\[H_0: Peso < 4.5kg\\H_a: Peso \geq 4.5kg\]
set.seed(1000516173)
Peso_bolsas_fibra = rnorm(64,4.35,0.15)
Sim = replicate (500, rnorm(64,4.35,0.15) )
Medias = colMeans(Sim)
max(Peso_bolsas_fibra)
## [1] 4.753576
mean(Peso_bolsas_fibra)
## [1] 4.371974
sd(Peso_bolsas_fibra)
## [1] 0.1596223
cuantile_t = qt(p = 0.05,df = 500-1, lower.tail = FALSE)
x_c = (cuantile_t * sd(Peso_bolsas_fibra))/sqrt(64)+ 4.5;x_c
## [1] 4.53288
set.seed(1000516173)
hist = hist(Medias, xlim = c(4.3, 4.55))
abline(v=x_c,lwd = 2, col = "green")
abline(v=mean(Peso_bolsas_fibra), lwd = 2, col="darkred")
abline(v=4.5, lwd = 2, col = "blue")
set.seed(1000516173)
library(rcompanion)
plotDensityHistogram(Medias, adjust = 1, xlim = c(4.3, 4.55))
## Warning in hist.default(x, plot = FALSE, ...): argument 'xlim' is not made use
## of
abline(v=x_c,lwd = 2, col = "green")
abline(v=mean(Peso_bolsas_fibra), lwd = 2, col="darkred")
abline(v=4.5, lwd = 2, col = "blue")
\[H_0: Razón\neq 1:24\\ H_a: Razón = 1:24\]
set.seed(1000516173)
Completos = (6000)
Partidos = (350)
x=c(350,6000)
proporcion = c(1/24,23/24)
pruebachi= chisq.test(x,p=proporcion)
pvalor = pruebachi$p.value
pvalor
## [1] 8.131924e-08
ifelse(pvalor>0.05, 'rechazo Ho', 'No rechazo Ho')
## [1] "No rechazo Ho"
\[H_0: \mu_{Temperatura.agua} = 65°C\\ H_a: \mu_{Temperatura.agua} \ > 65°C\]
set.seed(1000516173)
muestra_agua=rnorm (50,65.8,0.3)
hist(muestra_agua)
cuantile_t1=qt(p=0.05,df=500-1,lower.tail = FALSE)
medcritica1 = (cuantile_t1 * sd(muestra_agua))/sqrt(50)+ 65;medcritica1
## [1] 65.06888
abline(v=mean(muestra_agua),lwd = 2,col = "red")
abline(v=65,lwd = 2,col = "blue")
abline(v=medcritica1,lwd=2,col= "black")
set.seed(1000516173)
sim_2= replicate(500, rnorm(50,65.8,0.3))
dim(sim_2)
## [1] 50 500
med_agua= colMeans(sim_2)
mean(med_agua)
## [1] 65.80182
sd(med_agua)
## [1] 0.04238669
summary(med_agua)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 65.64 65.77 65.80 65.80 65.83 65.93
length(med_agua)
## [1] 500
hist(med_agua,xlim = c(64.8, 66))
abline(v=mean(med_agua),lwd = 2,col = "red")
abline(v=65,lwd = 2,col = "blue")
abline(v=medcritica1,lwd=2,col= "black")
\[H_0: \mu_{Variedad local} - \mu_{variedadaloctona}\geq 0.5\\ H_a: \mu_{Variedad local} - \mu_{variedad aloctona} < 0.5\]
set.seed(1000516173)
local = rnorm(40000, 5.8, 0.58)
mean(local)
## [1] 5.802625
aloctona = rnorm(40000, 5.1, 0.45)
mean(aloctona)
## [1] 5.099754
p=t.test(x=local, y=aloctona, alternative ="less", mu=0.5, paired = TRUE, conf.level =0.95);p
##
## Paired t-test
##
## data: local and aloctona
## t = 55.333, df = 39999, p-value = 1
## alternative hypothesis: true difference in means is less than 0.5
## 95 percent confidence interval:
## -Inf 0.7089016
## sample estimates:
## mean of the differences
## 0.7028708
pvalor = p$p.value
ifelse(pvalor>0.05, 'No Rechazo Ho', 'Rechazo Ho')
## [1] "No Rechazo Ho"
\[H_0: \mu_{poro} > 42.5\\H_a: \mu_{poro} \leq 42.5 \]
set.seed(1000516713)
poro_maiz = rnorm (30, 45, 2)
sd(rnorm(30,45,2))
## [1] 1.682442
hist(poro_maiz)
abline(v=mean(poro_maiz), lwd = 2, col="darkred")
abline(v= 42.5 , lwd = 2, col = "blue")
set.seed(1000516173)
mean(poro_maiz)
## [1] 45.23068
sd(poro_maiz)
## [1] 1.902666
cuantile_t = qt(p = 0.05,df = 499, lower.tail = TRUE);cuantile_t
## [1] -1.647913
x_c = (cuantile_t * sd(poro_maiz))/sqrt(30)+ 42.5;x_c
## [1] 41.92755
set.seed(1000516173)
simulacion_5 = replicate(500, rnorm (30, 45, 2))
medias_5 = colMeans(simulacion_5)
hist(medias_5, xlim = c(41.83, 46))
abline(v= mean(poro_maiz), lwd =2 , col = "red")
abline(v= 42.5, lwd= 2 , col= "darkblue")
abline(v= x_c, lwd=2, col= "yellow")
set.seed(1000516173)
lote = expand.grid(x = seq(0, 72, 8), y = seq(0, 99, 9))
set.seed(173)
estado = round(runif(120, 0, 1.2),0)
estado_nom = ifelse(estado == 0, 'Sana', 'Enferma')
estado_col = ifelse(estado == 0, 'green', 'red')
plot(lote$x, lote$y, pch = 8, col = estado_col)
set.seed(1000516173)
table(estado_nom)/120
## estado_nom
## Enferma Sana
## 0.65 0.35
set.seed(1000516173)
library(clhs)
## Warning: package 'clhs' was built under R version 4.1.2
vector_1 = 10 : 80
muestras_n = sample ( vector_1, size = 60, )
muestras_n
## [1] 33 54 63 78 40 69 17 79 38 65 52 53 77 43 51 36 12 32 71 31 68 23 60 48 80
## [26] 15 66 59 21 14 44 16 72 35 22 13 56 62 25 41 39 50 75 74 45 10 76 58 57 61
## [51] 29 11 37 42 73 19 64 67 30 47
muestras_x = lapply(muestras_n, clhs, x= lote)
muestras_x
