Machine learning merupakan ilmu yang mencakup bidang statistik, kecerdasan buatan, dan ilmu komputer. Machine learning dikenal juga sebagai analitik prediktif atau pembelajaran statistik (Muller and Guido 2017) - Supervised learning : classification dan regresi - unsupervised learning : association, clustering. dimention reduction - semi-supervised learning - reinforement learning
Dalam kasus machine learning, kita akan sering mendengar kata prediktor dan target variabel. Prediktor dan target variabel merupakan kolom dalam sebuah data frame. Hal yang membedakan prediktor dan target variabel adalah : • Prediktor merupakan faktor-faktor yang tersedia untuk memprediksi sesuatu • Target variabel merupakan hal yang ini kita prediksi
Contoh: Misal kita memiliki data mengenai iris dataset, yakni sebuah data mengenai kriteria kelopak bunga dengan 3 spesies.
head(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
tail(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 145 6.7 3.3 5.7 2.5 virginica
## 146 6.7 3.0 5.2 2.3 virginica
## 147 6.3 2.5 5.0 1.9 virginica
## 148 6.5 3.0 5.2 2.0 virginica
## 149 6.2 3.4 5.4 2.3 virginica
## 150 5.9 3.0 5.1 1.8 virginica
Dengan data tersebut, misal kita ingin memprediksi spesies bunga apa dengan kriteria-kriteria tertentu (Sepal.Length, Sepal.Width, Petal.Length, dan Petal.Width). Dalam kasus ini, bisa kita dapatkan informasi bahwa: • Prediktor (X) = Sepal.Length, Sepal.Width, Petal.Length, dan Petal.Width • Target variabel (Y) = Species
Regresi merupakan machine learning kategori supervised learning dengan target data berupa data numerik. linear regression atau least-square merupakan sebuah metode untuk memodelkan hubungan antar variabel terikat/target (Y) dengan satu atau lebih variabel bebas/prediktor (X). Linear regression digunakan untuk prediksi dan modelling berdasarkan data-data yang ada. Regresi linear sederhana merupakan pemodelan regresi berdasarkan 1 variabel prediktor.
Persamaan regresi linear sederhana \[\hat{y} = \beta_0+\beta_1*x_1\]
di mana: β_0=intersept β_1 = beta coefficient β_1 y = target variabel x = prediktor x_1
Contoh sederhana:
x <- c(3,4,5,6,7,8,9,10,11)
y <- c(5.6,8.1,10.5,10.9,15.7,16.2,18.4,20.1,23.5)
res <- lm(y~x)
res
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## -0.6817 2.1450
dapat dilihat bahwa nilai β_0 dan β_1 adalah -0.6817 dan 2.1450, sehingga fungsi hipotesisnya menjadi
Y= -0.6817 + 2.1450x
Kita akan menampilkan fungsi plot:
plot(x,y,pch=16,cex=1.3, col="blue", main="DATASET & regression", xlab="X(feature)", ylab = "Y(target)")
lm(y~x)
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## -0.6817 2.1450
abline(lm(y~x))
Pada contoh kasus regresi linear kali ini, akan digunakan data mtcars dan metode OLS (Ordinary Least Square). Data mtcars merupakan salah satu data yang disediakan oleh R. Data ini diambil dari majalah Motor Trend US pada tahun 1974, dan terdiri dari konsumsi bahan bakar dan 10 aspek desain dan kinerja mobil untuk 32 jenis mobil (model 1973-1974).
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Data mtcars terdiri dari 32 observasi/data dan 11 variabel/kolom yang bertipe numerik. Penjelasan data mtcars:
1 mpg: Numerik Banyaknya bahan bakar (dalam galon) yang dihabiskan setiap mil (Mil/galon (AS)) 2 cyl: Numerik Jumlah silinder 3 disp: Numerik Perpindahan disp (cu.in.) 4 hp: Numerik Tenaga kuda bruto 5 drat: Numerik drat Rasio gandar belakang 6 wt: Numerik Berat (1000 lbs) 7 qsec: Numerik 1/4 mil waktu 8 vs: Numerik Bentuk mesin (0 = berbentuk V, 1 = lurus) 9 am: Numerik Jenis transmisi (0 = otomatis, 1 = manual) 10 gear: Numerik Jumlah gigi maju 11 carb: Numerik Jumlah karburator
Sebelum kita menerapkan metode machine learning, penting untuk membagi dataset yang dimiliki menjadi minimal dua kelompok: 1. data pelatihan (data train/ train set) 60-75% dan 2. data uji (data test/ test set) 25-40%.
Pembagian data tersebut disebut sebagai cross validation. Data train/data latih merupakan data yang digunakan untuk melatih model/mesin agar algoritme bisa mempelajari pola yang ada untuk memprediksi data yang belum pernah ia lihat. Data test/data uji merupakan data yang digunakan untuk melihat bagaimana kinerja model pada data baru atau digunakan sebagai data yang akan diprediksi, di mana nantinya kita akan membandingkan hasil prediksi dengan nilai sesungguhnya pada data test Kali ini, kita akan mensample secara random index pada data mtcars. 75% data akan dijadikan sebagai data train, dan 25% data akan dijadikan sebagai data test. Cara melakukannya dijelaskan:
set.seed(123)
idx <- sample(nrow(mtcars), nrow(mtcars)*0.75)
train <- mtcars[idx,]
test <- mtcars[-idx,]
kita menuliskan kode set.seed(123) yang merupakan syntax yang digunakan untuk cross validation. Selanjutnya kita membuat index dengan variabel idx. Di sini kita menentukan data sampel yang digunakan adalah data mtcars dengan 0.75 dari data tersebut digunakan untuk data train. Pada baris ketiga dan keempat merupakan baris penentuan index mana yang menjadi data train dan menjadi data test.
contoh data train dan data test yang telah kita bagi
head(train,3)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
head(test,3)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Setelah data dibagi menjadi data train dan data test, hal selanjutnya yang dilakukan adalah membuat pemodelan machine learning. Untuk menambah pemahaman, kita akan membuat suatu studi kasus. Misalkan Anda seorang yang bekerja pada departemen pemasaran perusahaan otomatif. Anda ingin mempunyai sebuah model yang dapat memprediksi pemakaian bahan bakar jenis mobil. Hal ini akan mempermudah Anda untuk menawarkan jenis mobil tertentu kepada pelanggan. Anda juga dapat mengetahui jenis mobil mana yang paling irit dari segi pemakaian bahan bakar.
Dari studi kasus tersebut, Anda ingin mencari jenis mobil mana yang paling irit bensinnya, sehingga target variabelnya adalah mpg (Mile per Gallon), artinya semakin besar mpg, maka semakin irit mobil tersebut. Untuk memprediksi target variabel mpg tersebut, Anda menggunakan satu prediktor, yaitu variabel wt.
Untuk membuat model regresi linear sederhana pada R, dapat dilakukan dengan:
lm(y~x)
model_simple <- lm(formula = mpg~wt, data = train)
model regresi linear sederhana pada R dituliskan dengan syntax lm. Pada lm ditambahkan argumen (mpg~wt, train). Hal ini maksudnya adalah model lm digunakan untuk memprediksi mpg dengan prediktor wt. Sedangkan argumen train dimaksudkan bahwa model dilakukan pada data train.
Berikut visualisasi dari sebaran data dengan model regresi yang dibuat (garis berwarna merah). Untuk membuat visualisasi dalam bentuk grafik, dapat mengikuti:
plot(train$wt, train$mpg)
abline(model_simple, col = "red")
baris pertama, kita membuat sebuah plot dengan sumbu x adalah variabel wt dari data train, sedangkan sumbu y adalah variabel mpg dari data train. Pada baris kedua, kita membaut sebuah line dengan warna merah dari model_simple yang telah dibuat sebelumnya
Kemudian, untuk melihat performa model, kita bisa cek dengan fungsi summary().
summary(model_simple)
##
## Call:
## lm(formula = mpg ~ wt, data = train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6037 -2.6129 -0.1983 1.3715 6.5714
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38.2943 2.2919 16.71 5.50e-14 ***
## wt -5.6437 0.7171 -7.87 7.73e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.336 on 22 degrees of freedom
## Multiple R-squared: 0.7379, Adjusted R-squared: 0.726
## F-statistic: 61.94 on 1 and 22 DF, p-value: 7.733e-08
Pada summary dari model yang sudah kita buat, kita akan fokus pada suatu model evaluasi pada regresi, yakni Multiple R-Squared. Pada summary di atas, kita dapatkan nilai multiple r-squared 0.7379, artinya berat mobil (variabel wt) mampu berpengaruh 73% terhadap iritnya bensin (variabel mpg).
Pada bagian koefisien, nilai estimasi untuk intercept adalah 38.2943. Nilai ini adalah nilai β_0 pada formulasi. Hal ini berarti jika nilai wt=0 maka nilai mpg adalah 38.2943. Selanjutnya masih pada bagian koefisien, untuk variabel wt nilai estimasi adalah -5.6437. Nilai ini merupakan nilai β_1. Artinya, untuk setiap kenaikan nilai wt sebanyak 1 maka nilai mpg akan menurun sebanyak 5.6437. Sehingga model regresi linear yang dilakukan ini memiliki formulasi:
Formulasi model:
\[\hat{y} = 38.2943-5.6437x_1 \] di mana: y = nilai mpg x_1 = nilai wt
Dari model hasil training, kita bisa mencobakannya pada data test.
Hal ini bisa dilakukan dengan menuliskan: Dalam hal ini, kita akan
prediksi pemodelan machine learning kita ke data test yang merupakan
partisi 25% dari data awal. Untuk melakukan prediksi, bisa digunakan
fungsi predict(). Model_simple adalah model regresi linear
sederhana yang kita ciptakan sedangan test adalah data test yang
digunakan untuk mencobakan model
pred <- predict(model_simple, test)
Setelah dilakukan prediksi, kita bisa membandingkan data aktual dengan hasil prediksi dari model yang telah kita buat sebelumnya
#install.packages("dplyr")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
cbind(test, pred) %>%
select(wt, mpg, pred)
## wt mpg pred
## Mazda RX4 Wag 2.875 21.0 22.068598
## Valiant 3.460 18.1 18.767014
## Merc 450SE 4.070 16.4 15.324337
## Merc 450SL 3.730 17.3 17.243206
## Lincoln Continental 5.424 10.4 7.682721
## Toyota Corona 2.465 21.5 24.382529
## Camaro Z28 3.840 13.3 16.622395
## Pontiac Firebird 3.845 19.2 16.594177
Setelah kita membandingkan data prediksi dan aktualnya, selanjutnya kita bisa mengevaluasi model kita dengan melihat errornya. Ada beberapa jenis error yang bisa digunakan dalam analisis regresi. Pada kesempatan kali ini, kita akan menggunakan RMSE (Root Mean Squared Error). Di sini kami menggunakan RMSE karena RMSE mudah dalam interpretasinya.
Adapun untuk menghasilkan nilai RMSE, kita bisa menggunakan library
MLmetrics dengan fungsi RMSE().
#install.packages("MLmetrics")
library(MLmetrics)
##
## Attaching package: 'MLmetrics'
## The following object is masked from 'package:base':
##
## Recall
RMSE(pred, test$mpg)
## [1] 2.12921
Berdasarkan output di atas, nilai RMSE yang dihasilkan sebesar 2.12921, artinya rata-rata nilai prediksi melenceng sebesar 2.12921 dari nilai aktualnya.
