -0.910027944  0.537143147  0.723286216 -0.829313594 -0.777386302
##  [741]  0.640645677 -0.335637112 -0.246668487 -0.775714450  1.692262165
##  [746] -0.092414467 -1.121794975  0.350391308  2.030889518 -0.114762518
##  [751] -0.772873201  0.164326225 -0.829844780  0.842328477 -0.631671818
##  [756]  0.547093673 -0.770119722 -0.786364638  2.964917046 -0.121170981
##  [761] -1.109988151 -0.829313594  1.570850805 -0.957652017 -0.770423320
##  [766]  2.484347323 -1.114843481 -0.631671818  0.136850418 -1.287647140
##  [771]  0.702843327  1.693078975  0.193636965 -0.777386302  0.107850262
##  [776]  0.193636965 -1.390568562 -0.567598022 -1.040766456 -0.631671818
##  [781] -0.643318808 -0.663758144 -0.663758144  0.349744387  0.556686495
##  [786] -1.040766456  1.245658611 -0.948319978 -1.040766456 -0.544846080
##  [791]  0.468542331 -1.287647140 -0.647762138  0.232819849 -0.166085522
##  [796] -0.544846080 -0.395943308 -1.244354416 -1.244354416 -0.647762138
##  [801] -1.286516559 -0.367768322  2.686395466 -0.367768322  1.197904078
##  [806]  0.768453698  0.326986671  0.538040465 -0.405067172  2.808836737
##  [811] -1.577865122 -0.910027944  0.439549882 -1.114843481  0.050421452
##  [816] -0.349465999 -0.776730264  1.406509943 -1.094296969 -1.090391692
##  [821] -1.287647140  0.277149495 -0.002859257  0.418543128  0.448885064
##  [826] -0.910027944 -0.815857135 -0.643318808  0.994503375 -1.287647140
##  [831] -0.957652017  0.144006361 -0.475285065  2.035645922  0.026946767
##  [836] -1.577865122 -1.241367598  2.184754506  0.910057131  0.619422202
##  [841] -1.244354416  0.910190466  0.103105784 -1.298654879  0.799041475
##  [846]  1.142014697  0.373237603 -0.829844780  0.624305330  0.723894985
##  [851] -1.114843481  1.403911286 -0.547005087  0.106112077  2.032883379
##  [856] -0.475285065  0.351082736  2.030663101 -0.910027944  1.246198684
##  [861] -0.285973843  2.197715591  0.233822638 -1.040766456  1.089287832
##  [866]  0.308258205  0.337857344  0.777382280  1.672722202  1.532688233
##  [871]  0.697054402  0.993621855  1.852316743 -0.233442271  3.076187090
##  [876] -0.829844780  1.363498672 -0.643318808 -0.547005087  0.340828040
##  [881] -1.114283186 -0.117387696  1.245658611 -0.611724924  0.036225481
##  [886]  1.045194473 -0.646839339 -0.910027944  0.831195221 -0.266839683
##  [891]  1.032449050  0.880972423  0.164326225  1.102352516  2.545932997
##  [896] -0.792793271 -1.114843481  0.555811511 -0.121170981  2.031891334
##  [901]  0.846352273  3.892131900  2.479273881 -0.298599788  1.716708274
##  [906]  0.937571176 -1.219135491  0.640645677  3.158136548 -0.776730264
##  [911] -0.582105748  1.402029391  1.441913076  0.975410405 -0.335637112
##  [916]  0.463035450 -0.114174159  0.035597277  1.447326318 -0.545499008
##  [921]  0.463035450  4.230639144  0.995511541 -1.286999997  1.764452483
##  [926]  1.450144824  3.840894415  1.032449050  4.599271737  3.464743193
##  [931]  4.431894416  1.714129470  1.847350161  1.203458273  0.138357261