## [[1]]
## [1] 17 109 98 26 90 107 19 10 20 81 113 95 8 51 96 118 79 64 31
## [20] 77 93 4 106 2 46 35 105 39 34 61 25 12 86
##
## [[2]]
## [1] 113 117 100 20 52 12 6 92 104 3 21 114 17 42 88 30 13 97 58
## [20] 101 1 71 50 85 99 29 80 9 64 35 69 106 77 25 63 34 46 36
## [39] 67 73 78 49 56 105 84 87 53 37 45 82 51 110 23 81
##
## [[3]]
## [1] 19 4 2 7 8 40 25 59 111 109 120 91 100 39 71 22 50 84 48
## [20] 61 75 23 64 73 89 42 103 83 58 67 31 115 44 17 15 60 108 114
## [39] 94 98 69 70 18 79 110 113 62 32 90 53 47 28 88 77 49 56 106
## [58] 66 6 116 96 16 52
##
## [[4]]
## [1] 93 20 10 30 100 22 78 118 112 21 94 109 53 111 27 52 103 65 86
## [20] 54 77 95 17 31 75 14 33 51 80 119 66 83 50 19 1 106 64 70
## [39] 108 105 42 6 3 44 12 69 28 57 37 38 39 24 62 8 99 55 32
## [58] 73 91 79 7 36 46 48 84 63 4 26 45 102 11 85 96 47 60 67
## [77] 34 68
##
## [[5]]
## [1] 111 110 119 71 13 103 31 20 118 50 89 7 95 68 84 92 28 77 86
## [20] 24 43 37 6 114 107 60 65 76 46 56 55 23 33 35 16 53 64 51
## [39] 15 115
##
## [[6]]
## [1] 84 92 110 8 101 11 109 87 22 20 112 37 16 68 41 115 13 2 30
## [20] 19 42 102 21 61 55 113 98 116 89 49 103 74 86 51 25 56 90 33
## [39] 50 78 59 35 17 1 6 47 24 94 75 15 118 80 27 44 32 93 64
## [58] 39 26 65 106 88 7 72 104 63 34 76 46
##
## [[7]]
## [1] 48 22 83 94 75 17 9 120 37 116 106 6 61 11 29 59 57
##
## [[8]]
## [1] 1 11 30 88 111 27 117 90 2 120 38 112 18 19 25 10 101 93 23
## [20] 80 104 43 22 32 41 69 84 39 106 28 57 3 72 100 59 109 42 8
## [39] 9 44 40 71 108 113 13 92 107 118 97 116 14 99 70 51 36 78 94
## [58] 5 56 55 73 64 74 33 65 54 75 62 17 66 60 81 82 68 77 47
## [77] 76 53 105
##
## [[9]]
## [1] 9 14 94 2 101 108 39 80 30 112 102 61 35 90 45 33 99 44 11
## [20] 77 70 27 19 93 23 28 12 76 22 104 16 74 117 13 52 56 57 55
##
## [[10]]
## [1] 110 80 1 2 33 38 57 70 101 14 21 10 16 93 94 44 58 52 109
## [20] 67 25 42 77 119 22 48 116 74 97 20 72 41 3 87 49 104 102 88
## [39] 73 61 56 68 81 117 112 103 99 5 63 37 35 28 84 78 96 19 115
## [58] 18 23 65 17 59 51 113 69
##
## [[11]]
## [1] 20 22 23 63 50 90 111 9 100 28 101 12 31 19 104 65 56 118 72
## [20] 96 37 3 55 98 26 81 5 99 102 116 103 89 48 32 75 57 108 41
## [39] 24 49 53 70 97 17 61 52 45 78 16 15 4 60
##
## [[12]]
## [1] 114 7 10 119 21 99 92 89 78 13 108 101 86 23 42 117 38 52 9
## [20] 82 71 67 110 93 46 80 24 53 3 15 37 76 106 50 17 68 43 34
## [39] 36 105 81 44 62 85 79 91 64 75 25 5 97 113 69
##
## [[13]]
## [1] 43 34 12 4 17 10 87 40 83 99 101 13 112 102 53 91 51 5 38
## [20] 20 59 71 67 25 8 70 21 108 114 79 111 80 23 50 74 44 32 115
## [39] 3 118 22 61 89 98 35 109 86 97 41 90 24 72 106 49 75 55 28
## [58] 18 96 66 88 46 52 103 68 116 45 14 94 76 84 62 60 85 56 48
## [77] 2
##
## [[14]]
## [1] 119 116 40 91 83 22 103 107 37 15 26 25 21 4 16 88 8 60 41
## [20] 85 114 59 90 94 48 98 102 2 9 93 109 71 80 115 44 46 106 73
## [39] 95 69 66 61 67
##
## [[15]]
## [1] 29 108 26 7 105 40 118 119 110 81 27 43 71 99 54 59 12 20 64
## [20] 42 14 83 25 38 116 2 93 92 37 13 75 36 89 15 115 51 9 63
## [39] 47 34 88 106 30 70 66 17 86 44 84 72 67
##
## [[16]]
## [1] 110 68 48 2 111 91 118 14 66 83 23 89 52 101 119 92 67 30 34
## [20] 32 8 50 35 79 7 87 73 44 39 57 16 75 106 53 22 77
##
## [[17]]
## [1] 115 107 86 38 71 4 99 30 53 62 15 45
##
## [[18]]
## [1] 10 13 48 88 102 71 114 29 93 4 52 46 11 77 120 37 100 98 34
## [20] 106 80 91 45 85 7 109 39 69 104 26 15 105
##
## [[19]]
## [1] 120 112 1 102 40 94 93 75 22 99 8 20 13 114 45 101 5 77 23
## [20] 118 107 28 50 31 85 44 18 57 110 15 21 24 33 83 71 4 61 119
## [39] 9 67 65 82 17 38 59 90 52 49 108 46 79 42 3 97 39 76 89
## [58] 113 26 68 95 116 29 63 32 86 48 81 19 60 58
##
## [[20]]
## [1] 89 31 103 92 114 43 98 8 117 11 47 80 77 62 51 30 63 60 36
## [20] 5 15 29 84 69 86 58 21 53 115 50 57
##
## [[21]]
## [1] 20 39 87 31 80 84 111 14 3 91 109 119 46 43 62 101 81 2 72
## [20] 53 22 45 26 65 11 99 13 37 9 59 7 82 94 28 120 52 4 86
## [39] 106 107 113 73 27 35 108 68 74 5 96 34 83 117 56 102 66 77 75
## [58] 95 104 105 115 85 42 30 6 48 88 70
##
## [[22]]
## [1] 110 2 113 18 32 79 85 31 96 77 62 94 49 44 17 52 68 71 30
## [20] 103 34 53 75
##
## [[23]]
## [1] 32 12 112 10 7 11 9 23 81 108 71 104 51 114 98 100 58 3 96
## [20] 86 4 46 105 97 83 107 19 57 79 63 28 40 14 68 26 20 77 115
## [39] 34 76 43 118 31 117 106 69 29 22 15 48 37 84 41 75 66 72 70
## [58] 60 45 94
##
## [[24]]
## [1] 10 102 119 19 1 32 101 17 117 33 108 41 4 100 95 28 77 65 81
## [20] 79 24 70 31 107 18 92 116 7 36 99 30 14 35 48 98 73 39 15
## [39] 53 57 51 56 105 50 61 43 47 58
##
## [[25]]
## [1] 119 1 120 103 21 112 59 83 31 102 71 110 40 2 14 118 95 72 19
## [20] 42 99 76 9 16 6 10 85 11 113 107 104 50 8 5 29 87 52 80
## [39] 49 38 78 35 64 13 36 24 81 98 46 60 114 96 27 74 65 53 61
## [58] 58 15 69 26 63 43 54 18 101 90 34 33 106 115 108 30 62 84 32
## [77] 79 75 45 47
##
## [[26]]
## [1] 3 20 86 105 51 22 114 69 78 46 94 63 37 70 79
##
## [[27]]
## [1] 120 101 102 11 30 38 110 2 119 1 71 