Regresi linear ganda merupakan pemodelan regresi menggunakan lebih dari satu variabel prediktor.
\[\hat{y} = \beta_0+\beta_1x_1+\beta_2x_2+...+\beta_nx_n\]
Studi kasus:
Misal kita ingin mencari jenis mobil mana yang paling irit bensinnya, sehingga target variabelnya adalah mpg (Mile per Gallon), artinya semakin besar mpg, maka semakin irit mobil tersebut. Variabel mpg akan diprediksi berdasarkan 10 prediktor lainnya (cyl, disp, …, carb)
model <- lm(formula = mpg~., data = train)
summary(model)
##
## Call:
## lm(formula = mpg ~ ., data = train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8716 -1.4396 -0.2198 0.9323 4.5936
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.98196 24.74765 0.848 0.4119
## cyl -0.99604 1.51179 -0.659 0.5215
## disp 0.02254 0.02715 0.830 0.4214
## hp -0.02000 0.03365 -0.595 0.5624
## drat 0.17566 2.20339 0.080 0.9377
## wt -4.61242 2.47272 -1.865 0.0849 .
## qsec 0.85700 0.91506 0.937 0.3661
## vs 0.78745 2.58224 0.305 0.7652
## am 2.44769 2.92110 0.838 0.4172
## gear -0.09011 2.11439 -0.043 0.9667
## carb 0.30068 1.06592 0.282 0.7823
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.957 on 13 degrees of freedom
## Multiple R-squared: 0.8783, Adjusted R-squared: 0.7847
## F-statistic: 9.383 on 10 and 13 DF, p-value: 0.0001925
kita menggunakan argumen formula = mpg~. Hal ini maksudnya adalah kita menggunakan semua variabel sebagai prediktor untuk sebuah target mpg. Data yang digunakan untuk membuat model adalah data train.
Berikut interpretasi berdasarkan hasil summary di atas: • Call: formula yang digunakan untuk membuat model • Residuals: Sebaran error dari hasil prediksi • Coefficients: a. Estimate: – Intercept: Ketika semua prediktor bernilai 0, maka mpg = 20.98196 – cyl: Ketika cyl naik 1 akan berkontribusi negatif sebesar -0.99604 terhadap mpg – disp: Ketika disp naik 1 akan berkontribusi positif sebesar 0.02254 terhadap mpg – dst
• Signif. codes: Merupakan acuan dari lambang di sebelah Pr(>|t|). Misal kita menentukan alpha = 5%, artinya variabel prediktor yang signifikan akan dilambangkan dengan ‘.’ dan • Multiple R-squared: Merupakan model evaluasi untuk simple linear regression (model yang dibangun menggunakan 1 prediktor), dalam kasus ini digunakan lebih dari satu prediktor, sehingga multiple r-squared tidak dijadikan acuan. • Ajusted R-squared: Merupakan model evaluasi untuk multiple linear regression, 0.9016 artinya, mpg dapat dijelaskan sebesar 90% oleh prediktor-prediktor yang dimasukkan dalam model. Sisanya dijelaskan oleh prediktor lain.
Dari hasil model yang sudah dibangun, dari Gambar 32 kita bisa menyimpulkan formulasi persamaan multi-linear regresi yang dibangun adalah sebagai berikut. \[\hat{y} = 20.98196-0.99604x_1+0.02254x_2-0.02000x_3+0.17566x_4-4.61242x_5+0.85700x_6 + 0.78745x_7+2.44769x_8-0.09011x_9+0.30068x_10 \]
di mana:
y ̂ = mpg x_1= cyl x_2= disp x_3= hp x_4= drat x_5= wt x_6= gsec x_7= vs x_8= am x_9= gear x_10= carb
Setelah membuat pemodelan, kita dapat memprediksi model kita untuk data test yang sudah kita persiapkan sebelumnya. Hal ini dilakukan dengan syntax
library(dplyr)
pred <- predict(model, test)
cbind(test, pred) %>%
select(wt, mpg, pred)
## wt mpg pred
## Mazda RX4 Wag 2.875 21.0 21.71246
## Valiant 3.460 18.1 20.64933
## Merc 450SE 4.070 16.4 12.94019
## Merc 450SL 3.730 17.3 14.67981
## Lincoln Continental 5.424 10.4 10.79525
## Toyota Corona 2.465 21.5 25.01139
## Camaro Z28 3.840 13.3 13.08460
## Pontiac Firebird 3.845 19.2 16.27870
Tahap selanjutnya adalah mengecek RMSE model
library(MLmetrics)
RMSE(pred, test$mpg)
## [1] 2.421486
Nilai RMSE sebesar “4.371095”, artinya rata-rata nilai prediksi melenceng sebesar “2.421486” dari nilai aktualnya.
Tugas: Menyediakan dataset siap pakai, salah satunya adalah dataset Boston pada library (MASS). Dataset boston berisi informasi yang dikumpulkan oleh U.S census Service terkait dengan harga perumahan dan infomrasi lain di area Boston.
Dataset terdiri dari 14 attributes atau variables. 1. crim : per capita rate by town 2 zn : proportion of residential land zoned for lots over 25.000 sq.ft 3. indus : proportion of non-reatil business acres per town 4. chas : charles river dummy variable (1 if tract bound river; 0 otherwise) 5. nox : nitric oxides concentration (parts per 10 million) 5. rm : average number of rooms per dwelling 7. age : proportion of owner-occupied units built prior to 1940 8. dis : weighted distavrs to five Boston employment centers 9. rad : index of accessibility to radial highways 10. tax : full-value property-tax rate per $10.000 11. ptratio : pupil-teacher ratio by town 12. black : 1000(Bk - 0.63)^2 where Bk is proportion of blacks by town 13. lstat : % lower status of population 14. medv : median value of owner-occupied home in $1000’s
lakukan analisis regrei linear sederhana untuk variabel targetnya medv dan variabel prediktornya lstat
silakan install terlebih dahulu library mass dengan cara install.packaged(“MASS”) library(MASS) data(Boston)
#install.packages("MASS")
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
data(Boston)
Boston
## crim zn indus chas nox rm age dis rad tax ptratio black
## 1 0.00632 18.0 2.31 0 0.5380 6.575 65.2 4.0900 1 296 15.3 396.90
## 2 0.02731 0.0 7.07 0 0.4690 6.421 78.9 4.9671 2 242 17.8 396.90
## 3 0.02729 0.0 7.07 0 0.4690 7.185 61.1 4.9671 2 242 17.8 392.83
## 4 0.03237 0.0 2.18 0 0.4580 6.998 45.8 6.0622 3 222 18.7 394.63
## 5 0.06905 0.0 2.18 0 0.4580 7.147 54.2 6.0622 3 222 18.7 396.90
## 6 0.02985 0.0 2.18 0 0.4580 6.430 58.7 6.0622 3 222 18.7 394.12
## 7 0.08829 12.5 7.87 0 0.5240 6.012 66.6 5.5605 5 311 15.2 395.60
## 8 0.14455 12.5 7.87 0 0.5240 6.172 96.1 5.9505 5 311 15.2 396.90
## 9 0.21124 12.5 7.87 0 0.5240 5.631 100.0 6.0821 5 311 15.2 386.63
## 10 0.17004 12.5 7.87 0 0.5240 6.004 85.9 6.5921 5 311 15.2 386.71
## 11 0.22489 12.5 7.87 0 0.5240 6.377 94.3 6.3467 5 311 15.2 392.52
## 12 0.11747 12.5 7.87 0 0.5240 6.009 82.9 6.2267 5 311 15.2 396.90
## 13 0.09378 12.5 7.87 0 0.5240 5.889 39.0 5.4509 5 311 15.2 390.50
## 14 0.62976 0.0 8.14 0 0.5380 5.949 61.8 4.7075 4 307 21.0 396.90
## 15 0.63796 0.0 8.14 0 0.5380 6.096 84.5 4.4619 4 307 21.0 380.02
## 16 0.62739 0.0 8.14 0 0.5380 5.834 56.5 4.4986 4 307 21.0 395.62
## 17 1.05393 0.0 8.14 0 0.5380 5.935 29.3 4.4986 4 307 21.0 386.85
## 18 0.78420 0.0 8.14 0 0.5380 5.990 81.7 4.2579 4 307 21.0 386.75
## 19 0.80271 0.0 8.14 0 0.5380 5.456 36.6 3.7965 4 307 21.0 288.99
## 20 0.72580 0.0 8.14 0 0.5380 5.727 69.5 3.7965 4 307 21.0 390.95
## 21 1.25179 0.0 8.14 0 0.5380 5.570 98.1 3.7979 4 307 21.0 376.57
## 22 0.85204 0.0 8.14 0 0.5380 5.965 89.2 4.0123 4 307 21.0 392.53
## 23 1.23247 0.0 8.14 0 0.5380 6.142 91.7 3.9769 4 307 21.0 396.90
## 24 0.98843 0.0 8.14 0 0.5380 5.813 100.0 4.0952 4 307 21.0 394.54
## 25 0.75026 0.0 8.14 0 0.5380 5.924 94.1 4.3996 4 307 21.0 394.33
## 26 0.84054 0.0 8.14 0 0.5380 5.599 85.7 4.4546 4 307 21.0 303.42
## 27 0.67191 0.0 8.14 0 0.5380 5.813 90.3 4.6820 4 307 21.0 376.88
## 28 0.95577 0.0 8.14 0 0.5380 6.047 88.8 4.4534 