Y =read_delim("C:/Users/drkos/Desktop/Tok.csv",
delim = ";", escape_double = FALSE, col_types = cols(date = col_date(format = "%d.%m.%Y")),
trim_ws = TRUE) %>%
dplyr::rename(ds= date,
y= price)
Model1 <- prophet(Y)
## Disabling yearly seasonality. Run prophet with yearly.seasonality=TRUE to override this.
## Disabling daily seasonality. Run prophet with daily.seasonality=TRUE to override this.
Future1 <- make_future_dataframe(Model1, periods = 130)
tail(Future1)
## ds
## 518 2022-05-02
## 519 2022-05-03
## 520 2022-05-04
## 521 2022-05-05
## 522 2022-05-06
## 523 2022-05-07
Forecast1 <- predict(Model1, Future1)
tail(Forecast1[c('ds','yhat','yhat_lower','yhat_upper')])
## ds yhat yhat_lower yhat_upper
## 518 2022-05-02 729.4849 663.8574 800.2834
## 519 2022-05-03 738.9084 672.6008 806.2538
## 520 2022-05-04 752.3496 685.6424 820.8900
## 521 2022-05-05 744.7606 676.8784 811.9447
## 522 2022-05-06 741.0796 673.8407 808.7190
## 523 2022-05-07 715.9228 643.9840 782.1696
dyplot.prophet(Model1, Forecast1)
## Warning: `select_()` was deprecated in dplyr 0.7.0.
## Please use `select()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
prophet_plot_components(Model1, Forecast1)
Габриела омъжи се за мен, роди ми деца! Преди цената на тока да еректира!