8 17 56 90 32 104 19 47
## [20] 99 65 51 74 112 78 4 96 77 113 82 44 53 20 13 91 28 41 55
## [39] 109 63 72 46 26 95 93 64 58 27 57 117 42 6 85 16 116 75 68
## [58] 48 105 54 39 14 45 69 33 36
##
## [[28]]
## [1] 2 91 111 16 112 3 71 26 87 73 94 22 50 20 12 97 52 23 103
## [20] 28 59 14 90 6 117 102 51 79 34 84 39 40 81 120 46 105 101 57
## [39] 25 119 41 72 54 106 85 118 76 36 78 108 27 107 86 66 67 63 68
## [58] 64 69
##
## [[29]]
## [1] 29 107 118 4 81 40 32 28 76 96 13 82 48 41 25 66 47 57 59
## [20] 60 37
##
## [[30]]
## [1] 1 49 74 83 95 27 118 106 20 102 31 58 62 4
##
## [[31]]
## [1] 120 49 100 98 2 113 108 67 11 104 29 6 69 8 83 27 72 71 38
## [20] 55 30 63 74 86 117 85 40 31 19 46 26 48 44 22 94 51 14 66
## [39] 65 60 37 80 93 52
##
## [[32]]
## [1] 111 24 72 15 1 98 50 69 87 6 108 93 29 33 37 55
##
## [[33]]
## [1] 103 102 72 90 12 10 93 87 18 9 67 91 61 119 11 13 33 8 108
## [20] 110 111 53 50 24 106 44 38 57 115 97 89 23 68 16 117 94 60 6
## [39] 54 29 2 31 36 88 21 48 41 120 95 77 25 70 27 14 62 37 98
## [58] 19 34 39 22 35 96 20 113 82 74 51 76 63 64 28
##
## [[34]]
## [1] 11 2 114 10 39 32 73 91 44 24 87 100 34 96 47 79 83 90 6
## [20] 103 72 1 26 65 16 48 75 115 43 5 77 30 82 59 53
##
## [[35]]
## [1] 91 110 119 8 54 16 82 39 48 23 96 87 74 76 43 81 24 71 55
## [20] 58 117 65
##
## [[36]]
## [1] 33 77 25 84 49 68 6 20 52 91 119 109 65
##
## [[37]]
## [1] 113 90 91 24 21 30 80 50 112 42 101 72 67 59 19 3 4 115 51
## [20] 7 89 36 99 114 32 66 79 11 110 33 40 27 43 85 15 75 94 14
## [39] 71 45 69 104 97 56 62 58 39 108 96 86 26 53 37 47 74 41
##
## [[38]]
## [1] 111 90 30 32 94 5 98 31 9 77 39 11 50 12 72 42 118 99 18
## [20] 29 89 96 104 103 78 24 87 15 105 62 3 75 10 34 57 43 55 68
## [39] 113 66 110 79 47 67 49 25 86 6 51 116 28 36 106 58 52 85 41
## [58] 7 73 53 40 80
##
## [[39]]
## [1] 20 120 112 102 22 1 6 86 118 39 108 61 48 116 56 94 17 72 62
## [20] 95 65 46 59 43 67
##
## [[40]]
## [1] 20 112 100 8 108 31 4 71 22 19 1 39 62 89 85 86 78 80 114
## [20] 33 41 83 70 46 48 69 27 28 75 64 9 15 25 42 74 107 77 51
## [39] 56 58 54
##
## [[41]]
## [1] 109 30 3 57 38 92 14 85 112 28 24 116 13 71 103 108 62 96 67
## [20] 6 47 15 89 45 83 60 78 80 59 81 23 95 98 7 69 16 53 31
## [39] 36
##
## [[42]]
## [1] 99 118 43 10 11 36 90 111 86 2 95 102 84 97 13 44 101 78 104
## [20] 29 3 108 92 9 115 68 75 85 58 50 27 62 53 37 87 34 96 72
## [39] 46 61 4 25 107 56 42 35 105 24 106 15
##
## [[43]]
## [1] 119 92 44 82 27 50 63 18 19 120 17 23 111 88 7 93 39 29 11
## [20] 73 81 100 70 8 109 67 4 2 40 72 94 46 24 21 37 103 105 91
## [39] 114 20 80 3 41 59 66 108 26 68 51 55 85 115 69 86 47 78 96
## [58] 116 12 76 60 87 31 33 65 5 16 34 106 74 38 71 14 53 54
##
## [[44]]
## [1] 105 82 33 102 80 100 96 77 34 113 4 11 20 71 21 70 118 107 41
## [20] 86 69 52 119 19 37 25 78 56 83 28 8 36 6 18 63 99 50 90
## [39] 16 2 74 31 75 114 23 108 84 55 67 22 54 42 97 39 112 51 46
## [58] 7 66 91 10 53 48 62 92 35 14 88 103 64 15 72 106 117
##
## [[45]]
## [1] 101 57 73 82 94 120 115 33 46 23 42 50 18 84 5 77 99 25 62
## [20] 85 60 29 104 41 61 109 12 117 39 118 59 6 20 96 67 68 87 72
## [39] 105 26 98 40 34 17 4
##
## [[46]]
## [1] 81 98 54 22 45 39 106 113 17 80
##
## [[47]]
## [1] 120 111 103 6 40 7 22 97 4 11 94 61 38 112 47 12 60 83 79
## [20] 88 42 56 110 117 59 10 2 119 28 45 64 101 93 18 36 46 41 58
## [39] 57 95 73 25 31 32 24 74 65 20 21 80 77 89 106 26 66 70 78
## [58] 19 104 68 99 15 107 39 44 62 43 8 115 30 27 63 48 16 98 76
##
## [[48]]
## [1] 111 90 19 109 11 40 1 100 64 118 76 75 102 8 16 115 108 47 9
## [20] 6 84 56 110 82 93 22 27 24 50 113 105 21 35 98 23 91 53 85
## [39] 12 17 33 79 26 38 77 42 39 7 32 73 67 106 63 46 95 52 49
## [58] 29
##
## [[49]]
## [1] 91 11 101 94 12 17 114 29 118 9 103 64 34 108 115 81 32 42 63
## [20] 8 49 99 55 43 52 26 117 10 90 74 87 72 116 62 38 110 3 47
## [39] 6 85 36 37 41 79 105 25 80 96 56 73 14 98 65 76 50 51 70
##
## [[50]]
## [1] 115 38 101 119 102 10 19 78 100 29 87 11 79 98 93 14 4 120 58
## [20] 32 7 44 21 20 99 82 91 42 104 114 63 55 25 62 89 28 3 83
## [39] 64 34 105 69 40 45 88 60 53 17 110 50 77 46 54 37 70 57 107
## [58] 96 36 86 116
##
## [[51]]
## [1] 111 8 120 103 27 39 116 88 43 78 93 104 14 91 12 42 56 59 3
## [20] 76 72 4 106 67 55 115 62 64 51
##
## [[52]]
## [1] 90 39 118 53 62 91 46 24 105 17 80
##
## [[53]]
## [1] 109 115 83 18 94 29 21 32 91 119 2 50 4 101 20 65 86 17 112
## [20] 7 55 96 44 31 33 87 76 57 66 80 27 63 95 14 5 70 3
##
## [[54]]
## [1] 1 59 109 38 41 80 104 31 9 65 94 16 84 96 14 66 71 82 2
## [20] 83 29 53 3 20 73 27 77 116 75 118 36 55 48 91 40 52 88 93
## [39] 21 89 63 114
##
## [[55]]
## [1] 79 112 30 1 106 11 68 72 103 38 28 53 61 