4 307 21.0 306.38
## 29 0.77299 0.0 8.14 0 0.5380 6.495 94.4 4.4547 4 307 21.0 387.94
## 30 1.00245 0.0 8.14 0 0.5380 6.674 87.3 4.2390 4 307 21.0 380.23
## 31 1.13081 0.0 8.14 0 0.5380 5.713 94.1 4.2330 4 307 21.0 360.17
## 32 1.35472 0.0 8.14 0 0.5380 6.072 100.0 4.1750 4 307 21.0 376.73
## 33 1.38799 0.0 8.14 0 0.5380 5.950 82.0 3.9900 4 307 21.0 232.60
## 34 1.15172 0.0 8.14 0 0.5380 5.701 95.0 3.7872 4 307 21.0 358.77
## 35 1.61282 0.0 8.14 0 0.5380 6.096 96.9 3.7598 4 307 21.0 248.31
## 36 0.06417 0.0 5.96 0 0.4990 5.933 68.2 3.3603 5 279 19.2 396.90
## 37 0.09744 0.0 5.96 0 0.4990 5.841 61.4 3.3779 5 279 19.2 377.56
## 38 0.08014 0.0 5.96 0 0.4990 5.850 41.5 3.9342 5 279 19.2 396.90
## 39 0.17505 0.0 5.96 0 0.4990 5.966 30.2 3.8473 5 279 19.2 393.43
## 40 0.02763 75.0 2.95 0 0.4280 6.595 21.8 5.4011 3 252 18.3 395.63
## 41 0.03359 75.0 2.95 0 0.4280 7.024 15.8 5.4011 3 252 18.3 395.62
## 42 0.12744 0.0 6.91 0 0.4480 6.770 2.9 5.7209 3 233 17.9 385.41
## 43 0.14150 0.0 6.91 0 0.4480 6.169 6.6 5.7209 3 233 17.9 383.37
## 44 0.15936 0.0 6.91 0 0.4480 6.211 6.5 5.7209 3 233 17.9 394.46
## 45 0.12269 0.0 6.91 0 0.4480 6.069 40.0 5.7209 3 233 17.9 389.39
## 46 0.17142 0.0 6.91 0 0.4480 5.682 33.8 5.1004 3 233 17.9 396.90
## 47 0.18836 0.0 6.91 0 0.4480 5.786 33.3 5.1004 3 233 17.9 396.90
## 48 0.22927 0.0 6.91 0 0.4480 6.030 85.5 5.6894 3 233 17.9 392.74
## 49 0.25387 0.0 6.91 0 0.4480 5.399 95.3 5.8700 3 233 17.9 396.90
## 50 0.21977 0.0 6.91 0 0.4480 5.602 62.0 6.0877 3 233 17.9 396.90
## 51 0.08873 21.0 5.64 0 0.4390 5.963 45.7 6.8147 4 243 16.8 395.56
## 52 0.04337 21.0 5.64 0 0.4390 6.115 63.0 6.8147 4 243 16.8 393.97
## 53 0.05360 21.0 5.64 0 0.4390 6.511 21.1 6.8147 4 243 16.8 396.90
## 54 0.04981 21.0 5.64 0 0.4390 5.998 21.4 6.8147 4 243 16.8 396.90
## 55 0.01360 75.0 4.00 0 0.4100 5.888 47.6 7.3197 3 469 21.1 396.90
## 56 0.01311 90.0 1.22 0 0.4030 7.249 21.9 8.6966 5 226 17.9 395.93
## 57 0.02055 85.0 0.74 0 0.4100 6.383 35.7 9.1876 2 313 17.3 396.90
## 58 0.01432 100.0 1.32 0 0.4110 6.816 40.5 8.3248 5 256 15.1 392.90
## 59 0.15445 25.0 5.13 0 0.4530 6.145 29.2 7.8148 8 284 19.7 390.68
## 60 0.10328 25.0 5.13 0 0.4530 5.927 47.2 6.9320 8 284 19.7 396.90
## 61 0.14932 25.0 5.13 0 0.4530 5.741 66.2 7.2254 8 284 19.7 395.11
## 62 0.17171 25.0 5.13 0 0.4530 5.966 93.4 6.8185 8 284 19.7 378.08
## 63 0.11027 25.0 5.13 0 0.4530 6.456 67.8 7.2255 8 284 19.7 396.90
## 64 0.12650 25.0 5.13 0 0.4530 6.762 43.4 7.9809 8 284 19.7 395.58
## 65 0.01951 17.5 1.38 0 0.4161 7.104 59.5 9.2229 3 216 18.6 393.24
## 66 0.03584 80.0 3.37 0 0.3980 6.290 17.8 6.6115 4 337 16.1 396.90
## 67 0.04379 80.0 3.37 0 0.3980 5.787 31.1 6.6115 4 337 16.1 396.90
## 68 0.05789 12.5 6.07 0 0.4090 5.878 21.4 6.4980 4 345 18.9 396.21
## 69 0.13554 12.5 6.07 0 0.4090 5.594 36.8 6.4980 4 345 18.9 396.90
## 70 0.12816 12.5 6.07 0 0.4090 5.885 33.0 6.4980 4 345 18.9 396.90
## 71 0.08826 0.0 10.81 0 0.4130 6.417 6.6 5.2873 4 305 19.2 383.73
## 72 0.15876 0.0 10.81 0 0.4130 5.961 17.5 5.2873 4 305 19.2 376.94
## 73 0.09164 0.0 10.81 0 0.4130 6.065 7.8 5.2873 4 305 19.2 390.91
## 74 0.19539 0.0 10.81 0 0.4130 6.245 6.2 5.2873 4 305 19.2 377.17
## 75 0.07896 0.0 12.83 0 0.4370 6.273 6.0 4.2515 5 398 18.7 394.92
## 76 0.09512 0.0 12.83 0 0.4370 6.286 45.0 4.5026 5 398 18.7 383.23
## 77 0.10153 0.0 12.83 0 0.4370 6.279 74.5 4.0522 5 398 18.7 373.66
## 78 0.08707 0.0 12.83 0 0.4370 6.140 45.8 4.0905 5 398 18.7 386.96
## 79 0.05646 0.0 12.83 0 0.4370 6.232 53.7 5.0141 5 398 18.7 386.40
## 80 0.08387 0.0 12.83 0 0.4370 5.874 36.6 4.5026 5 398 18.7 396.06
## 81 0.04113 25.0 4.86 0 0.4260 6.727 33.5 5.4007 4 281 19.0 396.90
## 82 0.04462 25.0 4.86 0 0.4260 6.619 70.4 5.4007 4 281 19.0 395.63
## 83 0.03659 25.0 4.86 0 0.4260 6.302 32.2 5.4007 4 281 19.0 396.90
## 84 0.03551 25.0 4.86 0 0.4260 6.167 46.7 5.4007 4 281 19.0 390.64
## 85 0.05059 0.0 4.49 0 0.4490 6.389 48.0 4.7794 3 247 18.5 396.90
## 86 0.05735 0.0 4.49 0 0.4490 6.630 56.1 4.4377 3 247 18.5 392.30
## 87 0.05188 0.0 4.49 0 0.4490 6.015 45.1 4.4272 3 247 18.5 395.99
## 88 0.07151 0.0 4.49 0 0.4490 6.121 56.8 3.7476 3 247 18.5 395.15
## 89 0.05660 0.0 3.41 0 0.4890 7.007 86.3 3.4217 2 270 17.8 396.90
## 90 0.05302 0.0 3.41 0 0.4890 7.079 63.1 3.4145 2 270 17.8 396.06
## 91 0.04684 0.0 3.41 0 0.4890 6.417 66.1 3.0923 2 270 17.8 392.18
## 92 0.03932 0.0 3.41 0 0.4890 6.405 73.9 3.0921 2 270 17.8 393.55
## 93 0.04203 28.0 15.04 0 0.4640 6.442 53.6 3.6659 4 270 18.2 395.01
## 94 0.02875 28.0 15.04 0 0.4640 6.211 28.9 3.6659 4 270 18.2 396.33
## 95 0.04294 28.0 15.04 0 0.4640 6.249 77.3 3.6150 4 270 18.2 396.90
## 96 0.12204 0.0 2.89 0 0.4450 6.625 57.8 3.4952 2 276 18.0 357.98
## 97 0.11504 0.0 2.89 0 0.4450 6.163 69.6 3.4952 2 276 18.0 391.83
## 98 0.12083 0.0 2.89 0 0.4450 8.069 76.0 3.4952 2 276 18.0 396.90
## 99 0.08187 0.0 2.89 0 0.4450 7.820 36.9 3.4952 2 276 18.0 393.53
## 100 0.06860 0.0 2.89 0 0.4450 7.416 62.5 3.4952 2 276 18.0 396.90
## 101 0.14866 0.0 8.56 0 0.5200 6.727 79.9 2.7778 5 384 20.9 394.76
## 102 0.11432 0.0 8.56 0 0.5200 6.781 71.3 2.8561 5 384 20.9 395.58
## 103 0.22876 0.0 8.56 0 0.5200 6.405 85.4 2.7147 5 384 20.9 70.80
## 104 0.21161 0.0 8.56 0 0.5200 6.137 87.4 2.7147 5 384 20.9 394.47
## 105 0.13960 0.0 8.56 0 0.5200 6.167 90.0 2.4210 5 384 20.9 392.69
## 106 0.13262 0.0 8.56 0 0.5200 5.851 96.7 2.1069 5 384 20.9 394.05
## 107 0.17120 0.0 8.56 0 0.5200 5.836 91.9 2.2110 5 384 20.9 395.67
## 108 0.13117 0.0 8.56 0 0.5200 6.127 85.2 2.1224 5 384 20.9 387.69
## 109 0.12802 0.0 8.56 0 0.5200 6.474 97.1 2.4329 5 384 20.9 395.24
## 110 0.26363 0.0 8.56 0 0.5200 6.229 91.2 2.5451 5 384 20.9 391.23
## 111 0.10793 0.0 8.56 0 0.5200 6.195 54.4 2.7778 5 384 20.9 393.49
## 112 0.10084 0.0 10.01 0 0.5470 6.715 81.6 2.6775 6 432 17.8 395.59
## 113 0.12329 0.0 10.01 0 0.5470 5.913 92.9 2.3534 6 432 17.8 394.95
## 114 0.22212 0.0 10.01 0 0.5470 6.092 95.4 2.5480 6 432 17.8 396.90
## 115 0.14231 0.0 10.01 0 0.5470 6.254 84.2 2.2565 6 432 17.8 388.74
## 116 0.17134 0.0 10.01 0 0.5470 5.928 88.2 2.4631 6 432 17.8 344.91
## 117 0.13158 0.0 10.01 0 0.5470 6.176 72.5 2.7301 6 432 17.8 393.30
## 118 0.15098 0.0 10.01 0 0.5470 6.021 82.6 2.7474 6 432 17.8 394.51
## 119 0.13058 0.0 10.01 0 0.5470 5.872 73.1 2.4775 6 432 17.8 338.63
## 120 0.14476 0.0 10.01 0 0.5470 5.731 65.2 2.7592 6 432 17.8 391.50
## 121 0.06899 0.0 25.65 0 0.5810 5.870 69.7 2.2577 2 188 19.1 389.15
## 122 0.07165 0.0 25.65 0 0.5810 6.004 84.1 2.1974 2 188 19.1 377.67
## 123 0.09299 0.0 25.65 0 0.5810 5.961 92.9 2.0869 2 188 19.1 378.09
## 124 0.15038 0.0 25.65 0 0.5810 5.856 97.0 1.9444 2 188 19.1 370.31
## 125 0.09849 0.0 25.65 0 0.5810 5.879 95.8 2.0063 2 188 19.1 379.38
## 126 0.16902 0.0 25.65 0 0.5810 5.986 88.4 1.9929 2 188 19.1 385.02
## 127 0.38735 0.0 25.65 0 0.5810 5.613 95.6 1.7572 2 188 19.1 359.29
## 128 0.25915 0.0 21.89 0 0.6240 5.693 96.0 1.7883 4 437 21.2 392.11
## 129 0.32543 0.0 21.89 0 0.6240 6.431 98.8 1.8125 4 437 21.2 396.90
## 130 0.88125 0.0 21.89 0 0.6240 5.637 94.7 1.9799 4 437 