##  [936]  1.677090005  0.558648996  0.800643290  0.911340272  0.550363162
##  [941]  0.595148723  1.346753629 -0.149944552  1.026618088  1.672163025
##  [946] -0.584110187  2.994120149  3.569928551  0.653331774  1.583105298
##  [951] -0.771133922  0.762018675  2.986986022  3.562478924 -0.949146891
##  [956]  1.110389622  2.571664588 -0.569451122 -0.424111542  3.017205543
##  [961]  1.907988560  2.203032111  2.103972504  2.430532889  2.097912321
##  [966]  2.478632079  0.545422418  0.545422418  1.136015254 -0.569451122
##  [971]  4.349081509  4.034054095  1.846417492  2.721010476  2.721010476
##  [976]  1.818622172  0.550363162 -0.948319978 -1.515771270  0.503279225
##  [981]  3.980186252 -0.556511707  0.694889996  2.448857178 -0.569451122
##  [986] -0.776730264  0.183117032  2.483259990 -1.109100327  0.582892313
##  [991] -0.258934462  1.028996619  2.633495392  4.332510467 -0.998260896
##  [996] -0.998260896  2.224237258  0.596484486  0.514354909  2.217315446
## [1001]  2.752105644 -0.792793271 -0.335637112  0.060444782 -1.411863406
## [1006]  2.515687903  1.001072320  1.799148995  0.314110444  2.430532889
## [1011]  3.987521094  0.825499604  3.987521094  0.723286216  1.034850332
## [1016]  1.355096949  2.374751851 -0.318049183  4.185728039 -1.256273860
## [1021]  3.195736761 -0.556511707  1.910116970  0.310150022  3.013467500
## [1026] -0.945185289 -0.945185289 -0.617683783 -0.829844780 -1.577865122
## [1031]  2.233161074 -0.335637112 -0.788058570 -1.088695278 -1.440010086
## [1036] -0.643318808  1.157921619  2.282093104 -0.069431426 -0.946562289
## [1041]  3.254598115  2.648961104  2.813100586 -0.349465999 -0.556511707
## [1046]  0.627832979 -0.023797443  2.480230898 -0.300124403  4.266986881
## [1051] -0.520922225  2.047609609  0.545422418  3.366520396 -1.144422932
## [1056]  1.165146124  2.881992276 -0.250130913 -0.300124403  1.902609359
## [1061] -0.149417754  0.310150022 -1.174499522 -1.174499522  5.301963075
## [1066]  1.890467147  3.750523081 -0.769456330  3.872651047 -0.544841486
## [1071] -0.569451122  4.185728039 -0.209186797 -1.113587664  3.556867738
## [1076]  1.053037110 -0.944445322  0.547861266  3.665571186 -0.166085522
## [1081]  0.974531971 -0.910027944  0.151883513  2.870785712 -0.793885771
## [1086] -1.040766456 -0.796910208 -0.631671818 -0.259374411 -1.092265901
## [1091]  0.100555935 -0.165436719  3.321742429  2.493601277  1.289382530
## [1096] -1.174499522 -0.048603333  2.222079962 -0.395943308 -1.113864626
## [1101]  3.487126647  2.789050387 -0.149944552 -1.113458789  3.156205173
## [1106]  0.137200851 -0.335637112  3.571788937  3.308357064 -0.149671627
## [1111]  0.989610455 -0.023797443  0.193636965  5.374095562 -1.439286369
## [1116]  1.465960573  4.235366448  3.450067098 -1.287647140  5.536880380
## [1121] -0.114762518 -0.945185289 -0.367098919  4.531956212 -1.114283186
## [1126] -0.367768322  4.567169526  0.536515302  2.742138932  3.480005223
## [1131] -0.568143494  5.049381066 -1.040766456 -0.050307996  