77 12 58 21 111 100
## [20] 55 7 110 82 62 113 16 46 90 63 116 75 95 40 36 107 42 31 47
## [39] 19 120 65 44 15 39 27 78 92 83 108 34 5 89 13 102 4 117 74
## [58] 26 25 69 101 49 33 17 70 76 54 64 73 114 84 97 48
##
## [[56]]
## [1] 88 71 16 109 99 42 54 82 120 115 47 8 36 93 70 29 107 65 83
##
## [[57]]
## [1] 20 107 12 118 105 49 17 28 64 4 34 106 80 70 30 74 59 47 11
## [20] 53 112 119 63 85 36 61 42 48 52 100 35 87 98 22 71 27 54 79
## [39] 113 101 51 19 73 89 26 96 3 5 94 6 81 97 102 62 120 38 65
## [58] 39 78 18 82 76 37 2
##
## [[58]]
## [1] 109 97 114 39 1 16 4 111 103 10 23 112 107 75 102 110 12 45 78
## [20] 21 5 33 88 59 60 67 47 79 100 64 18 69 113 89 96 30 48 54
## [39] 8 38 87 63 51 44 80 115 11 42 40 85 2 105 71 93 62 72 58
## [58] 57 43 66 76 15 99 27 28 73 83
##
## [[59]]
## [1] 92 8 89 103 34 50 99 49 15 113 1 21 31 33 74 87 30 84 63
## [20] 20 107 78 32 56 52 57 117 115 39 67
##
## [[60]]
## [1] 13 20 118 18 7 31 41 119 74 101 84 9 120 86 23 82 108 80 100
## [20] 42 39 57 97 26 35 36 99 43 114 5 85 59 103 52 71 58 93 78
## [39] 115 105 8 106 65 62 64 67 66
set.seed(1000516173)
enf_muest = NULL
for(i in muestras_n){
muestra = clhs(x = lote, size = i)
enf_muest = c(enf_muest, table(estado_nom[muestra])['Enferma']/i)
prev_i = table(estado_nom[muestra])/i
cat('\nn_muestra:',i,'\n')
print(prev_i) }
##
## n_muestra: 33
##
## Enferma Sana
## 0.4848485 0.5151515
##
## n_muestra: 54
##
## Enferma Sana
## 0.6666667 0.3333333
##
## n_muestra: 63
##
## Enferma Sana
## 0.5714286 0.4285714
##
## n_muestra: 78
##
## Enferma Sana
## 0.6923077 0.3076923
##
## n_muestra: 40
##
## Enferma Sana
## 0.5 0.5
##
## n_muestra: 69
##
## Enferma Sana
## 0.6811594 0.3188406
##
## n_muestra: 17
##
## Enferma Sana
## 0.7058824 0.2941176
##
## n_muestra: 79
##
## Enferma Sana
## 0.6582278 0.3417722
##
## n_muestra: 38
##
## Enferma Sana
## 0.6052632 0.3947368
##
## n_muestra: 65
##
## Enferma Sana
## 0.6153846 0.3846154
##
## n_muestra: 52
##
## Enferma Sana
## 0.6923077 0.3076923
##
## n_muestra: 53
##
## Enferma Sana
## 0.754717 0.245283
##
## n_muestra: 77
##
## Enferma Sana
## 0.6363636 0.3636364
##
## n_muestra: 43
##
## Enferma Sana
## 0.744186 0.255814
##
## n_muestra: 51
##
## Enferma Sana
## 0.5490196 0.4509804
##
## n_muestra: 36
##
## Enferma Sana
## 0.6111111 0.3888889
##
## n_muestra: 12
##
## Enferma Sana
## 0.5 0.5
##
## n_muestra: 32
##
## Enferma Sana
## 0.6875 0.3125
##
## n_muestra: 71
##
## Enferma Sana
## 0.6338028 0.3661972
##
## n_muestra: 31
##
## Enferma Sana
## 0.7419355 0.2580645
##
## n_muestra: 68
##
## Enferma Sana
## 0.6617647 0.3382353
##
## n_muestra: 23
##
## Enferma Sana
## 0.6086957 0.3913043
##
## n_muestra: 60
##
## Enferma Sana
## 0.65 0.35
##
## n_muestra: 48
##
## Enferma Sana
## 0.625 0.375
##
## n_muestra: 80
##
## Enferma Sana
## 0.6375 0.3625
##
## n_muestra: 15
##
## Enferma Sana
## 0.6 0.4
##
## n_muestra: 66
##
## Enferma Sana
## 0.6515152 0.3484848
##
## n_muestra: 59
##
## Enferma Sana
## 0.6779661 0.3220339
##
## n_muestra: 21
##
## Enferma Sana
## 0.5714286 0.4285714
##
## n_muestra: 14
##
## Enferma Sana
## 0.5714286 0.4285714
##
## n_muestra: 44
##
## Enferma Sana
## 0.6818182 0.3181818
##
## n_muestra: 16
##
## Enferma Sana
## 0.5 0.5
##
## n_muestra: 72
##
## Enferma Sana
## 0.7083333 0.2916667
##
## n_muestra: 35
##
## Enferma Sana
## 0.5142857 0.4857143
##
## n_muestra: 22
##
## Enferma Sana
## 0.5454545 0.4545455
##
## n_muestra: 13
##
## Enferma Sana
## 0.6153846 0.3846154
##
## n_muestra: 56
##
## Enferma Sana
## 0.6428571 0.3571429
##
## n_muestra: 62
##
## Enferma Sana
## 0.6774194 0.3225806
##
## n_muestra: 25
##
## Enferma Sana
## 0.6 0.4
##
## n_muestra: 41
##
## Enferma Sana
## 0.6341463 0.3658537
##
## n_muestra: 39
##
## Enferma Sana
## 0.6666667 0.3333333
##
## n_muestra: 50
##
## Enferma Sana
## 0.7 0.3
##
## n_muestra: 75
##
## Enferma Sana
## 0.6133333 0.3866667
##
## n_muestra: 74
##
## Enferma Sana
## 0.6891892 0.3108108
##
## n_muestra: 45
##
## Enferma Sana
## 0.5555556 0.4444444
##
## n_muestra: 10
##
## Enferma Sana
## 0.6 0.4
##
## n_muestra: 76
##
## Enferma Sana
## 0.5921053 0.4078947
##
## n_muestra: 58
##
## Enferma Sana
## 0.6896552 0.3103448
##
## n_muestra: 57
##
## Enferma Sana
## 0.6666667 0.3333333
##
## n_muestra: 61
##
## Enferma Sana
## 0.6721311 0.3278689
##
## n_muestra: 29
##
## Enferma Sana
## 0.6896552 0.3103448
##
## n_muestra: 11
##
## Enferma Sana
## 0.3636364 0.6363636
##
## n_muestra: 37
##
## Enferma Sana
## 0.6486486 0.3513514
##
## n_muestra: 42
##
## Enferma Sana
## 0.6190476 0.3809524
##
## n_muestra: 73
##
## Enferma Sana
## 0.6712329 0.3287671
##
## n_muestra: 19
##
## Enferma Sana
## 0.8947368 0.1052632
##
## n_muestra: 64
##
## Enferma Sana
## 0.609375 0.390625
##
## n_muestra: 67
##
## Enferma Sana
## 0.6268657 0.3731343
##
## n_muestra: 30
##
## Enferma Sana
## 0.6 0.4
##
## n_muestra: 47
##
## Enferma Sana
## 0.6382979 0.3617021
set.seed(1000516173)