21.2 396.90
## 131 0.34006 0.0 21.89 0 0.6240 6.458 98.9 2.1185 4 437 21.2 395.04
## 132 1.19294 0.0 21.89 0 0.6240 6.326 97.7 2.2710 4 437 21.2 396.90
## 133 0.59005 0.0 21.89 0 0.6240 6.372 97.9 2.3274 4 437 21.2 385.76
## 134 0.32982 0.0 21.89 0 0.6240 5.822 95.4 2.4699 4 437 21.2 388.69
## 135 0.97617 0.0 21.89 0 0.6240 5.757 98.4 2.3460 4 437 21.2 262.76
## 136 0.55778 0.0 21.89 0 0.6240 6.335 98.2 2.1107 4 437 21.2 394.67
## 137 0.32264 0.0 21.89 0 0.6240 5.942 93.5 1.9669 4 437 21.2 378.25
## 138 0.35233 0.0 21.89 0 0.6240 6.454 98.4 1.8498 4 437 21.2 394.08
## 139 0.24980 0.0 21.89 0 0.6240 5.857 98.2 1.6686 4 437 21.2 392.04
## 140 0.54452 0.0 21.89 0 0.6240 6.151 97.9 1.6687 4 437 21.2 396.90
## 141 0.29090 0.0 21.89 0 0.6240 6.174 93.6 1.6119 4 437 21.2 388.08
## 142 1.62864 0.0 21.89 0 0.6240 5.019 100.0 1.4394 4 437 21.2 396.90
## 143 3.32105 0.0 19.58 1 0.8710 5.403 100.0 1.3216 5 403 14.7 396.90
## 144 4.09740 0.0 19.58 0 0.8710 5.468 100.0 1.4118 5 403 14.7 396.90
## 145 2.77974 0.0 19.58 0 0.8710 4.903 97.8 1.3459 5 403 14.7 396.90
## 146 2.37934 0.0 19.58 0 0.8710 6.130 100.0 1.4191 5 403 14.7 172.91
## 147 2.15505 0.0 19.58 0 0.8710 5.628 100.0 1.5166 5 403 14.7 169.27
## 148 2.36862 0.0 19.58 0 0.8710 4.926 95.7 1.4608 5 403 14.7 391.71
## 149 2.33099 0.0 19.58 0 0.8710 5.186 93.8 1.5296 5 403 14.7 356.99
## 150 2.73397 0.0 19.58 0 0.8710 5.597 94.9 1.5257 5 403 14.7 351.85
## 151 1.65660 0.0 19.58 0 0.8710 6.122 97.3 1.6180 5 403 14.7 372.80
## 152 1.49632 0.0 19.58 0 0.8710 5.404 100.0 1.5916 5 403 14.7 341.60
## 153 1.12658 0.0 19.58 1 0.8710 5.012 88.0 1.6102 5 403 14.7 343.28
## 154 2.14918 0.0 19.58 0 0.8710 5.709 98.5 1.6232 5 403 14.7 261.95
## 155 1.41385 0.0 19.58 1 0.8710 6.129 96.0 1.7494 5 403 14.7 321.02
## 156 3.53501 0.0 19.58 1 0.8710 6.152 82.6 1.7455 5 403 14.7 88.01
## 157 2.44668 0.0 19.58 0 0.8710 5.272 94.0 1.7364 5 403 14.7 88.63
## 158 1.22358 0.0 19.58 0 0.6050 6.943 97.4 1.8773 5 403 14.7 363.43
## 159 1.34284 0.0 19.58 0 0.6050 6.066 100.0 1.7573 5 403 14.7 353.89
## 160 1.42502 0.0 19.58 0 0.8710 6.510 100.0 1.7659 5 403 14.7 364.31
## 161 1.27346 0.0 19.58 1 0.6050 6.250 92.6 1.7984 5 403 14.7 338.92
## 162 1.46336 0.0 19.58 0 0.6050 7.489 90.8 1.9709 5 403 14.7 374.43
## 163 1.83377 0.0 19.58 1 0.6050 7.802 98.2 2.0407 5 403 14.7 389.61
## 164 1.51902 0.0 19.58 1 0.6050 8.375 93.9 2.1620 5 403 14.7 388.45
## 165 2.24236 0.0 19.58 0 0.6050 5.854 91.8 2.4220 5 403 14.7 395.11
## 166 2.92400 0.0 19.58 0 0.6050 6.101 93.0 2.2834 5 403 14.7 240.16
## 167 2.01019 0.0 19.58 0 0.6050 7.929 96.2 2.0459 5 403 14.7 369.30
## 168 1.80028 0.0 19.58 0 0.6050 5.877 79.2 2.4259 5 403 14.7 227.61
## 169 2.30040 0.0 19.58 0 0.6050 6.319 96.1 2.1000 5 403 14.7 297.09
## 170 2.44953 0.0 19.58 0 0.6050 6.402 95.2 2.2625 5 403 14.7 330.04
## 171 1.20742 0.0 19.58 0 0.6050 5.875 94.6 2.4259 5 403 14.7 292.29
## 172 2.31390 0.0 19.58 0 0.6050 5.880 97.3 2.3887 5 403 14.7 348.13
## 173 0.13914 0.0 4.05 0 0.5100 5.572 88.5 2.5961 5 296 16.6 396.90
## 174 0.09178 0.0 4.05 0 0.5100 6.416 84.1 2.6463 5 296 16.6 395.50
## 175 0.08447 0.0 4.05 0 0.5100 5.859 68.7 2.7019 5 296 16.6 393.23
## 176 0.06664 0.0 4.05 0 0.5100 6.546 33.1 3.1323 5 296 16.6 390.96
## 177 0.07022 0.0 4.05 0 0.5100 6.020 47.2 3.5549 5 296 16.6 393.23
## 178 0.05425 0.0 4.05 0 0.5100 6.315 73.4 3.3175 5 296 16.6 395.60
## 179 0.06642 0.0 4.05 0 0.5100 6.860 74.4 2.9153 5 296 16.6 391.27
## 180 0.05780 0.0 2.46 0 0.4880 6.980 58.4 2.8290 3 193 17.8 396.90
## 181 0.06588 0.0 2.46 0 0.4880 7.765 83.3 2.7410 3 193 17.8 395.56
## 182 0.06888 0.0 2.46 0 0.4880 6.144 62.2 2.5979 3 193 17.8 396.90
## 183 0.09103 0.0 2.46 0 0.4880 7.155 92.2 2.7006 3 193 17.8 394.12
## 184 0.10008 0.0 2.46 0 0.4880 6.563 95.6 2.8470 3 193 17.8 396.90
## 185 0.08308 0.0 2.46 0 0.4880 5.604 89.8 2.9879 3 193 17.8 391.00
## 186 0.06047 0.0 2.46 0 0.4880 6.153 68.8 3.2797 3 193 17.8 387.11
## 187 0.05602 0.0 2.46 0 0.4880 7.831 53.6 3.1992 3 193 17.8 392.63
## 188 0.07875 45.0 3.44 0 0.4370 6.782 41.1 3.7886 5 398 15.2 393.87
## 189 0.12579 45.0 3.44 0 0.4370 6.556 29.1 4.5667 5 398 15.2 382.84
## 190 0.08370 45.0 3.44 0 0.4370 7.185 38.9 4.5667 5 398 15.2 396.90
## 191 0.09068 45.0 3.44 0 0.4370 6.951 21.5 6.4798 5 398 15.2 377.68
## 192 0.06911 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 389.71
## 193 0.08664 45.0 3.44 0 0.4370 7.178 26.3 6.4798 5 398 15.2 390.49
## 194 0.02187 60.0 2.93 0 0.4010 6.800 9.9 6.2196 1 265 15.6 393.37
## 195 0.01439 60.0 2.93 0 0.4010 6.604 18.8 6.2196 1 265 15.6 376.70
## 196 0.01381 80.0 0.46 0 0.4220 7.875 32.0 5.6484 4 255 14.4 394.23
## 197 0.04011 80.0 1.52 0 0.4040 7.287 34.1 7.3090 2 329 12.6 396.90
## 198 0.04666 80.0 1.52 0 0.4040 7.107 36.6 7.3090 2 329 12.6 354.31
## 199 0.03768 80.0 1.52 0 0.4040 7.274 38.3 7.3090 2 329 12.6 392.20
## 200 0.03150 95.0 1.47 0 0.4030 6.975 15.3 7.6534 3 402 17.0 396.90
## 201 0.01778 95.0 1.47 0 0.4030 7.135 13.9 7.6534 3 402 17.0 384.30
## 202 0.03445 82.5 2.03 0 0.4150 6.162 38.4 6.2700 2 348 14.7 393.77
## 203 0.02177 82.5 2.03 0 0.4150 7.610 15.7 6.2700 2 348 14.7 395.38
## 204 0.03510 95.0 2.68 0 0.4161 7.853 33.2 5.1180 4 224 14.7 392.78
## 205 0.02009 95.0 2.68 0 0.4161 8.034 31.9 5.1180 4 224 14.7 390.55
## 206 0.13642 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 396.90
## 207 0.22969 0.0 10.59 0 0.4890 6.326 52.5 4.3549 4 277 18.6 394.87
## 208 0.25199 0.0 10.59 0 0.4890 5.783 72.7 4.3549 4 277 18.6 389.43
## 209 0.13587 0.0 10.59 1 0.4890 6.064 59.1 4.2392 4 277 18.6 381.32
## 210 0.43571 0.0 10.59 1 0.4890 5.344 100.0 3.8750 4 277 18.6 396.90
## 211 0.17446 0.0 10.59 1 0.4890 5.960 92.1 3.8771 4 277 18.6 393.25
## 212 0.37578 0.0 10.59 1 0.4890 5.404 88.6 3.6650 4 277 18.6 395.24
## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 390.94
## 214 0.14052 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 385.81
## 215 0.28955 0.0 10.59 0 0.4890 5.412 9.8 3.5875 4 277 18.6 348.93
## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 393.63
## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80
## 218 0.07013 0.0 13.89 0 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78
## 219 0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 396.90
## 220 0.11425 0.0 13.89 1 0.5500 6.373 92.4 3.3633 5 276 16.4 393.74
## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70
## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24
## 223 0.62356 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 390.39
## 224 0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90
## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05
## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00
## 227 0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38
## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08
## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51
## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34