0.621765129
## [1136]  0.193636965  6.595616025  5.298560555 -1.438413492 -0.793885771
## [1141]  1.247512792 -0.785667631 -0.367098919  1.851079694 -0.643318808
## [1146]  6.697377562  0.144006361 -1.040144529 -0.771133922  8.581604805
## [1151]  4.277376435  9.568644295 -1.219135491  8.484071407 -0.257811285
## [1156]  0.538040465 -0.771133922 -1.286516559  8.989650531  5.438782338
## [1161]  0.247957676  7.773560547  6.754600275 -0.795972175  0.595995702
## [1166] -0.298599788  7.991896299 -0.519092078  0.933756972 -0.771133922
## [1171] -0.643318808 -1.219135491 -0.561068490 -0.561068490 -0.300124403
## [1176]  0.099377076 12.031688336  4.404615135 10.050287020  7.549561045
## [1181]  9.082944251 -1.219135491  0.349744387 -0.956212841  1.428040385
## [1186] -0.544846080  8.492993167 -1.286999997 -1.142969351 -0.197278717
## [1191]  0.107257197 -0.777386302 11.501391598 -0.333448540  7.939710556
## [1196]  0.830348278  1.104885045  0.281274745  0.275569902  8.586496502
## [1201] -0.584110187 -0.335637112 -1.144422932 -0.643318808 10.730167094
## [1206] -1.219135491  9.977932980  0.282177769 -0.282976040  8.052503588
## [1211]  1.098108780 -1.114843481  3.166944096  8.282226177  0.540340229
## [1216]  5.270801207 -1.040766456  0.695927685  9.178050119  0.951417438
## [1221]  1.591049643 -0.165436719  1.590153199  1.673494039  7.260932283
## [1226]  7.916895617 10.461479984  0.250642036  0.538040465  2.742015282
## [1231] -0.365370234  0.538040465  9.763288710 -0.829844780  2.065763728
## [1236]  2.065763728 -0.771133922 -0.292912213  8.398717367 -0.162511560
## [1241]  0.336093291  2.590995365 -0.910027944 -1.219135491  0.842874283
## [1246] -1.646096320 -0.367768322 -1.040766456  0.549043963 -1.219135491
## [1251]  0.907436968  8.106455584  7.375923877  0.907436968  0.694570488
## [1256]  0.250642036 -0.957652017  7.200645431  0.351082736  6.726759332
## [1261]  1.148513766  1.322655036  3.629360447 -1.274791012  4.693580677
## [1266] -1.646096320  0.396274349  6.275546296  1.147901042 -0.776730264
## [1271] -0.051700568 -0.200317929 -1.039297448  1.591049643  2.020142225
## [1276] -0.771133922  2.245941787  2.024013094  2.996374434 -0.121170981
## [1281]  2.337944950  1.877848977 -1.144422932 -1.704735677  2.911752316
## [1286]  3.275713097 -1.601866498  1.799148995 -0.910027944  2.123230350
## [1291]  0.838041768  0.848648258  3.906991272 -1.257218827 -1.114843481
## [1296] -1.257218827 -0.972816722 -0.326119262 -1.768244443 -0.770881102
## [1301] -0.910027944  0.326986671 -0.848680530 -0.367768322  1.186454267
## [1306] -0.777386302 -0.909002841 -0.643318808 -1.605725571 -0.266839683
## [1311]  2.187331732 -1.768244443  0.842874283  1.766106380  0.870035097
## [1316] -0.160865871 -1.468950554  1.622345899 -2.039152590 -0.556511707
## [1321]  1.147901042  1.147901042 -0.023797443 -1.806445498  0.036858243
## [1326] -1.604396735 -0.777386302 -1.489125586 -1.123900885  0.212469146
## [1331] -1.219135491 -0.210568358 -1.840946695 -0.258934462 -1.604396735
## [1336] -0.643318808 -0.556511707 -2.039152590 -1.274791012 -1.704735677
## [1341] -2.039152590  0.548972318 -0.643318808 -1.822916862  0.547861266
## [1346]  0.194132812 -1.287647140 -0.642753961 -0.771133922 -0.771133922
## [1351] -1.577865122 -1.174499522 -0.777386302  0.025595180 -0.956212841
## [1356]  0.343429704 -0.771133922  0.835433788 -0.642995490  0.107850262
## [1361] -0.052208337 -0.300124403 -0.972085521 -0.053243719 -0.053243719
## [1366] -0.770423320 -0.556511707 -1.114843481 -0.149944552 -0.642594141
## [1371] -0.910027944 -0.211722960 -0.910027944 -0.910027944 -1.114843481
## [1376] -1.114843481 -0.149671627 -0.643318808 -1.287647140 -0.910027944
## [1381] -0.544846080 -0.555878229 -0.777386302  0.025151321 -0.335637112
## [1386] -0.300124403 -0.547005087 -0.643318808 -1.144422932 -0.335637112
## [1391] -0.366476249 -0.793885771 -0.910027944 -0.643318808  1.422874181
## [1396] -0.546433592  2.255197949  0.723286216 -0.599638902 -0.561068490
## [1401] -0.544846080  4.121218474  1.680563147  2.191610202  1.215288770
## [1406]  2.034134604  1.673494039 -0.114762518  1.402881047  1.471621802
## [1411] -0.212109036 -0.212109036 -0.642995490 -1.286999997  2.339676480
## [1416]  0.512325361  0.775808955 -0.114762518 -0.947613719 -0.047759891
## [1421]  0.803814718 -0.333448540 -0.299578124 -0.942932488  0.640645677
## [1426]  1.038441619  3.249020969  3.260335695  1.674921069  0.213358348
## [1431]  1.498753522  3.177448388 -0.113600364 -1.646096320  0.942266710
## [1436] -0.114762518 -1.217888167  4.287550586 -0.972816722  0.336093291
## [1441] -0.972816722  0.933756972  4.658112005  3.028272546 -0.166026483
## [1446] -0.114762518 -0.643318808 -0.643318808 -1.287647140 -0.776173046
## [1451] -0.544846080  1.401355965  0.538040465 -0.945185289 -1.604396735
## [1456] -0.300124403 -0.643318808 -0.164809003 -0.554050024 -1.286999997
## [1461] -0.643318808 -0.643318808 -0.643318808 -0.544846080 -0.211722960
## [1466] -0.909228921 -0.300124403 -0.643318808 -0.250130913  0.760941731
## [1471] -0.643318808 -1.287647140 -0.053243719  2.350871942 -0.910027944
## [1476] -0.910027944 -0.776730264 -0.642753961 -0.774392896 -1.331193847
## [1481] -1.331193847 -0.910027944  0.934279017 -0.828567565  1.650196211
## [1486] -0.998260896  5.603232125  1.961065222 -1.287647140 -0.149182842
## [1491] -0.367768322 -0.114762518 -0.909570584  3.010083389 -1.438672385
## [1496] -0.544846080  2.680477666 -1.287647140  2.997421414 -0.949146891
## [1501] -1.297094753  1.028996619 -0.615579566  0.485809871 -0.568143494
## [1506] -0.793885771 -0.335637112 -1.174499522 -0.250130913  1.999112700
## [1511]  2.747164783  3.274031185 -1.822916862  0.845366808 -0.910027944
## [1516]  1.091114298  0.136850418 -0.643318808 -0.556511707 -0.149944552
## [1521]  0.310150022 -0.910027944 -1.108353606  0.060444782 -0.957652017
## [1526] -0.599638902  0.440988280 -0.556511707  0.466467383  2.215551902
## [1531] -1.114843481  0.595148723  