plot(muestras_n, enf_muest, pch = 16)
text(muestras_n, enf_muest, muestras_n, pos = 4, cex = 0.6)
abline(h = table(estado_nom)['Enferma']/120, col = 'red')
set.seed(1000516173)
library(samplingbook)
## Warning: package 'samplingbook' was built under R version 4.1.2
## Loading required package: pps
## Loading required package: sampling
## Warning: package 'sampling' was built under R version 4.1.2
## Loading required package: survey
## Warning: package 'survey' was built under R version 4.1.2
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
##
## Attaching package: 'survival'
## The following objects are masked from 'package:sampling':
##
## cluster, strata
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
sample.size.prop(e = 0.1, P = 0.5, N = 120, level = 0.95)
##
## sample.size.prop object: Sample size for proportion estimate
## With finite population correction: N=120, precision e=0.1 and expected proportion P=0.5
##
## Sample size needed: 54
set.seed(1000516173)
lotec = expand.grid(x = seq(0, 72, 8), y = seq(0, 99, 9))
set.seed(173)
estadoc = round(runif(120, 0, 1.5),0)
estado_nomc = ifelse(estadoc == 0, 'Sana', 'Enferma')
estado_colc = ifelse(estadoc == 0, 'green', 'red')
plot(lotec$x, lotec$y, pch = 8, col = estado_colc)
table(estado_nomc)/120
## estado_nomc
## Enferma Sana
## 0.75 0.25
set.seed(1000516173)
library(clhs)
vector_1 = 10 : 80
n_muestras_nuevo = sample ( vector_1, size = 60, )
n_muestras_nuevo
## [1] 33 54 63 78 40 69 17 79 38 65 52 53 77 43 51 36 12 32 71 31 68 23 60 48 80
## [26] 15 66 59 21 14 44 16 72 35 22 13 56 62 25 41 39 50 75 74 45 10 76 58 57 61
## [51] 29 11 37 42 73 19 64 67 30 47
muestras_nuevo = lapply(n_muestras_nuevo, clhs, x= lote)
muestras_nuevo
## [[1]]
## [1] 17 109 98 26 90 107 19 10 20 81 113 95 8 51 96 118 79 64 31
## [20] 77 93 4 106 2 46 35 105 39 34 61 25 12 86
##
## [[2]]
## [1] 113 117 100 20 52 12 6 92 104 3 21 114 17 42 88 30 13 97 58
## [20] 101 1 71 50 85 99 29 80 9 64 35 69 106 77 25 63 34 46 36
## [39] 67 73 78 49 56 105 84 87 53 37 45 82 51 110 23 81
##
## [[3]]
## [1] 19 4 2 7 8 40 25 59 111 109 120 91 100 39 71 22 50 84 48
## [20] 61 75 23 64 73 89 42 103 83 58 67 31 115 44 17 15 60 108 114
## [39] 94 98 69 70 18 79 110 113 62 32 90 53 47 28 88 77 49 56 106
## [58] 66 6 116 96 16 52
##
## [[4]]
## [1] 93 20 10 30 100 22 78 118 112 21 94 109 53 111 27 52 103 65 86
## [20] 54 77 95 17 31 75 14 33 51 80 119 66 83 50 19 1 106 64 70
## [39] 108 105 42 6 3 44 12 69 28 57 37 38 39 24 62 8 99 55 32
## [58] 73 91 79 7 36 46 48 84 63 4 26 45 102 11 85 96 47 60 67
## [77] 34 68
##
## [[5]]
## [1] 111 110 119 71 13 103 31 20 118 50 89 7 95 68 84 92 28 77 86
## [20] 24 43 37 6 114 107 60 65 76 46 56 55 23 33 35 16 53 64 51
## [39] 15 115
##
## [[6]]
## [1] 84 92 110 8 101 11 109 87 22 20 112 37 16 68 41 115 13 2 30
## [20] 19 42 102 21 61 55 113 98 116 89 49 103 74 86 51 25 56 90 33
## [39] 50 78 59 35 17 1 6 47 24 94 75 15 118 80 27 44 32 93 64
## [58] 39 26 65 106 88 7 72 104 63 34 76 46
##
## [[7]]
## [1] 48 22 83 94 75 17 9 120 37 116 106 6 61 11 29 59 57
##
## [[8]]
## [1] 1 11 30 88 111 27 117 90 2 120 38 112 18 19 25 10 101 93 23
## [20] 80 104 43 22 32 41 69 84 39 106 28 57 3 72 100 59 109 42 8
## [39] 9 44 40 71 108 113 13 92 107 118 97 116 14 99 70 51 36 78 94
## [58] 5 56 55 73 64 74 33 65 54 75 62 17 66 60 81 82 68 77 47
## [77] 76 53 105
##
## [[9]]
## [1] 9 14 94 2 101 108 39 80 30 112 102 61 35 90 45 33 99 44 11
## [20] 77 70 27 19 93 23 28 12 76 22 104 16 74 117 13 52 56 57 55
##
## [[10]]
## [1] 110 80 1 2 33 38 57 70 101 14 21 10 16 93 94 44 58 52 109
## [20] 67 25 42 77 119 22 48 116 74 97 20 72 41 3 87 49 104 102 88
## [39] 73 61 56 68 81 117 112 103 99 5 63 37 35 28 84 78 96 19 115
## [58] 18 23 65 17 59 51 113 69
##
## [[11]]
## [1] 20 22 23 63 50 90 111 9 100 28 101 12 31 19 104 65 56 118 72
## [20] 96 37 3 55 98 26 81 5 99 102 116 103 89 48 32 75 57 108 41
## [39] 24 49 53 70 97 17 61 52 45 78 16 15 4 60
##
## [[12]]
## [1] 114 7 10 119 21 99 92 89 78 13 108 101 86 23 42 117 38 52 9
## [20] 82 71 67 110 93 46 80 24 53 3 15 37 76 106 50 17 68 43 34
## [39] 36 105 81 44 62 85 79 91 64 75 25 5 97 113 69
##
## [[13]]
## [1] 43 34 12 4 17 10 87 40 83 99 101 13 112 102 53 91 51 5 38
## [20] 20 59 71 67 25 8 70 21 108 114 79 111 80 23 50 74 44 32 115
## [39] 3 118 22 61 89 98 35 109 86 97 41 90 24 72 106 49 75 55 28
## [58] 18 96 66 88 46 52 103 68 116 45 14 94 76 84 62 60 85 56 48
## [77] 2
##
## [[14]]