## 231 0.53700 0.0 6.20 0 0.5040 5.981 68.1 3.6715 8 307 17.4 378.35
## 232 0.46296 0.0 6.20 0 0.5040 7.412 76.9 3.6715 8 307 17.4 376.14
## 233 0.57529 0.0 6.20 0 0.5070 8.337 73.3 3.8384 8 307 17.4 385.91
## 234 0.33147 0.0 6.20 0 0.5070 8.247 70.4 3.6519 8 307 17.4 378.95
## 235 0.44791 0.0 6.20 1 0.5070 6.726 66.5 3.6519 8 307 17.4 360.20
## 236 0.33045 0.0 6.20 0 0.5070 6.086 61.5 3.6519 8 307 17.4 376.75
## 237 0.52058 0.0 6.20 1 0.5070 6.631 76.5 4.1480 8 307 17.4 388.45
## 238 0.51183 0.0 6.20 0 0.5070 7.358 71.6 4.1480 8 307 17.4 390.07
## 239 0.08244 30.0 4.93 0 0.4280 6.481 18.5 6.1899 6 300 16.6 379.41
## 240 0.09252 30.0 4.93 0 0.4280 6.606 42.2 6.1899 6 300 16.6 383.78
## 241 0.11329 30.0 4.93 0 0.4280 6.897 54.3 6.3361 6 300 16.6 391.25
## 242 0.10612 30.0 4.93 0 0.4280 6.095 65.1 6.3361 6 300 16.6 394.62
## 243 0.10290 30.0 4.93 0 0.4280 6.358 52.9 7.0355 6 300 16.6 372.75
## 244 0.12757 30.0 4.93 0 0.4280 6.393 7.8 7.0355 6 300 16.6 374.71
## 245 0.20608 22.0 5.86 0 0.4310 5.593 76.5 7.9549 7 330 19.1 372.49
## 246 0.19133 22.0 5.86 0 0.4310 5.605 70.2 7.9549 7 330 19.1 389.13
## 247 0.33983 22.0 5.86 0 0.4310 6.108 34.9 8.0555 7 330 19.1 390.18
## 248 0.19657 22.0 5.86 0 0.4310 6.226 79.2 8.0555 7 330 19.1 376.14
## 249 0.16439 22.0 5.86 0 0.4310 6.433 49.1 7.8265 7 330 19.1 374.71
## 250 0.19073 22.0 5.86 0 0.4310 6.718 17.5 7.8265 7 330 19.1 393.74
## 251 0.14030 22.0 5.86 0 0.4310 6.487 13.0 7.3967 7 330 19.1 396.28
## 252 0.21409 22.0 5.86 0 0.4310 6.438 8.9 7.3967 7 330 19.1 377.07
## 253 0.08221 22.0 5.86 0 0.4310 6.957 6.8 8.9067 7 330 19.1 386.09
## 254 0.36894 22.0 5.86 0 0.4310 8.259 8.4 8.9067 7 330 19.1 396.90
## 255 0.04819 80.0 3.64 0 0.3920 6.108 32.0 9.2203 1 315 16.4 392.89
## 256 0.03548 80.0 3.64 0 0.3920 5.876 19.1 9.2203 1 315 16.4 395.18
## 257 0.01538 90.0 3.75 0 0.3940 7.454 34.2 6.3361 3 244 15.9 386.34
## 258 0.61154 20.0 3.97 0 0.6470 8.704 86.9 1.8010 5 264 13.0 389.70
## 259 0.66351 20.0 3.97 0 0.6470 7.333 100.0 1.8946 5 264 13.0 383.29
## 260 0.65665 20.0 3.97 0 0.6470 6.842 100.0 2.0107 5 264 13.0 391.93
## 261 0.54011 20.0 3.97 0 0.6470 7.203 81.8 2.1121 5 264 13.0 392.80
## 262 0.53412 20.0 3.97 0 0.6470 7.520 89.4 2.1398 5 264 13.0 388.37
## 263 0.52014 20.0 3.97 0 0.6470 8.398 91.5 2.2885 5 264 13.0 386.86
## 264 0.82526 20.0 3.97 0 0.6470 7.327 94.5 2.0788 5 264 13.0 393.42
## 265 0.55007 20.0 3.97 0 0.6470 7.206 91.6 1.9301 5 264 13.0 387.89
## 266 0.76162 20.0 3.97 0 0.6470 5.560 62.8 1.9865 5 264 13.0 392.40
## 267 0.78570 20.0 3.97 0 0.6470 7.014 84.6 2.1329 5 264 13.0 384.07
## 268 0.57834 20.0 3.97 0 0.5750 8.297 67.0 2.4216 5 264 13.0 384.54
## 269 0.54050 20.0 3.97 0 0.5750 7.470 52.6 2.8720 5 264 13.0 390.30
## 270 0.09065 20.0 6.96 1 0.4640 5.920 61.5 3.9175 3 223 18.6 391.34
## 271 0.29916 20.0 6.96 0 0.4640 5.856 42.1 4.4290 3 223 18.6 388.65
## 272 0.16211 20.0 6.96 0 0.4640 6.240 16.3 4.4290 3 223 18.6 396.90
## 273 0.11460 20.0 6.96 0 0.4640 6.538 58.7 3.9175 3 223 18.6 394.96
## 274 0.22188 20.0 6.96 1 0.4640 7.691 51.8 4.3665 3 223 18.6 390.77
## 275 0.05644 40.0 6.41 1 0.4470 6.758 32.9 4.0776 4 254 17.6 396.90
## 276 0.09604 40.0 6.41 0 0.4470 6.854 42.8 4.2673 4 254 17.6 396.90
## 277 0.10469 40.0 6.41 1 0.4470 7.267 49.0 4.7872 4 254 17.6 389.25
## 278 0.06127 40.0 6.41 1 0.4470 6.826 27.6 4.8628 4 254 17.6 393.45
## 279 0.07978 40.0 6.41 0 0.4470 6.482 32.1 4.1403 4 254 17.6 396.90
## 280 0.21038 20.0 3.33 0 0.4429 6.812 32.2 4.1007 5 216 14.9 396.90
## 281 0.03578 20.0 3.33 0 0.4429 7.820 64.5 4.6947 5 216 14.9 387.31
## 282 0.03705 20.0 3.33 0 0.4429 6.968 37.2 5.2447 5 216 14.9 392.23
## 283 0.06129 20.0 3.33 1 0.4429 7.645 49.7 5.2119 5 216 14.9 377.07
## 284 0.01501 90.0 1.21 1 0.4010 7.923 24.8 5.8850 1 198 13.6 395.52
## 285 0.00906 90.0 2.97 0 0.4000 7.088 20.8 7.3073 1 285 15.3 394.72
## 286 0.01096 55.0 2.25 0 0.3890 6.453 31.9 7.3073 1 300 15.3 394.72
## 287 0.01965 80.0 1.76 0 0.3850 6.230 31.5 9.0892 1 241 18.2 341.60
## 288 0.03871 52.5 5.32 0 0.4050 6.209 31.3 7.3172 6 293 16.6 396.90
## 289 0.04590 52.5 5.32 0 0.4050 6.315 45.6 7.3172 6 293 16.6 396.90
## 290 0.04297 52.5 5.32 0 0.4050 6.565 22.9 7.3172 6 293 16.6 371.72
## 291 0.03502 80.0 4.95 0 0.4110 6.861 27.9 5.1167 4 245 19.2 396.90
## 292 0.07886 80.0 4.95 0 0.4110 7.148 27.7 5.1167 4 245 19.2 396.90
## 293 0.03615 80.0 4.95 0 0.4110 6.630 23.4 5.1167 4 245 19.2 396.90
## 294 0.08265 0.0 13.92 0 0.4370 6.127 18.4 5.5027 4 289 16.0 396.90
## 295 0.08199 0.0 13.92 0 0.4370 6.009 42.3 5.5027 4 289 16.0 396.90
## 296 0.12932 0.0 13.92 0 0.4370 6.678 31.1 5.9604 4 289 16.0 396.90
## 297 0.05372 0.0 13.92 0 0.4370 6.549 51.0 5.9604 4 289 16.0 392.85
## 298 0.14103 0.0 13.92 0 0.4370 5.790 58.0 6.3200 4 289 16.0 396.90
## 299 0.06466 70.0 2.24 0 0.4000 6.345 20.1 7.8278 5 358 14.8 368.24
## 300 0.05561 70.0 2.24 0 0.4000 7.041 10.0 7.8278 5 358 14.8 371.58
## 301 0.04417 70.0 2.24 0 0.4000 6.871 47.4 7.8278 5 358 14.8 390.86
## 302 0.03537 34.0 6.09 0 0.4330 6.590 40.4 5.4917 7 329 16.1 395.75
## 303 0.09266 34.0 6.09 0 0.4330 6.495 18.4 5.4917 7 329 16.1 383.61
## 304 0.10000 34.0 6.09 0 0.4330 6.982 17.7 5.4917 7 329 16.1 390.43
## 305 0.05515 33.0 2.18 0 0.4720 7.236 41.1 4.0220 7 222 18.4 393.68
## 306 0.05479 33.0 2.18 0 0.4720 6.616 58.1 3.3700 7 222 18.4 393.36
## 307 0.07503 33.0 2.18 0 0.4720 7.420 71.9 3.0992 7 222 18.4 396.90
## 308 0.04932 33.0 2.18 0 0.4720 6.849 70.3 3.1827 7 222 18.4 396.90
## 309 0.49298 0.0 9.90 0 0.5440 6.635 82.5 3.3175 4 304 18.4 396.90
## 310 0.34940 0.0 9.90 0 0.5440 5.972 76.7 3.1025 4 304 18.4 396.24
## 311 2.63548 0.0 9.90 0 0.5440 4.973 37.8 2.5194 4 304 18.4 350.45
## 312 0.79041 0.0 9.90 0 0.5440 6.122 52.8 2.6403 4 304 18.4 396.90
## 313 0.26169 0.0 9.90 0 0.5440 6.023 90.4 2.8340 4 304 18.4 396.30
## 314 0.26938 0.0 9.90 0 0.5440 6.266 82.8 3.2628 4 304 18.4 393.39
## 315 0.36920 0.0 9.90 0 0.5440 6.567 87.3 3.6023 4 304 18.4 395.69
## 316 0.25356 0.0 9.90 0 0.5440 5.705 77.7 3.9450 4 304 18.4 396.42
## 317 0.31827 0.0 9.90 0 0.5440 5.914 83.2 3.9986 4 304 18.4 390.70
## 318 0.24522 0.0 9.90 0 0.5440 5.782 71.7 4.0317 4 304 18.4 396.90
## 319 0.40202 0.0 9.90 0 0.5440 6.382 67.2 3.5325 4 304 18.4 395.21
## 320 0.47547 0.0 9.90 0 0.5440 6.113 58.8 4.0019 4 304 18.4 396.23
## 321 0.16760 0.0 7.38 0 0.4930 6.426 52.3 4.5404 5 287 19.6 396.90
## 322 0.18159 0.0 7.38 0 0.4930 6.376 54.3 4.5404 5 287 19.6 396.90
## 323 0.35114 0.0 7.38 0 0.4930 6.041 49.9 4.7211 5 287 19.6 396.90
## 324 0.28392 0.0 7.38 0 0.4930 5.708 74.3 4.7211 5 287 19.6 391.13
## 325 0.34109 0.0 7.38 0 0.4930 6.415 40.1 4.7211 5 287 19.6 396.90
## 326 0.19186 0.0 7.38 0 0.4930 6.431 14.7 5.4159 5 287 19.6 393.68
## 327 0.30347 0.0 7.38 0 0.4930 6.312 28.9 5.4159 5 287 19.6 396.90
## 328 0.24103 0.0 7.38 0 0.4930 6.083 43.7 5.4159 5 287 19.6 396.90
## 329 0.06617 0.0 3.24 0 0.4600 5.868 25.8 5.2146 4 430 16.9 382.44
## 330 0.06724 0.0 3.24 0 0.4600 6.333 17.2 5.2146 4 430 16.9 375.21
## 331 0.04544 0.0 3.24 0 0.4600 6.144 32.2 5.8736 4 430 16.9 368.57
## 332 0.05023 35.0 6.06 0 0.4379 5.706 28.4 6.6407 1 304 16.9 394.02
## 333 0.03466 35.0 6.06 0 0.4379 