0.036225481  1.913220210 -0.643318808
## [1536]  0.036858243 -0.166085522 -0.211722960  0.136850418 -0.560296379
## [1541]  0.239193748  0.162973472  2.765379394  3.578780165  3.315878754
## [1546]  0.780486343 -0.769810740 -1.040766456 -1.123900885 -0.113040916
## [1551] -0.298599788 -1.114843481 -1.473408874 -1.473408874  0.025595180
## [1556]  8.587563201  9.017413033 10.251570130 -1.287647140 -0.114762518
## [1561] -0.582105748  0.768735861 10.979765483  1.714129470  3.504491974
## [1566] -1.219135491 -0.335637112 -0.050703932  1.283598961 -0.207312617
## [1571]  1.362054773 -0.166085522 -1.114843481 -0.829844780 -0.829844780
## [1576] -1.577865122  0.485809871  3.840220241  3.487604892  3.379235740
## [1581]  0.640645677  0.326986671 -1.769199597 -1.287647140 -0.910027944
## [1586] -0.998260896 -0.910027944 -0.075376919  2.087851280  0.035597277
## [1591]  0.765417918 -0.091510064  2.614837261  2.217453535 -1.114283186
## [1596]  0.277149495 -0.472185898 -0.633997911 -1.114843481 -1.287647140
## [1601]  1.998282298  1.656579087 -1.473408874 -1.040766456 -0.771133922
## [1606] -1.040766456 -1.577865122 -0.367768322 -1.286999997  2.866661899
## [1611]  3.062964940 -0.910027944  1.656726167  4.274302632 -0.300124403
## [1616] -0.299069982  0.992269013  0.706191803  2.721937143  2.484347323
## [1621]  8.384228395 -0.561068490 -0.555878229  1.470171932  1.393830285
## [1626]  2.631656260 -1.114283186 -0.829844780 -0.910027944 -1.257218827
## [1631] -1.257218827 -0.943563454  0.837639756 -0.972816722  9.200705393
## [1636] -0.166085522 -1.123900885 -0.547005087 -0.394748362 -0.300124403
## [1641]  0.035597277 -0.318898313 -1.114843481 -0.768559503 -0.793885771
## [1646] -1.287647140 -0.598132684  1.364480802 -0.793885771 -0.998260896
## [1651] -0.787161522  9.878128379 -0.642995490  6.483426345 -0.643318808
## [1656]  5.914030828 -0.543911183 -1.217888167 -0.776173046 -0.777386302
## [1661]  1.181159701  0.310150022  1.908931284  4.185728039 -0.335637112
## [1666]  0.627832979  1.558423949 -1.411863406 -0.956212841 -0.910027944
## [1671]  1.181159701  0.195198652 -0.770119722 -0.945105011  1.451641530
## [1676] -1.174499522 -0.998260896 -0.584110187 -1.039297448 -0.793885771
## [1681] -0.829844780  0.107257197 -1.114843481 -1.114843481 -0.910027944
## [1686]  2.345545344  1.552503792  0.538603878 -0.998260896 -1.438745728
## [1691] -0.643318808 -0.643318808 -0.349465999 -1.604396735 -1.604396735
## [1696] -0.829844780 -0.544846080 -0.998260896 -0.828567565 -1.577865122
## [1701] -1.144422932 -1.144422932 -0.544846080 -0.643318808 -0.051169860
## [1706]  0.311018980 -0.776173046 -0.972085521 -1.222476922  5.503561368
## [1711] -0.776173046 -0.569451122  0.396274349  1.214292969 -0.642995490
## [1716]  1.169424922 -1.100832075  0.043631880  4.533071015  3.001715469
## [1721] -0.643318808 -0.643318808  0.463035450 -0.367768322 -1.144422932
## [1726] -1.517964762 -0.211031534  0.035597277 -0.910027944 -1.114843481
## [1731] -1.287647140 -0.053243719 -1.040766456  0.768735861 -1.040766456
## [1736] -0.998260896 -1.440010086 -0.910027944  0.162973472  0.843527227
## [1741]  2.023741743  1.788055990 -0.998260896 -0.643318808 -0.643318808
## [1746]  0.440517649 -1.114843481  0.880972423 11.744236891 -1.840946695
## [1751]  0.704338064  5.363403128 -1.577865122  0.440988280  1.703968581
## [1756]  0.980176112  0.801597402  1.594956769  0.627767191  8.788578418
## [1761]  1.210485050 -1.244354416  1.210485050  0.539547912 -0.910027944
## [1766] -0.829844780 -0.298599788 -0.909002841 -0.774392896  0.768735861
## [1771]  3.329339413  0.880147423 -1.174499522 -0.971477986 13.097040369
## [1776]  2.335817378 -1.287647140 -0.780382428  1.054226847 -0.556511707
## [1781] -0.556511707  2.317986567  1.499711750  0.025151321 -0.568143494
## [1786] -0.397339273 -0.997030607  0.448885064  4.399326244 -0.793885771
## [1791] -1.113864626 -0.998260896 -0.777386302  0.237280077  1.165949144
## [1796]  0.547861266 -0.910027944 -0.335637112 -0.981330027 -1.100832075
## [1801] -0.556511707 -0.949146891  3.274031185 -0.259847379  0.595148723
## [1806]  1.555816913 -1.440010086  2.782643462  2.021671014 -1.331193847
## [1811] -0.561068490 -1.144422932  3.464743193  6.314818861 -0.910027944
## [1816] -1.144422932  0.336953927 -0.559672325 -1.287647140  1.672163025
## [1821] -0.770423320  0.035597277  7.070212567 -0.957652017  1.285743629
## [1826] -0.402301831  0.193636965  0.006737978  1.545433152 -0.114762518
## [1831] -0.910027944  1.198708520  1.921801753 -1.114843481 -0.957652017
## [1836] -0.561068490 -0.547005087  0.622909597  1.845134823  1.210485050
## [1841] -0.949146891  0.640645677  0.349744387 -0.053243719 -0.300124403
## [1846]  1.379421811 -0.584110187  0.193636965 -0.777386302  1.165949144
## [1851]  0.237280077 -0.023797443 -0.561068490 -0.774392896 -0.615579566
## [1856] -1.374812478  0.880147423 -1.440010086 -1.114843481 -0.769456330
## [1861] -0.561068490 -0.053243719 -1.109988151 -0.998260896  0.440192735
## [1866]  0.056417385 -0.555315485 -0.365900079  0.595148723 -1.114843481
## [1871] -0.910027944 -0.777386302 -0.567598022 -0.944445322 -0.828887905
## [1876] -0.643318808  0.448885064  0.595148723  1.471621802  1.531896517
## [1881] -0.949146891 -0.998260896 -0.053243719 -0.051199159  0.545422418
## [1886] -0.210568358 -1.286516559 -0.829844780  0.310150022 -1.287647140
## [1891] -0.162511560  1.485065233 -1.331193847 -0.114762518  1.497409031
## [1896] -0.970993906 -0.395320811 -0.777386302 -0.052722656  2.497503890
## [1901]  0.481650536 -0.545931626 -0.367768322 -0.776730264 -1.040766456
## [1906]  2.880219522  0.485809871 -0.598132684  0.306648697 -0.210568358
## [1911]  3.163910794  0.281274745 -1.576479724  2.188556978 -0.643318808
## [1916] -0.642753961
## attr(,"gstari")
## [1] FALSE
## attr(,"call")
## localG(x = parqs$Acidentes.y, listw = nb2listw(dnb, style = "B"), 
##     zero.policy = NULL, spChk = NULL, return_internals = FALSE)
## attr(,"class")
## [1] "localG"

