library(quantmod)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(timetk)
library(tidyquant)
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
## Loading required package: PerformanceAnalytics
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
## ══ Need to Learn tidyquant? ════════════════════════════════════════════════════
## Business Science offers a 1-hour course - Learning Lab #9: Performance Analysis & Portfolio Optimization with tidyquant!
## </> Learn more at: https://university.business-science.io/p/learning-labs-pro </>
library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
##
## first, last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
rm(list=ls())
ETFdata<-read_tsv("Homework 8.txt")
## Rows: 5920 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr (2): CO_ID, CoName
## dbl (2): Date, Close
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
ETFdata$CO_ID <- as.character(ETFdata$CO_ID)
ETFdata$Date <- as.character(ETFdata$Date)
ETFdata$Date <- as.Date(ETFdata$Date, "%Y%m%d")
ETFdata %>%
select(CO_ID, Date, Close) %>%
spread(key = CO_ID, value = Close)
## # A tibble: 1,480 × 5
## Date `0050` `0056` `006205` `00646`
## <date> <dbl> <dbl> <dbl> <dbl>
## 1 2015-12-14 49.6 15.3 31.1 19.6
## 2 2015-12-15 49.6 15.4 31.6 19.6
## 3 2015-12-16 50.4 15.6 31.6 19.9
## 4 2015-12-17 51.0 15.8 32.2 20.0
## 5 2015-12-18 50.7 15.9 32.2 19.8
## 6 2015-12-21 50.6 15.9 33 19.6
## 7 2015-12-22 50.8 15.9 33.1 19.7
## 8 2015-12-23 50.8 15.9 33.1 19.8
## 9 2015-12-24 51.1 15.9 32.8 20.0
## 10 2015-12-25 51.4 15.9 33.0 20.0
## # … with 1,470 more rows
#daily_returns
ret_day <- ETFdata %>%
tk_xts(select = -Date, date_var = Date) %>%
Return.calculate(method = "log")
## Warning: Non-numeric columns being dropped: CO_ID, CoName
ret_day[is.na(ret_day)] <- 0
ret_day[1:10,]
## Close
## 2015-12-14 0.0000000
## 2015-12-14 -1.1763982
## 2015-12-14 0.7084471
## 2015-12-14 -0.4598812
## 2015-12-15 0.9286727
## 2015-12-15 -1.1701695
## 2015-12-15 0.7182978
## 2015-12-15 -0.4757816
## 2015-12-16 0.9426782
## 2015-12-16 -1.1753743
#monthly_returns
ret_mon <- ETFdata %>%
tk_xts(select = -Date, date_var = Date) %>%
to.period(period = "months",
indexAt = "lastof",
OHLC = FALSE) %>%
Return.calculate(method = 'log')
## Warning: Non-numeric columns being dropped: CO_ID, CoName
ret_mon[is.na(ret_mon)] <- 0
ret_mon[1:10,]
## Close
## 2015-12-31 0.000000000
## 2016-01-31 -0.039659493
## 2016-02-29 -0.003637312
## 2016-03-31 0.025695144
## 2016-04-30 0.009593611
## 2016-05-31 0.021869659
## 2016-06-30 -0.026402530
## 2016-07-31 0.030327952
## 2016-08-31 0.003910073
## 2016-09-30 -0.023693112