6.031 23.3 6.6407 1 304 16.9 362.25
## 334 0.05083 0.0 5.19 0 0.5150 6.316 38.1 6.4584 5 224 20.2 389.71
## 335 0.03738 0.0 5.19 0 0.5150 6.310 38.5 6.4584 5 224 20.2 389.40
## 336 0.03961 0.0 5.19 0 0.5150 6.037 34.5 5.9853 5 224 20.2 396.90
## 337 0.03427 0.0 5.19 0 0.5150 5.869 46.3 5.2311 5 224 20.2 396.90
## 338 0.03041 0.0 5.19 0 0.5150 5.895 59.6 5.6150 5 224 20.2 394.81
## 339 0.03306 0.0 5.19 0 0.5150 6.059 37.3 4.8122 5 224 20.2 396.14
## 340 0.05497 0.0 5.19 0 0.5150 5.985 45.4 4.8122 5 224 20.2 396.90
## 341 0.06151 0.0 5.19 0 0.5150 5.968 58.5 4.8122 5 224 20.2 396.90
## 342 0.01301 35.0 1.52 0 0.4420 7.241 49.3 7.0379 1 284 15.5 394.74
## 343 0.02498 0.0 1.89 0 0.5180 6.540 59.7 6.2669 1 422 15.9 389.96
## 344 0.02543 55.0 3.78 0 0.4840 6.696 56.4 5.7321 5 370 17.6 396.90
## 345 0.03049 55.0 3.78 0 0.4840 6.874 28.1 6.4654 5 370 17.6 387.97
## 346 0.03113 0.0 4.39 0 0.4420 6.014 48.5 8.0136 3 352 18.8 385.64
## 347 0.06162 0.0 4.39 0 0.4420 5.898 52.3 8.0136 3 352 18.8 364.61
## 348 0.01870 85.0 4.15 0 0.4290 6.516 27.7 8.5353 4 351 17.9 392.43
## 349 0.01501 80.0 2.01 0 0.4350 6.635 29.7 8.3440 4 280 17.0 390.94
## 350 0.02899 40.0 1.25 0 0.4290 6.939 34.5 8.7921 1 335 19.7 389.85
## 351 0.06211 40.0 1.25 0 0.4290 6.490 44.4 8.7921 1 335 19.7 396.90
## 352 0.07950 60.0 1.69 0 0.4110 6.579 35.9 10.7103 4 411 18.3 370.78
## 353 0.07244 60.0 1.69 0 0.4110 5.884 18.5 10.7103 4 411 18.3 392.33
## 354 0.01709 90.0 2.02 0 0.4100 6.728 36.1 12.1265 5 187 17.0 384.46
## 355 0.04301 80.0 1.91 0 0.4130 5.663 21.9 10.5857 4 334 22.0 382.80
## 356 0.10659 80.0 1.91 0 0.4130 5.936 19.5 10.5857 4 334 22.0 376.04
## 357 8.98296 0.0 18.10 1 0.7700 6.212 97.4 2.1222 24 666 20.2 377.73
## 358 3.84970 0.0 18.10 1 0.7700 6.395 91.0 2.5052 24 666 20.2 391.34
## 359 5.20177 0.0 18.10 1 0.7700 6.127 83.4 2.7227 24 666 20.2 395.43
## 360 4.26131 0.0 18.10 0 0.7700 6.112 81.3 2.5091 24 666 20.2 390.74
## 361 4.54192 0.0 18.10 0 0.7700 6.398 88.0 2.5182 24 666 20.2 374.56
## 362 3.83684 0.0 18.10 0 0.7700 6.251 91.1 2.2955 24 666 20.2 350.65
## 363 3.67822 0.0 18.10 0 0.7700 5.362 96.2 2.1036 24 666 20.2 380.79
## 364 4.22239 0.0 18.10 1 0.7700 5.803 89.0 1.9047 24 666 20.2 353.04
## 365 3.47428 0.0 18.10 1 0.7180 8.780 82.9 1.9047 24 666 20.2 354.55
## 366 4.55587 0.0 18.10 0 0.7180 3.561 87.9 1.6132 24 666 20.2 354.70
## 367 3.69695 0.0 18.10 0 0.7180 4.963 91.4 1.7523 24 666 20.2 316.03
## 368 13.52220 0.0 18.10 0 0.6310 3.863 100.0 1.5106 24 666 20.2 131.42
## 369 4.89822 0.0 18.10 0 0.6310 4.970 100.0 1.3325 24 666 20.2 375.52
## 370 5.66998 0.0 18.10 1 0.6310 6.683 96.8 1.3567 24 666 20.2 375.33
## 371 6.53876 0.0 18.10 1 0.6310 7.016 97.5 1.2024 24 666 20.2 392.05
## 372 9.23230 0.0 18.10 0 0.6310 6.216 100.0 1.1691 24 666 20.2 366.15
## 373 8.26725 0.0 18.10 1 0.6680 5.875 89.6 1.1296 24 666 20.2 347.88
## 374 11.10810 0.0 18.10 0 0.6680 4.906 100.0 1.1742 24 666 20.2 396.90
## 375 18.49820 0.0 18.10 0 0.6680 4.138 100.0 1.1370 24 666 20.2 396.90
## 376 19.60910 0.0 18.10 0 0.6710 7.313 97.9 1.3163 24 666 20.2 396.90
## 377 15.28800 0.0 18.10 0 0.6710 6.649 93.3 1.3449 24 666 20.2 363.02
## 378 9.82349 0.0 18.10 0 0.6710 6.794 98.8 1.3580 24 666 20.2 396.90
## 379 23.64820 0.0 18.10 0 0.6710 6.380 96.2 1.3861 24 666 20.2 396.90
## 380 17.86670 0.0 18.10 0 0.6710 6.223 100.0 1.3861 24 666 20.2 393.74
## 381 88.97620 0.0 18.10 0 0.6710 6.968 91.9 1.4165 24 666 20.2 396.90
## 382 15.87440 0.0 18.10 0 0.6710 6.545 99.1 1.5192 24 666 20.2 396.90
## 383 9.18702 0.0 18.10 0 0.7000 5.536 100.0 1.5804 24 666 20.2 396.90
## 384 7.99248 0.0 18.10 0 0.7000 5.520 100.0 1.5331 24 666 20.2 396.90
## 385 20.08490 0.0 18.10 0 0.7000 4.368 91.2 1.4395 24 666 20.2 285.83
## 386 16.81180 0.0 18.10 0 0.7000 5.277 98.1 1.4261 24 666 20.2 396.90
## 387 24.39380 0.0 18.10 0 0.7000 4.652 100.0 1.4672 24 666 20.2 396.90
## 388 22.59710 0.0 18.10 0 0.7000 5.000 89.5 1.5184 24 666 20.2 396.90
## 389 14.33370 0.0 18.10 0 0.7000 4.880 100.0 1.5895 24 666 20.2 372.92
## 390 8.15174 0.0 18.10 0 0.7000 5.390 98.9 1.7281 24 666 20.2 396.90
## 391 6.96215 0.0 18.10 0 0.7000 5.713 97.0 1.9265 24 666 20.2 394.43
## 392 5.29305 0.0 18.10 0 0.7000 6.051 82.5 2.1678 24 666 20.2 378.38
## 393 11.57790 0.0 18.10 0 0.7000 5.036 97.0 1.7700 24 666 20.2 396.90
## 394 8.64476 0.0 18.10 0 0.6930 6.193 92.6 1.7912 24 666 20.2 396.90
## 395 13.35980 0.0 18.10 0 0.6930 5.887 94.7 1.7821 24 666 20.2 396.90
## 396 8.71675 0.0 18.10 0 0.6930 6.471 98.8 1.7257 24 666 20.2 391.98
## 397 5.87205 0.0 18.10 0 0.6930 6.405 96.0 1.6768 24 666 20.2 396.90
## 398 7.67202 0.0 18.10 0 0.6930 5.747 98.9 1.6334 24 666 20.2 393.10
## 399 38.35180 0.0 18.10 0 0.6930 5.453 100.0 1.4896 24 666 20.2 396.90
## 400 9.91655 0.0 18.10 0 0.6930 5.852 77.8 1.5004 24 666 20.2 338.16
## 401 25.04610 0.0 18.10 0 0.6930 5.987 100.0 1.5888 24 666 20.2 396.90
## 402 14.23620 0.0 18.10 0 0.6930 6.343 100.0 1.5741 24 666 20.2 396.90
## 403 9.59571 0.0 18.10 0 0.6930 6.404 100.0 1.6390 24 666 20.2 376.11
## 404 24.80170 0.0 18.10 0 0.6930 5.349 96.0 1.7028 24 666 20.2 396.90
## 405 41.52920 0.0 18.10 0 0.6930 5.531 85.4 1.6074 24 666 20.2 329.46
## 406 67.92080 0.0 18.10 0 0.6930 5.683 100.0 1.4254 24 666 20.2 384.97
## 407 20.71620 0.0 18.10 0 0.6590 4.138 100.0 1.1781 24 666 20.2 370.22
## 408 11.95110 0.0 18.10 0 0.6590 5.608 100.0 1.2852 24 666 20.2 332.09
## 409 7.40389 0.0 18.10 0 0.5970 5.617 97.9 1.4547 24 666 20.2 314.64
## 410 14.43830 0.0 18.10 0 0.5970 6.852 100.0 1.4655 24 666 20.2 179.36
## 411 51.13580 0.0 18.10 0 0.5970 5.757 100.0 1.4130 24 666 20.2 2.60
## 412 14.05070 0.0 18.10 0 0.5970 6.657 100.0 1.5275 24 666 20.2 35.05
## 413 18.81100 0.0 18.10 0 0.5970 4.628 100.0 1.5539 24 666 20.2 28.79
## 414 28.65580 0.0 18.10 0 0.5970 5.155 100.0 1.5894 24 666 20.2 210.97
## 415 45.74610 0.0 18.10 0 0.6930 4.519 100.0 1.6582 24 666 20.2 88.27
## 416 18.08460 0.0 18.10 0 0.6790 6.434 100.0 1.8347 24 666 20.2 27.25
## 417 10.83420 0.0 18.10 0 0.6790 6.782 90.8 1.8195 24 666 20.2 21.57
## 418 25.94060 0.0 18.10 0 0.6790 5.304 89.1 1.6475 24 666 20.2 127.36
## 419 73.53410 0.0 18.10 0 0.6790 5.957 100.0 1.8026 24 666 20.2 16.45
## 420 11.81230 0.0 18.10 0 0.7180 6.824 76.5 1.7940 24 666 20.2 48.45
## 421 11.08740 0.0 18.10 0 0.7180 6.411 100.0 1.8589 24 666 20.2 318.75
## 422 7.02259 0.0 18.10 0 0.7180 6.006 95.3 1.8746 24 666 20.2 319.98
## 423 12.04820 0.0 18.10 0 0.6140 5.648 87.6 1.9512 24 666 20.2 291.55
## 424 7.05042 0.0 18.10 0 0.6140 6.103 85.1 2.0218 24 666 20.2 2.52
## 425 8.79212 0.0 18.10 0 0.5840 5.565 70.6 2.0635 24 666 20.2 3.65
## 426 15.86030 0.0 18.10 0 0.6790 5.896 95.4 1.9096 24 666 20.2 7.68
## 427 12.24720 0.0 18.10 0 0.5840 5.837 59.7 1.9976 24 666 20.2 24.65
## 428 37.66190 0.0 18.10 0 0.6790 6.202 78.7 1.8629 24 666 20.2 18.82
## 429 7.36711 0.0 18.10 0 0.6790 6.193 78.1 1.9356 24 666 20.2 96.73
## 430 9.33889 0.0 18.10 0 0.6790 6.380 95.6 1.9682 24 666 20.2 60.72
## 431 8.49213 0.0 18.10 0 0.5840 6.348 86.1 2.0527 24 666 20.2 83.45
## 432 10.06230 