## [1] 119 116 40 91 83 22 103 107 37 15 26 25 21 4 16 88 8 60 41
## [20] 85 114 59 90 94 48 98 102 2 9 93 109 71 80 115 44 46 106 73
## [39] 95 69 66 61 67
##
## [[15]]
## [1] 29 108 26 7 105 40 118 119 110 81 27 43 71 99 54 59 12 20 64
## [20] 42 14 83 25 38 116 2 93 92 37 13 75 36 89 15 115 51 9 63
## [39] 47 34 88 106 30 70 66 17 86 44 84 72 67
##
## [[16]]
## [1] 110 68 48 2 111 91 118 14 66 83 23 89 52 101 119 92 67 30 34
## [20] 32 8 50 35 79 7 87 73 44 39 57 16 75 106 53 22 77
##
## [[17]]
## [1] 115 107 86 38 71 4 99 30 53 62 15 45
##
## [[18]]
## [1] 10 13 48 88 102 71 114 29 93 4 52 46 11 77 120 37 100 98 34
## [20] 106 80 91 45 85 7 109 39 69 104 26 15 105
##
## [[19]]
## [1] 120 112 1 102 40 94 93 75 22 99 8 20 13 114 45 101 5 77 23
## [20] 118 107 28 50 31 85 44 18 57 110 15 21 24 33 83 71 4 61 119
## [39] 9 67 65 82 17 38 59 90 52 49 108 46 79 42 3 97 39 76 89
## [58] 113 26 68 95 116 29 63 32 86 48 81 19 60 58
##
## [[20]]
## [1] 89 31 103 92 114 43 98 8 117 11 47 80 77 62 51 30 63 60 36
## [20] 5 15 29 84 69 86 58 21 53 115 50 57
##
## [[21]]
## [1] 20 39 87 31 80 84 111 14 3 91 109 119 46 43 62 101 81 2 72
## [20] 53 22 45 26 65 11 99 13 37 9 59 7 82 94 28 120 52 4 86
## [39] 106 107 113 73 27 35 108 68 74 5 96 34 83 117 56 102 66 77 75
## [58] 95 104 105 115 85 42 30 6 48 88 70
##
## [[22]]
## [1] 110 2 113 18 32 79 85 31 96 77 62 94 49 44 17 52 68 71 30
## [20] 103 34 53 75
##
## [[23]]
## [1] 32 12 112 10 7 11 9 23 81 108 71 104 51 114 98 100 58 3 96
## [20] 86 4 46 105 97 83 107 19 57 79 63 28 40 14 68 26 20 77 115
## [39] 34 76 43 118 31 117 106 69 29 22 15 48 37 84 41 75 66 72 70
## [58] 60 45 94
##
## [[24]]
## [1] 10 102 119 19 1 32 101 17 117 33 108 41 4 100 95 28 77 65 81
## [20] 79 24 70 31 107 18 92 116 7 36 99 30 14 35 48 98 73 39 15
## [39] 53 57 51 56 105 50 61 43 47 58
##
## [[25]]
## [1] 119 1 120 103 21 112 59 83 31 102 71 110 40 2 14 118 95 72 19
## [20] 42 99 76 9 16 6 10 85 11 113 107 104 50 8 5 29 87 52 80
## [39] 49 38 78 35 64 13 36 24 81 98 46 60 114 96 27 74 65 53 61
## [58] 58 15 69 26 63 43 54 18 101 90 34 33 106 115 108 30 62 84 32
## [77] 79 75 45 47
##
## [[26]]
## [1] 3 20 86 105 51 22 114 69 78 46 94 63 37 70 79
##
## [[27]]
## [1] 120 101 102 11 30 38 110 2 119 1 71 8 17 56 90 32 104 19 47
## [20] 99 65 51 74 112 78 4 96 77 113 82 44 53 20 13 91 28 41 55
## [39] 109 63 72 46 26 95 93 64 58 27 57 117 42 6 85 16 116 75 68
## [58] 48 105 54 39 14 45 69 33 36
##
## [[28]]
## [1] 2 91 111 16 112 3 71 26 87 73 94 22 50 20 12 97 52 23 103
## [20] 28 59 14 90 6 117 102 51 79 34 84 39 40 81 120 46 105 101 57
## [39] 25 119 41 72 54 106 85 118 76 36 78 108 27 107 86 66 67 63 68
## [58] 64 69
##
## [[29]]
## [1] 29 107 118 4 81 40 32 28 76 96 13 82 48 41 25 66 47 57 59
## [20] 60 37
##
## [[30]]
## [1] 1 49 74 83 95 27 118 106 20 102 31 58 62 4
##
## [[31]]
## [1] 120 49 100 98 2 113 108 67 11 104 29 6 69 8 83 27 72 71 38
## [20] 55 30 63 74 86 117 85 40 31 19 46 26 48 44 22 94 51 14 66
## [39] 65 60 37 80 93 52
##
## [[32]]
## [1] 111 24 72 15 1 98 50 69 87 6 108 93 29 33 37 55
##
## [[33]]
## [1] 103 102 72 90 12 10 93 87 18 9 67 91 61 119 11 13 33 8 108
## [20] 110 111 53 50 24 106 44 38 57 115 97 89 23 68 16 117 94 60 6
## [39] 54 29 2 31 36 88 21 48 41 120 95 77 25 70 27 14 62 37 98
## [58] 19 34 39 22 35 96 20 113 82 74 51 76 63 64 28
##
## [[34]]
## [1] 11 2 114 10 39 32 73 91 44 24 87 100 34 96 47 79 83 90 6
## [20] 103 72 1 26 65 16 48 75 115 43 5 77 30 82 59 53
##
## [[35]]
## [1] 91 110 119 8 54 16 82 39 48 23 96 87 74 76 43 81 24 71 55
## [20] 58 117 65
##
## [[36]]
## [1] 33 77 25 84 49 68 6 20 52 91 119 109 65
##
## [[37]]
## [1] 113 90 91 24 21 30 80 50 112 42 101 72 67 59 19 3 4 115 51
## [20] 7 89 36 99 114 32 66 79 11 110 33 40 27 43 85 15 75 94 14
## [39] 71 45 69 104 97 56 62 58 39 108 96 86 26 53 37 47 74 41
##
## [[38]]
## [1] 111 90 30 32 94 5 98 31 9 77 39 11 50 12 72 42 118 99 18
## [20] 29 89 96 104 103 78 24 87 15 105 62 3 75 10 34 57 43 55 68
## [39] 113 66 110 79 47 67 49 25 86 6 51 116 28 36 106 58 52 85 41
## [58] 7 73 53 40 80
##
## [[39]]
## [1] 20 120 112 102 22 1 6 86 118 39 108 61 48 116 56 94 17 72 62
## [20] 95 65 46 59 43 67
##
## [[40]]
## [1] 20 112 100 8 108 31 4 71 22 19 1 39 62 89 85 86 78 80 114
## [20] 33 41 83 70 46 48 69 27 28 75 64 9 15 25 42 74 107 77 51
## [39] 56 58 54
##
## [[41]]
## [1] 109 30 3 57 38 92 14 85 112 28 24 116 13 71 103 108 62 96 67
## [20] 6 47 15 89 45 83 60 78 80 59 81 23 95 98 7 69 16 53 31
## [39] 36
##
## [[42]]
## [1] 99 118 43 10 11 36 90 111 86 2 95 102 84 97 13 44 101 78 104
## [20] 29 3 108 92 9 115 68 75 85 58 50 27 62 53 37 87 34 96 72
## [39] 46 61 4 25 107 56 42 35 105 24 106 15
##