1.17 Moran Local

Todas as análises feitas até o momento foram de escala global. No entanto, é necessário que seja feita também uma análise local do estudo. Essa análise pode ser feita pelo índice local de autocorrelaçãoo espacial (LISA). Para isso é preciso calcular o índice de Moran local.

ShapePB.mloc <- localmoran(parqs$Acidentes.y, listw=nb2listw(dnb, style="W")) 
head(ShapePB.mloc)
##           Ii          E.Ii     Var.Ii      Z.Ii Pr(z != E(Ii))
## 1 0.09622536 -2.159550e-04 0.41368036 0.1499446      0.8808084
## 2 0.09622536 -1.169172e-05 0.02240107 0.6429955      0.5202270
## 3 0.41355376 -2.159550e-04 0.13774936 1.1148435      0.2649175
## 4 0.41355376 -2.159550e-04 0.13774936 1.1148435      0.2649175
## 5 0.41355376 -2.159550e-04 0.41368036 0.6433188      0.5200173
## 6 0.09622536 -2.159550e-04 0.20673211 0.2121090      0.8320220

1.18 Mapa das probabilidades (Signific?ncias do I de Moral Local)

Por meio dos valor-p do éndice de Moran local é possível construir um mapa de probabilidades.

library(classInt)
INT4 <- classIntervals(ShapePB.mloc[,5], style="fixed", 
                       fixedBreaks=c(0,0.01, 0.05, 0.10))
CORES.4 <- c(rev(brewer.pal(3, "Reds")), brewer.pal(3, "Blues"))
COL4 <- findColours(INT4, CORES.4)
parqs$COL = COL4  
parqs$p_valor = ifelse(parqs$COL == "#DE2D26", "[0,0.01)", ifelse(parqs$COL == "#EEE5E4", "[0.01,0.05)", "[0.05,0.1]"))
plot(parqs, col=COL4)
title("P-valores do I de Moran Local por Distäncia de Centróides")
TB4 <- attr(COL4, "table")
legtext <- paste(names(TB4))
legend("bottomright", fill=attr(COL4, "palette"), legend=legtext, 
       bty="n", cex=0.7, y.inter=0.7)
A caption

A caption

mapview(parqs, zcol = "p_valor", col.regions=c("red", "orange", "green"))
temp = parqs[parqs$p_valor != "[0.05,0.1]", ]
mapview(temp, zcol = "p_valor", col.regions=c("red", "orange"))

1.18.1 Montando matrix W de vizinhança

ShapeCG.nb1.mat <- nb2mat(dnb)

1.18.2 Incidência de acidentes padronizada

Acidentes_SD <- scale(parqs$Acidentes.y)

1.18.3 Média das incidências de acedentes padronizada

Acidentes_W <- ShapeCG.nb1.mat %*% Acidentes_SD

2 Diagrama de espalhamento de Moran

plot(Acidentes_SD, Acidentes_W,xlab="Z",ylab="WZ")
abline(v=0, h=0)
title("Diagrama de Espalhamento de Moran por Distancia de Centróides")
A caption

A caption

Q <- vector(mode = "numeric", length = nrow(ShapePB.mloc))
Q[(Acidentes_SD>0  & Acidentes_W > 0)] <- 1            
Q[(Acidentes_SD<0  & Acidentes_W < 0)] <- 2
Q[(Acidentes_SD>=0 & Acidentes_W < 0)] <- 3
Q[(Acidentes_SD<0  & Acidentes_W >= 0)]<- 4
signif=0.05
parqs$Q = Q

3 Mapa LISA

Q[ShapePB.mloc[,5]>signif]<-5
CORES.5 <- c("blue", "green" , "red", "yellow", "gray", rgb(0.95,0.95,0.95))
#CORES.5 <- c(1:5, rgb(0.95,0.95,0.95))
parqs$cores5Q = CORES.5[Q]
plot(parqs, col=CORES.5[Q])
title("Mapa LISA por Distancia Centroides")
legend("bottomright", c("Q1(+/+)", "Q2(-/-)", "Q3(+/-)", "Q4(-/+)","NS"), 
       fill=CORES.5)
A caption

A caption

CORES.5[Q][1:5]
## [1] "gray" "gray" "gray" "gray" "gray"
head(CORES.5[Q])
## [1] "gray" "gray" "gray" "gray" "gray" "gray"
#save(parqs, file = "parqsFinal-975.Rds")
parqs$cores5 =  ifelse(parqs$cores5Q == "blue", "A-A", ifelse(parqs$cores5Q == "green", "B-B", 
            ifelse(parqs$cores5Q == "red", "A-B", ifelse(parqs$cores5Q == "yellow", "B-A", "NA"))))
mapview(parqs, zcol = "cores5", col.regions=c("red", "orange", "green", "yellow", "grey"))
temp = parqs[parqs$cores5 == "A-A", ]
mapview(temp, zcol = "cores5", col.regions=c("red", "orange", "green", "yellow", "grey"))
mapview(temp, zcol = "Acidentes.x", col.regions=brewer.pal(9, "YlOrRd"))