0.0 18.10 0 0.5840 6.833 94.3 2.0882 24 666 20.2 81.33
## 433 6.44405 0.0 18.10 0 0.5840 6.425 74.8 2.2004 24 666 20.2 97.95
## 434 5.58107 0.0 18.10 0 0.7130 6.436 87.9 2.3158 24 666 20.2 100.19
## 435 13.91340 0.0 18.10 0 0.7130 6.208 95.0 2.2222 24 666 20.2 100.63
## 436 11.16040 0.0 18.10 0 0.7400 6.629 94.6 2.1247 24 666 20.2 109.85
## 437 14.42080 0.0 18.10 0 0.7400 6.461 93.3 2.0026 24 666 20.2 27.49
## 438 15.17720 0.0 18.10 0 0.7400 6.152 100.0 1.9142 24 666 20.2 9.32
## 439 13.67810 0.0 18.10 0 0.7400 5.935 87.9 1.8206 24 666 20.2 68.95
## 440 9.39063 0.0 18.10 0 0.7400 5.627 93.9 1.8172 24 666 20.2 396.90
## 441 22.05110 0.0 18.10 0 0.7400 5.818 92.4 1.8662 24 666 20.2 391.45
## 442 9.72418 0.0 18.10 0 0.7400 6.406 97.2 2.0651 24 666 20.2 385.96
## 443 5.66637 0.0 18.10 0 0.7400 6.219 100.0 2.0048 24 666 20.2 395.69
## 444 9.96654 0.0 18.10 0 0.7400 6.485 100.0 1.9784 24 666 20.2 386.73
## 445 12.80230 0.0 18.10 0 0.7400 5.854 96.6 1.8956 24 666 20.2 240.52
## 446 10.67180 0.0 18.10 0 0.7400 6.459 94.8 1.9879 24 666 20.2 43.06
## 447 6.28807 0.0 18.10 0 0.7400 6.341 96.4 2.0720 24 666 20.2 318.01
## 448 9.92485 0.0 18.10 0 0.7400 6.251 96.6 2.1980 24 666 20.2 388.52
## 449 9.32909 0.0 18.10 0 0.7130 6.185 98.7 2.2616 24 666 20.2 396.90
## 450 7.52601 0.0 18.10 0 0.7130 6.417 98.3 2.1850 24 666 20.2 304.21
## 451 6.71772 0.0 18.10 0 0.7130 6.749 92.6 2.3236 24 666 20.2 0.32
## 452 5.44114 0.0 18.10 0 0.7130 6.655 98.2 2.3552 24 666 20.2 355.29
## 453 5.09017 0.0 18.10 0 0.7130 6.297 91.8 2.3682 24 666 20.2 385.09
## 454 8.24809 0.0 18.10 0 0.7130 7.393 99.3 2.4527 24 666 20.2 375.87
## 455 9.51363 0.0 18.10 0 0.7130 6.728 94.1 2.4961 24 666 20.2 6.68
## 456 4.75237 0.0 18.10 0 0.7130 6.525 86.5 2.4358 24 666 20.2 50.92
## 457 4.66883 0.0 18.10 0 0.7130 5.976 87.9 2.5806 24 666 20.2 10.48
## 458 8.20058 0.0 18.10 0 0.7130 5.936 80.3 2.7792 24 666 20.2 3.50
## 459 7.75223 0.0 18.10 0 0.7130 6.301 83.7 2.7831 24 666 20.2 272.21
## 460 6.80117 0.0 18.10 0 0.7130 6.081 84.4 2.7175 24 666 20.2 396.90
## 461 4.81213 0.0 18.10 0 0.7130 6.701 90.0 2.5975 24 666 20.2 255.23
## 462 3.69311 0.0 18.10 0 0.7130 6.376 88.4 2.5671 24 666 20.2 391.43
## 463 6.65492 0.0 18.10 0 0.7130 6.317 83.0 2.7344 24 666 20.2 396.90
## 464 5.82115 0.0 18.10 0 0.7130 6.513 89.9 2.8016 24 666 20.2 393.82
## 465 7.83932 0.0 18.10 0 0.6550 6.209 65.4 2.9634 24 666 20.2 396.90
## 466 3.16360 0.0 18.10 0 0.6550 5.759 48.2 3.0665 24 666 20.2 334.40
## 467 3.77498 0.0 18.10 0 0.6550 5.952 84.7 2.8715 24 666 20.2 22.01
## 468 4.42228 0.0 18.10 0 0.5840 6.003 94.5 2.5403 24 666 20.2 331.29
## 469 15.57570 0.0 18.10 0 0.5800 5.926 71.0 2.9084 24 666 20.2 368.74
## 470 13.07510 0.0 18.10 0 0.5800 5.713 56.7 2.8237 24 666 20.2 396.90
## 471 4.34879 0.0 18.10 0 0.5800 6.167 84.0 3.0334 24 666 20.2 396.90
## 472 4.03841 0.0 18.10 0 0.5320 6.229 90.7 3.0993 24 666 20.2 395.33
## 473 3.56868 0.0 18.10 0 0.5800 6.437 75.0 2.8965 24 666 20.2 393.37
## 474 4.64689 0.0 18.10 0 0.6140 6.980 67.6 2.5329 24 666 20.2 374.68
## 475 8.05579 0.0 18.10 0 0.5840 5.427 95.4 2.4298 24 666 20.2 352.58
## 476 6.39312 0.0 18.10 0 0.5840 6.162 97.4 2.2060 24 666 20.2 302.76
## 477 4.87141 0.0 18.10 0 0.6140 6.484 93.6 2.3053 24 666 20.2 396.21
## 478 15.02340 0.0 18.10 0 0.6140 5.304 97.3 2.1007 24 666 20.2 349.48
## 479 10.23300 0.0 18.10 0 0.6140 6.185 96.7 2.1705 24 666 20.2 379.70
## 480 14.33370 0.0 18.10 0 0.6140 6.229 88.0 1.9512 24 666 20.2 383.32
## 481 5.82401 0.0 18.10 0 0.5320 6.242 64.7 3.4242 24 666 20.2 396.90
## 482 5.70818 0.0 18.10 0 0.5320 6.750 74.9 3.3317 24 666 20.2 393.07
## 483 5.73116 0.0 18.10 0 0.5320 7.061 77.0 3.4106 24 666 20.2 395.28
## 484 2.81838 0.0 18.10 0 0.5320 5.762 40.3 4.0983 24 666 20.2 392.92
## 485 2.37857 0.0 18.10 0 0.5830 5.871 41.9 3.7240 24 666 20.2 370.73
## 486 3.67367 0.0 18.10 0 0.5830 6.312 51.9 3.9917 24 666 20.2 388.62
## 487 5.69175 0.0 18.10 0 0.5830 6.114 79.8 3.5459 24 666 20.2 392.68
## 488 4.83567 0.0 18.10 0 0.5830 5.905 53.2 3.1523 24 666 20.2 388.22
## 489 0.15086 0.0 27.74 0 0.6090 5.454 92.7 1.8209 4 711 20.1 395.09
## 490 0.18337 0.0 27.74 0 0.6090 5.414 98.3 1.7554 4 711 20.1 344.05
## 491 0.20746 0.0 27.74 0 0.6090 5.093 98.0 1.8226 4 711 20.1 318.43
## 492 0.10574 0.0 27.74 0 0.6090 5.983 98.8 1.8681 4 711 20.1 390.11
## 493 0.11132 0.0 27.74 0 0.6090 5.983 83.5 2.1099 4 711 20.1 396.90
## 494 0.17331 0.0 9.69 0 0.5850 5.707 54.0 2.3817 6 391 19.2 396.90
## 495 0.27957 0.0 9.69 0 0.5850 5.926 42.6 2.3817 6 391 19.2 396.90
## 496 0.17899 0.0 9.69 0 0.5850 5.670 28.8 2.7986 6 391 19.2 393.29
## 497 0.28960 0.0 9.69 0 0.5850 5.390 72.9 2.7986 6 391 19.2 396.90
## 498 0.26838 0.0 9.69 0 0.5850 5.794 70.6 2.8927 6 391 19.2 396.90
## 499 0.23912 0.0 9.69 0 0.5850 6.019 65.3 2.4091 6 391 19.2 396.90
## 500 0.17783 0.0 9.69 0 0.5850 5.569 73.5 2.3999 6 391 19.2 395.77
## 501 0.22438 0.0 9.69 0 0.5850 6.027 79.7 2.4982 6 391 19.2 396.90
## 502 0.06263 0.0 11.93 0 0.5730 6.593 69.1 2.4786 1 273 21.0 391.99
## 503 0.04527 0.0 11.93 0 0.5730 6.120 76.7 2.2875 1 273 21.0 396.90
## 504 0.06076 0.0 11.93 0 0.5730 6.976 91.0 2.1675 1 273 21.0 396.90
## 505 0.10959 0.0 11.93 0 0.5730 6.794 89.3 2.3889 1 273 21.0 393.45
## 506 0.04741 0.0 11.93 0 0.5730 6.030 80.8 2.5050 1 273 21.0 396.90
## lstat medv
## 1 4.98 24.0
## 2 9.14 21.6
## 3 4.03 34.7
## 4 2.94 33.4
## 5 5.33 36.2
## 6 5.21 28.7
## 7 12.43 22.9
## 8 19.15 27.1
## 9 29.93 16.5
## 10 17.10 18.9
## 11 20.45 15.0
## 12 13.27 18.9
## 13 15.71 21.7
## 14 8.26 20.4
## 15 10.26 18.2
## 16 8.47 19.9
## 17 6.58 23.1
## 18 14.67 17.5
## 19 11.69 20.2
## 20 11.28 18.2
## 21 21.02 13.6
## 22 13.83 19.6
## 23 18.72 15.2
## 24 19.88 14.5
## 25 16.30 15.6
## 26 16.51 13.9
## 27 14.81 16.6
## 28 17.28 14.8
## 29 12.80 18.4
## 30 11.98 21.0
## 31 22.60 12.7
## 32 13.04 14.5
## 33 27.71 13.2
## 34 18.35 13.1
## 35 20.34 13.5
## 36 9.68 18.9
## 37 11.41 20.0
## 38 8.77 21.0
## 39 10.13 24.7
## 40 4.32 30.8
## 41 1.98 34.9
## 42 4.84 26.6
## 43 5.81 25.3
## 44 7.44 24.7
## 45 9.55 21.2
## 46 10.21 19.3
## 47 14.15 20.0
## 48 18.80 16.6
## 49 30.81 14.4
## 50 16.20 19.4
## 51 13.45 19.7
## 52 9.43 20.5
## 53 5.28 25.0
## 54 8.43 23.4
## 55 14.80 18.9
## 56 4.81 35.4
## 57 5.77 24.7
## 58 3.95 31.6
## 59 6.86 23.3
## 60 9.22 19.6
## 61 13.15 18.7
## 62 14.44 16.0
## 63 6.73 22.2
## 64 9.50 25.0
## 65 8.05 33.0
## 66 4.67 23.5
## 67 10.24 19.4
## 68 8.10 22.0
## 69 13.09 17.4
## 70 8.79 20.9
## 71 6.72 24.2
## 72 9.88 21.7
## 73 5.52 22.8
## 74 7.54 23.4
## 75 6.78 24.1
## 76 8.94 21.4
## 77 11.97 20.0
## 78 10.27 20.8
## 79 12.34 21.2
## 80 9.10 20.3
## 81 5.29 28.0
## 82 7.22 23.9
## 83 6.72 24.8
## 84 7.51 22.9
## 85 9.62 23.9
## 86 6.53 26.6
## 87 12.86 22.5
## 88 8.44 22.2
## 89 5.50 23.6
## 90 5.70 28.7
## 91 8.81 22.6
## 92 8.20 22.0
## 93 8.16 22.9
## 94 6.21 25.0
## 95 10.59 20.6
## 96 6.65 28.4
## 97 11.34 21.4
## 98 4.21 38.7
## 99 3.57 43.8
## 100 6.19 33.2
## 101 9.42 27.5
## 102 7.67 26.5
## 103 10.63 18.6
## 104 13.44 19.3
## 105 12.33 20.1
## 