## [[43]]
## [1] 119 92 44 82 27 50 63 18 19 120 17 23 111 88 7 93 39 29 11
## [20] 73 81 100 70 8 109 67 4 2 40 72 94 46 24 21 37 103 105 91
## [39] 114 20 80 3 41 59 66 108 26 68 51 55 85 115 69 86 47 78 96
## [58] 116 12 76 60 87 31 33 65 5 16 34 106 74 38 71 14 53 54
##
## [[44]]
## [1] 105 82 33 102 80 100 96 77 34 113 4 11 20 71 21 70 118 107 41
## [20] 86 69 52 119 19 37 25 78 56 83 28 8 36 6 18 63 99 50 90
## [39] 16 2 74 31 75 114 23 108 84 55 67 22 54 42 97 39 112 51 46
## [58] 7 66 91 10 53 48 62 92 35 14 88 103 64 15 72 106 117
##
## [[45]]
## [1] 101 57 73 82 94 120 115 33 46 23 42 50 18 84 5 77 99 25 62
## [20] 85 60 29 104 41 61 109 12 117 39 118 59 6 20 96 67 68 87 72
## [39] 105 26 98 40 34 17 4
##
## [[46]]
## [1] 81 98 54 22 45 39 106 113 17 80
##
## [[47]]
## [1] 120 111 103 6 40 7 22 97 4 11 94 61 38 112 47 12 60 83 79
## [20] 88 42 56 110 117 59 10 2 119 28 45 64 101 93 18 36 46 41 58
## [39] 57 95 73 25 31 32 24 74 65 20 21 80 77 89 106 26 66 70 78
## [58] 19 104 68 99 15 107 39 44 62 43 8 115 30 27 63 48 16 98 76
##
## [[48]]
## [1] 111 90 19 109 11 40 1 100 64 118 76 75 102 8 16 115 108 47 9
## [20] 6 84 56 110 82 93 22 27 24 50 113 105 21 35 98 23 91 53 85
## [39] 12 17 33 79 26 38 77 42 39 7 32 73 67 106 63 46 95 52 49
## [58] 29
##
## [[49]]
## [1] 91 11 101 94 12 17 114 29 118 9 103 64 34 108 115 81 32 42 63
## [20] 8 49 99 55 43 52 26 117 10 90 74 87 72 116 62 38 110 3 47
## [39] 6 85 36 37 41 79 105 25 80 96 56 73 14 98 65 76 50 51 70
##
## [[50]]
## [1] 115 38 101 119 102 10 19 78 100 29 87 11 79 98 93 14 4 120 58
## [20] 32 7 44 21 20 99 82 91 42 104 114 63 55 25 62 89 28 3 83
## [39] 64 34 105 69 40 45 88 60 53 17 110 50 77 46 54 37 70 57 107
## [58] 96 36 86 116
##
## [[51]]
## [1] 111 8 120 103 27 39 116 88 43 78 93 104 14 91 12 42 56 59 3
## [20] 76 72 4 106 67 55 115 62 64 51
##
## [[52]]
## [1] 90 39 118 53 62 91 46 24 105 17 80
##
## [[53]]
## [1] 109 115 83 18 94 29 21 32 91 119 2 50 4 101 20 65 86 17 112
## [20] 7 55 96 44 31 33 87 76 57 66 80 27 63 95 14 5 70 3
##
## [[54]]
## [1] 1 59 109 38 41 80 104 31 9 65 94 16 84 96 14 66 71 82 2
## [20] 83 29 53 3 20 73 27 77 116 75 118 36 55 48 91 40 52 88 93
## [39] 21 89 63 114
##
## [[55]]
## [1] 79 112 30 1 106 11 68 72 103 38 28 53 61 77 12 58 21 111 100
## [20] 55 7 110 82 62 113 16 46 90 63 116 75 95 40 36 107 42 31 47
## [39] 19 120 65 44 15 39 27 78 92 83 108 34 5 89 13 102 4 117 74
## [58] 26 25 69 101 49 33 17 70 76 54 64 73 114 84 97 48
##
## [[56]]
## [1] 88 71 16 109 99 42 54 82 120 115 47 8 36 93 70 29 107 65 83
##
## [[57]]
## [1] 20 107 12 118 105 49 17 28 64 4 34 106 80 70 30 74 59 47 11
## [20] 53 112 119 63 85 36 61 42 48 52 100 35 87 98 22 71 27 54 79
## [39] 113 101 51 19 73 89 26 96 3 5 94 6 81 97 102 62 120 38 65
## [58] 39 78 18 82 76 37 2
##
## [[58]]
## [1] 109 97 114 39 1 16 4 111 103 10 23 112 107 75 102 110 12 45 78
## [20] 21 5 33 88 59 60 67 47 79 100 64 18 69 113 89 96 30 48 54
## [39] 8 38 87 63 51 44 80 115 11 42 40 85 2 105 71 93 62 72 58
## [58] 57 43 66 76 15 99 27 28 73 83
##
## [[59]]
## [1] 92 8 89 103 34 50 99 49 15 113 1 21 31 33 74 87 30 84 63
## [20] 20 107 78 32 56 52 57 117 115 39 67
##
## [[60]]
## [1] 13 20 118 18 7 31 41 119 74 101 84 9 120 86 23 82 108 80 100
## [20] 42 39 57 97 26 35 36 99 43 114 5 85 59 103 52 71 58 93 78
## [39] 115 105 8 106 65 62 64 67 66
set.seed(1000516173)
enf_muest_nuevo = NULL
for(i in n_muestras_nuevo){
muestra_nuevo = clhs(x = lotec, size = i)
enf_muest_nuevo = c(enf_muest_nuevo, table(estado_nomc[muestra_nuevo])['Enferma']/i)
prev_i_nuevo = table(estado_nomc[muestra_nuevo])/i
cat('\nn_muestra_nuevo:',i,'\n')
print(prev_i_nuevo) }
##
## n_muestra_nuevo: 33
##
## Enferma Sana
## 0.6363636 0.3636364
##
## n_muestra_nuevo: 54
##
## Enferma Sana
## 0.7407407 0.2592593
##
## n_muestra_nuevo: 63
##
## Enferma Sana
## 0.6984127 0.3015873
##
## n_muestra_nuevo: 78
##
## Enferma Sana
## 0.7692308 0.2307692
##
## n_muestra_nuevo: 40
##
## Enferma Sana
## 0.625 0.375
##
## n_muestra_nuevo: 69
##
## Enferma Sana
## 0.7246377 0.2753623
##
## n_muestra_nuevo: 17
##
## Enferma Sana
## 0.7647059 0.2352941
##
## n_muestra_nuevo: 79
##
## Enferma Sana
## 0.7848101 0.2151899
##
## n_muestra_nuevo: 38
##
## Enferma Sana
## 0.7368421 0.2631579
##
## n_muestra_nuevo: 65
##
## Enferma Sana
## 0.7384615 0.2615385
##
## n_muestra_nuevo: 52
##
## Enferma Sana
## 0.7692308 0.2307692
##
## n_muestra_nuevo: 53
##
## Enferma Sana
## 0.8113208 0.1886792
##
## n_muestra_nuevo: 77
##
## Enferma Sana
## 0.7402597 0.2597403
##
## n_muestra_nuevo: 43
##
## Enferma Sana
## 0.7906977 0.2093023
##
## n_muestra_nuevo: 51
##
## Enferma Sana
## 0.6862745 0.3137255
##
## n_muestra_nuevo: 36
##
## Enferma Sana
## 0.7222222 0.2777778
##
## n_muestra_nuevo: 12
##
## Enferma Sana
## 0.5 0.5
##
## n_muestra_nuevo: 32
##
## Enferma Sana
## 0.6875 0.3125
##
## n_muestra_nuevo: 71
##
## Enferma Sana
## 0.7042254 0.2957746
##
## n_muestra_nuevo: 31
##
## Enferma Sana
## 0.8709677 0.1290323
##
## n_muestra_nuevo: 68
##
## Enferma Sana
## 0.7794118 0.2205882
##
## n_muestra_nuevo: 23
##
## Enferma Sana
## 0.7391304 0.2608696
##
## n_muestra_nuevo: 60
##
## Enferma Sana
## 0.7333333 0.2666667
##
## n_muestra_nuevo: 48
##
## Enferma Sana
## 0.7083333 0.2916667
##
## n_muestra_nuevo: 80
##
## Enferma Sana
## 0.7375 0.2625
##
## n_muestra_nuevo: 15
##
## Enferma Sana
## 0.6666667 0.3333333
##
## n_muestra_nuevo: 66
##
## Enferma Sana
## 0.7424242 0.2575758
##
## n_muestra_nuevo: 59
##
## Enferma Sana
## 0.779661 0.220339
##
## n_muestra_nuevo: 21
##
## Enferma Sana
## 0.7142857 0.2857143
##
## n_muestra_nuevo: 14
##
## Enferma Sana
## 0.6428571 0.3571429
##
## n_muestra_nuevo: 44
##
## Enferma Sana
## 0.7727273 0.2272727
##
## n_muestra_nuevo: 16
##
## Enferma Sana
## 0.5625 0.4375
##
## n_muestra_nuevo: 72
##
## Enferma Sana
## 0.8055556 0.1944444
##
## n_muestra_nuevo: 35
##
## Enferma Sana
## 0.7142857 0.2857143
##
## n_muestra_nuevo: 22
##
## Enferma Sana
## 0.6363636 0.3636364
##
## n_muestra_nuevo: 13
##
## Enferma Sana
## 0.6923077 0.3076923
##
## n_muestra_nuevo: 56
##
## Enferma Sana
## 0.7321429 0.2678571
##
## n_muestra_nuevo: 62
##
## Enferma Sana
## 0.7419355 0.2580645
##
## n_muestra_nuevo: 25
##
## Enferma Sana
## 0.64 0.36
##
## n_muestra_nuevo: 41
##
## Enferma Sana
## 0.7073171 0.2926829
##
## n_muestra_nuevo: 39
##
## Enferma Sana
## 0.7692308 0.2307692
##
## n_muestra_nuevo: 50
##
## Enferma Sana
## 0.78 0.22
##
## n_muestra_nuevo: 75
##
## Enferma Sana
## 0.72 0.28
##
## n_muestra_nuevo: 74
##
## Enferma Sana
## 0.7702703 0.2297297
##
## n_muestra_nuevo: 45
##
## Enferma Sana
## 0.6444444 0.3555556
##
## n_muestra_nuevo: 10
##
## Enferma Sana
## 0.6 0.4
##
## n_muestra_nuevo: 76
##
## Enferma Sana
## 0.6710526 0.3289474
##
## n_muestra_nuevo: 58
##
## Enferma Sana
## 0.7931034 0.2068966
##
## n_muestra_nuevo: 57
##
## Enferma Sana
## 0.8070175 0.1929825
##
## n_muestra_nuevo: 61
##
## Enferma Sana
## 0.7868852 0.2131148
##
## n_muestra_nuevo: 29
##
## Enferma Sana
## 0.7931034 0.2068966
##
## n_muestra_nuevo: 11
##
## Enferma Sana
## 0.4545455 0.5454545
##
## n_muestra_nuevo: 37
##
## Enferma Sana
## 0.7297297 0.2702703
##
## n_muestra_nuevo: 42
##
## Enferma Sana
## 0.7142857 0.2857143
##
## n_muestra_nuevo: 73
##
## Enferma Sana
## 0.7808219 0.2191781
##
## n_muestra_nuevo: 19
##
## Enferma Sana
## 0.8947368 0.1052632
##
## n_muestra_nuevo: 64
##
## Enferma Sana
## 0.71875 0.28125
##
## n_muestra_nuevo: 67
##
## Enferma Sana
## 0.7164179 0.2835821
##
## n_muestra_nuevo: 30
##
## Enferma Sana
## 0.7666667 0.2333333
##
## n_muestra_nuevo: 47
##
## Enferma Sana
## 0.7234043 0.2765957
set.seed(1000516173)
plot(n_muestras_nuevo, enf_muest_nuevo, pch = 16)
text(n_muestras_nuevo, enf_muest_nuevo, n_muestras_nuevo, pos = 4, cex = 0.6)
abline(h = table(estado_nomc)['Enferma']/120, col = 'red')
set.seed(1000516173)
Incidencia = 12/42
Incidencia
## [1] 0.2857143
set.seed(1000516173)
library(clhs)
N_nuevo = 50
muestras_n = ceiling(N_nuevo)
muestras_n
## [1] 50
muestras_x = lapply(muestras_n, clhs, x = lote)
muestras_x
## [[1]]
## [1] 65 21 42 82 104 80 29 55 50 107 83 112 99 74 114 100 111 68 115
## [20] 61 1 110 14 26 53 7 20 3 109 95 87 39 28 92 43 4 59 18
## [39] 37 38 85 34 51 97 67 46 60 16 31 88
set.seed(1000516173)
library(clhs)
N_nuevo = 50
n_muestras_nuevo = ceiling(N_nuevo)
n_muestras_nuevo
## [1] 50
muestras_nuevo = lapply(n_muestras_nuevo, clhs, x = lotec)
muestras_nuevo
## [[1]]
## [1] 65 21 42 82 104 80 29 55 50 107 83 112 99 74 114 100 111 68 115
## [20] 61 1 110 14 26 53 7 20 3 109 95 87 39 28 92 43 4 59 18
## [39] 37 38 85 34 51 97 67 46 60 16 31 88
set.seed(1000516173)
muestreo= lote[clhs(x = lote, size = 50),]
plot(lote$x, lote$y, pch = 8, col = estado_col)
points(muestreo$x, muestreo$y, cex = 1.8)
set.seed(1000516173)
muestreo= lotec[clhs(x = lotec, size = 50),]
plot(lotec$x, lotec$y, pch = 8, col = estado_colc)
points(muestreo$x, muestreo$y, cex = 1.8)
set.seed(1000516173)
Sanas = 22/50
Enfermas = 28/50
Sanas
## [1] 0.44
Enfermas
## [1] 0.56
Prevalencia = data.frame(Sanas, Enfermas)
Prevalencia
## Sanas Enfermas
## 1 0.44 0.56
set.seed(1000516173)
Sanas2 = 19/50
Enfermas2 = 31/50
Sanas2
## [1] 0.38
Enfermas2
## [1] 0.62
Prevalencia2 = data.frame(Sanas2, Enfermas2)
Prevalencia2
## Sanas2 Enfermas2
## 1 0.38 0.62
set.seed(1000516173)
incidencia2 = 3/22
incidencia2
## [1] 0.1363636