106 16.47 19.5
## 107 18.66 19.5
## 108 14.09 20.4
## 109 12.27 19.8
## 110 15.55 19.4
## 111 13.00 21.7
## 112 10.16 22.8
## 113 16.21 18.8
## 114 17.09 18.7
## 115 10.45 18.5
## 116 15.76 18.3
## 117 12.04 21.2
## 118 10.30 19.2
## 119 15.37 20.4
## 120 13.61 19.3
## 121 14.37 22.0
## 122 14.27 20.3
## 123 17.93 20.5
## 124 25.41 17.3
## 125 17.58 18.8
## 126 14.81 21.4
## 127 27.26 15.7
## 128 17.19 16.2
## 129 15.39 18.0
## 130 18.34 14.3
## 131 12.60 19.2
## 132 12.26 19.6
## 133 11.12 23.0
## 134 15.03 18.4
## 135 17.31 15.6
## 136 16.96 18.1
## 137 16.90 17.4
## 138 14.59 17.1
## 139 21.32 13.3
## 140 18.46 17.8
## 141 24.16 14.0
## 142 34.41 14.4
## 143 26.82 13.4
## 144 26.42 15.6
## 145 29.29 11.8
## 146 27.80 13.8
## 147 16.65 15.6
## 148 29.53 14.6
## 149 28.32 17.8
## 150 21.45 15.4
## 151 14.10 21.5
## 152 13.28 19.6
## 153 12.12 15.3
## 154 15.79 19.4
## 155 15.12 17.0
## 156 15.02 15.6
## 157 16.14 13.1
## 158 4.59 41.3
## 159 6.43 24.3
## 160 7.39 23.3
## 161 5.50 27.0
## 162 1.73 50.0
## 163 1.92 50.0
## 164 3.32 50.0
## 165 11.64 22.7
## 166 9.81 25.0
## 167 3.70 50.0
## 168 12.14 23.8
## 169 11.10 23.8
## 170 11.32 22.3
## 171 14.43 17.4
## 172 12.03 19.1
## 173 14.69 23.1
## 174 9.04 23.6
## 175 9.64 22.6
## 176 5.33 29.4
## 177 10.11 23.2
## 178 6.29 24.6
## 179 6.92 29.9
## 180 5.04 37.2
## 181 7.56 39.8
## 182 9.45 36.2
## 183 4.82 37.9
## 184 5.68 32.5
## 185 13.98 26.4
## 186 13.15 29.6
## 187 4.45 50.0
## 188 6.68 32.0
## 189 4.56 29.8
## 190 5.39 34.9
## 191 5.10 37.0
## 192 4.69 30.5
## 193 2.87 36.4
## 194 5.03 31.1
## 195 4.38 29.1
## 196 2.97 50.0
## 197 4.08 33.3
## 198 8.61 30.3
## 199 6.62 34.6
## 200 4.56 34.9
## 201 4.45 32.9
## 202 7.43 24.1
## 203 3.11 42.3
## 204 3.81 48.5
## 205 2.88 50.0
## 206 10.87 22.6
## 207 10.97 24.4
## 208 18.06 22.5
## 209 14.66 24.4
## 210 23.09 20.0
## 211 17.27 21.7
## 212 23.98 19.3
## 213 16.03 22.4
## 214 9.38 28.1
## 215 29.55 23.7
## 216 9.47 25.0
## 217 13.51 23.3
## 218 9.69 28.7
## 219 17.92 21.5
## 220 10.50 23.0
## 221 9.71 26.7
## 222 21.46 21.7
## 223 9.93 27.5
## 224 7.60 30.1
## 225 4.14 44.8
## 226 4.63 50.0
## 227 3.13 37.6
## 228 6.36 31.6
## 229 3.92 46.7
## 230 3.76 31.5
## 231 11.65 24.3
## 232 5.25 31.7
## 233 2.47 41.7
## 234 3.95 48.3
## 235 8.05 29.0
## 236 10.88 24.0
## 237 9.54 25.1
## 238 4.73 31.5
## 239 6.36 23.7
## 240 7.37 23.3
## 241 11.38 22.0
## 242 12.40 20.1
## 243 11.22 22.2
## 244 5.19 23.7
## 245 12.50 17.6
## 246 18.46 18.5
## 247 9.16 24.3
## 248 10.15 20.5
## 249 9.52 24.5
## 250 6.56 26.2
## 251 5.90 24.4
## 252 3.59 24.8
## 253 3.53 29.6
## 254 3.54 42.8
## 255 6.57 21.9
## 256 9.25 20.9
## 257 3.11 44.0
## 258 5.12 50.0
## 259 7.79 36.0
## 260 6.90 30.1
## 261 9.59 33.8
## 262 7.26 43.1
## 263 5.91 48.8
## 264 11.25 31.0
## 265 8.10 36.5
## 266 10.45 22.8
## 267 14.79 30.7
## 268 7.44 50.0
## 269 3.16 43.5
## 270 13.65 20.7
## 271 13.00 21.1
## 272 6.59 25.2
## 273 7.73 24.4
## 274 6.58 35.2
## 275 3.53 32.4
## 276 2.98 32.0
## 277 6.05 33.2
## 278 4.16 33.1
## 279 7.19 29.1
## 280 4.85 35.1
## 281 3.76 45.4
## 282 4.59 35.4
## 283 3.01 46.0
## 284 3.16 50.0
## 285 7.85 32.2
## 286 8.23 22.0
## 287 12.93 20.1
## 288 7.14 23.2
## 289 7.60 22.3
## 290 9.51 24.8
## 291 3.33 28.5
## 292 3.56 37.3
## 293 4.70 27.9
## 294 8.58 23.9
## 295 10.40 21.7
## 296 6.27 28.6
## 297 7.39 27.1
## 298 15.84 20.3
## 299 4.97 22.5
## 300 4.74 29.0
## 301 6.07 24.8
## 302 9.50 22.0
## 303 8.67 26.4
## 304 4.86 33.1
## 305 6.93 36.1
## 306 8.93 28.4
## 307 6.47 33.4
## 308 7.53 28.2
## 309 4.54 22.8
## 310 9.97 20.3
## 311 12.64 16.1
## 312 5.98 22.1
## 313 11.72 19.4
## 314 7.90 21.6
## 315 9.28 23.8
## 316 11.50 16.2
## 317 18.33 17.8
## 318 15.94 19.8
## 319 10.36 23.1
## 320 12.73 21.0
## 321 7.20 23.8
## 322 6.87 23.1
## 323 7.70 20.4
## 324 11.74 18.5
## 325 6.12 25.0
## 326 5.08 24.6
## 327 6.15 23.0
## 328 12.79 22.2
## 329 9.97 19.3
## 330 7.34 22.6
## 331 9.09 19.8
## 332 12.43 17.1
## 333 7.83 19.4
## 334 5.68 22.2
## 335 6.75 20.7
## 336 8.01 21.1
## 337 9.80 19.5
## 338 10.56 18.5
## 339 8.51 20.6
## 340 9.74 19.0
## 341 9.29 18.7
## 342 5.49 32.7
## 343 8.65 16.5
## 344 7.18 23.9
## 345 4.61 31.2
## 346 10.53 17.5
## 347 12.67 17.2
## 348 6.36 23.1
## 349 5.99 24.5
## 350 5.89 26.6
## 351 5.98 22.9
## 352 5.49 24.1
## 353 7.79 18.6
## 354 4.50 30.1
## 355 8.05 18.2
## 356 5.57 20.6
## 357 17.60 17.8
## 358 13.27 21.7
## 359 11.48 22.7
## 360 12.67 22.6
## 361 7.79 25.0
## 362 14.19 19.9
## 363 10.19 20.8
## 364 14.64 16.8
## 365 5.29 21.9
## 366 7.12 27.5
## 367 14.00 21.9
## 368 13.33 23.1
## 369 3.26 50.0
## 370 3.73 50.0
## 371 2.96 50.0
## 372 9.53 50.0
## 373 8.88 50.0
## 374 34.77 13.8
## 375 37.97 13.8
## 376 13.44 15.0
## 377 23.24 13.9
## 378 21.24 13.3
## 379 23.69 13.1
## 380 21.78 10.2
## 381 17.21 10.4
## 382 21.08 10.9
## 383 23.60 11.3
## 384 24.56 12.3
## 385 30.63 8.8
## 386 30.81 7.2
## 387 28.28 10.5
## 388 31.99 7.4
## 389 30.62 10.2
## 390 20.85 11.5
## 391 17.11 15.1
## 392 18.76 23.2
## 393 25.68 9.7
## 394 15.17 13.8
## 395 16.35 12.7
## 396 17.12 13.1
## 397 19.37 12.5
## 398 19.92 8.5
## 399 30.59 5.0
## 400 29.97 6.3
## 401 26.77 5.6
## 402 20.32 7.2
## 403 20.31 12.1
## 404 19.77 8.3
## 405 27.38 8.5
## 406 22.98 5.0
## 407 23.34 11.9
## 408 12.13 27.9
## 409 26.40 17.2
## 410 19.78 27.5
## 411 10.11 15.0
## 412 21.22 17.2
## 413 34.37 17.9
## 414 20.08 16.3
## 415 36.98 7.0
## 416 29.05 7.2
## 417 25.79 7.5
## 418 26.64 10.4
## 419 20.62 8.8
## 420 22.74 8.4
## 421 15.02 16.7
## 422 15.70 14.2
## 423 14.10 20.8
## 424 23.29 13.4
## 425 17.16 11.7
## 426 24.39 8.3
## 427 15.69 10.2
## 428 14.52 10.9
## 429 21.52 11.0
## 430 24.08 9.5
## 431 17.64 14.5
## 432 19.69 14.1
## 433 12.03 16.1
## 434 16.22 14.3
## 435 15.17 11.7
## 436 23.27 13.4
## 437 18.05 9.6
## 438 26.45 8.7
## 439 34.02 8.4
## 440 22.88 12.8
## 441 22.11 10.5
## 442 19.52 17.1
## 443 16.59 18.4
## 444 18.85 15.4
## 445 23.79 10.8
## 446 23.98 11.8
## 447 17.79 14.9
## 448 16.44 12.6
## 449 18.13 14.1
## 450 19.31 13.0
## 451 17.44 13.4
## 452 17.73 15.2
## 453 17.27 16.1
## 454 16.74 17.8
## 455 18.71 14.9
## 456 18.13 14.1
## 457 19.01 12.7
## 458 16.94 13.5
## 459 16.23 14.9
## 460 14.70 20.0
## 461 16.42 16.4
## 462 14.65 17.7
## 463 13.99 19.5
## 464 10.29 20.2
## 465 13.22 21.4
## 466 14.13 19.9
## 467 17.15 19.0
## 468 21.32 19.1
## 469 18.13 19.1
## 470 14.76 20.1
## 471 16.29 19.9
## 472 12.87 19.6
## 473 14.36 23.2
## 474 11.66 29.8
## 475 18.14 13.8
## 476 24.10 13.3
## 477 18.68 16.7
## 478 24.91 12.0
## 479 18.03 14.6
## 480 13.11 21.4
## 481 10.74 23.0
## 482 7.74 23.7
## 483 7.01 25.0
## 484 10.42 21.8
## 485 13.34 20.6
## 486 10.58 21.2
## 487 14.98 19.1
## 488 11.45 20.6
## 489 18.06 15.2
## 490 23.97 7.0
## 491 29.68 8.1
## 492 18.07 13.6
## 493 13.35 20.1
## 494 12.01 21.8
## 495 13.59 24.5
## 496 17.60 23.1
## 497 21.14 19.7
## 498 14.10 18.3
## 499 12.92 21.2
## 500 15.10 17.5
## 501 14.33 16.8
## 502 9.67 22.4
## 503 9.08 20.6
## 504 5.64 23.9
## 505 6.48 22.0
## 506 7.88 11.9