setwd("~/Google Drive/Agrosavia/Colaboraciones/Lucero/data")
sensorial <- read.table("sensof.csv", header=T, sep=",")
senstime4 <- subset(sensorial, sensorial$time == "4")
senstime5 <- subset(sensorial, sensorial$time == "5")
senstime6 <- subset(sensorial, sensorial$time == "6")
senstime7 <- subset(sensorial, sensorial$time == "7")
attach(sensorial)
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.5-7
# Generando la matriz general de perfil sensorial - extrayendo columnas con la información de sabor
sens = sensorial[,9:ncol(sensorial)]
# Convirtiendo las columnas extraidas en una matriz
m_sens=as.matrix(sens)
# Obteniendo las distancias Bray-Curtis de la matriz
set.seed(123)
nmds = metaMDS(m_sens, distance = "bray")
## Run 0 stress 0.1489369 
## Run 1 stress 0.1530172 
## Run 2 stress 0.1521733 
## Run 3 stress 0.1568495 
## Run 4 stress 0.1526783 
## Run 5 stress 0.1496541 
## Run 6 stress 0.1530753 
## Run 7 stress 0.1482475 
## ... New best solution
## ... Procrustes: rmse 0.03256426  max resid 0.1189394 
## Run 8 stress 0.1547037 
## Run 9 stress 0.153286 
## Run 10 stress 0.1572527 
## Run 11 stress 0.1533432 
## Run 12 stress 0.1573279 
## Run 13 stress 0.1537564 
## Run 14 stress 0.1554653 
## Run 15 stress 0.1553521 
## Run 16 stress 0.1536686 
## Run 17 stress 0.1598436 
## Run 18 stress 0.1496834 
## Run 19 stress 0.1519403 
## Run 20 stress 0.1515435 
## *** No convergence -- monoMDS stopping criteria:
##      1: no. of iterations >= maxit
##     19: stress ratio > sratmax
nmds
## 
## Call:
## metaMDS(comm = m_sens, distance = "bray") 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     m_sens 
## Distance: bray 
## 
## Dimensions: 2 
## Stress:     0.1482475 
## Stress type 1, weak ties
## No convergent solutions - best solution after 20 tries
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'm_sens'
# Generando el gráfico Non-Metric multidimensional scaling
plot(nmds)

# extrayendo los puntajes NMDS (coordenadas x and y)
data.scores = as.data.frame(scores(nmds))
# adicionando columnas al data frame 
data.scores$gen = sensorial$gen
data.scores$trat = sensorial$trat
data.scores$gentrat = sensorial$gentrat
data.scores$gentime = sensorial$gentime
data.scores$tratime = sensorial$tratime
data.scores$gentratime = sensorial$gentratime
data.scores$time = sensorial$time

head(data.scores)
##        NMDS1       NMDS2    gen   trat gentrat gentime tratime gentratime time
## 1 -0.3061542 -0.02058306 ICS 95 Large   ICS95L  ICS954      L4    ICS95L4    4
## 2 -0.2425145 -0.18704525 ICS 95 Large   ICS95L  ICS954      L4    ICS95L4    4
## 3 -0.1687596  0.03355235 ICS 95 Large   ICS95L  ICS954      L4    ICS95L4    4
## 4 -0.2950584 -0.07227607 ICS 95 Large   ICS95L  ICS954      L4    ICS95L4    4
## 5 -0.3960118 -0.16981104 ICS 95 Large   ICS95L  ICS954      L4    ICS95L4    4
## 6 -0.2487604 -0.12027949 ICS 95 Large   ICS95L  ICS954      L4    ICS95L4    4
cbp1 <- c("#999999", "#E69F00", "#56B4E9", "#009E73","#F0E442", "#0072B2", "#D55E00", "#CC79A7")

library(ggplot2)
xx = ggplot(data.scores, aes(x = NMDS1, y = NMDS2)) + 
  geom_point(size = 4, aes(shape = gen, colour = trat)) + 
  stat_ellipse(aes(fill=gen), alpha=.2,type='t',size =1, geom="polygon") +
  theme(axis.text.y = element_text(colour = "black", size = 12, face = "bold"), 
        axis.text.x = element_text(colour = "black", face = "bold", size = 12), 
        legend.text = element_text(size = 12, face ="bold", colour ="black"), 
        legend.position = "right", axis.title.y = element_text(face = "bold", size = 14), 
        axis.title.x = element_text(face = "bold", size = 14, colour = "black"), 
        legend.title = element_text(size = 14, colour = "black", face = "bold"), 
        panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA, size = 1.2),
        legend.key=element_blank()) + 
  labs(x = "NMDS1", colour = "Batch", y = "NMDS2", shape ="Genotype", fill="Genotype")  + 
  scale_colour_manual(values = cbp1)

xx

ggsave("NMDS.svg")
## Saving 7 x 5 in image
detach(sensorial)
attach(senstime4)


# Generando la matriz de perfil sensorial para cada tiempo - extrayendo columnas con la información de sabor
sens = senstime4[,9:ncol(senstime4)]
# Convirtiendo las columnas extraidas en una matriz
m_sens=as.matrix(sens)
# Obteniendo las distancias Bray-Curtis de la matriz
set.seed(123)
nmds = metaMDS(m_sens, distance = "bray")
## Run 0 stress 0.1814664 
## Run 1 stress 0.1814296 
## ... New best solution
## ... Procrustes: rmse 0.008505469  max resid 0.03867465 
## Run 2 stress 0.1801149 
## ... New best solution
## ... Procrustes: rmse 0.02681279  max resid 0.09883305 
## Run 3 stress 0.192803 
## Run 4 stress 0.2133989 
## Run 5 stress 0.1909052 
## Run 6 stress 0.1909052 
## Run 7 stress 0.2318464 
## Run 8 stress 0.2111372 
## Run 9 stress 0.192803 
## Run 10 stress 0.180936 
## Run 11 stress 0.192803 
## Run 12 stress 0.1801149 
## ... Procrustes: rmse 0.0001660318  max resid 0.0007746368 
## ... Similar to previous best
## Run 13 stress 0.1809297 
## Run 14 stress 0.211326 
## Run 15 stress 0.1814296 
## Run 16 stress 0.194121 
## Run 17 stress 0.1801151 
## ... Procrustes: rmse 0.0002630813  max resid 0.001246198 
## ... Similar to previous best
## Run 18 stress 0.1809297 
## Run 19 stress 0.1909052 
## Run 20 stress 0.1801149 
## ... New best solution
## ... Procrustes: rmse 8.314346e-05  max resid 0.000379899 
## ... Similar to previous best
## *** Solution reached
nmds
## 
## Call:
## metaMDS(comm = m_sens, distance = "bray") 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     m_sens 
## Distance: bray 
## 
## Dimensions: 2 
## Stress:     0.1801149 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'm_sens'
# Generando el gráfico Non-Metric multidimensional scaling
plot(nmds)

# extrayendo los puntajes NMDS (coordenadas x and y)
data.scores = as.data.frame(scores(nmds))
# adicionando columnas al data frame 
data.scores$gen = senstime4$gen
data.scores$trat = senstime4$trat
data.scores$gentrat = senstime4$gentrat
data.scores$gentime = senstime4$gentime
data.scores$tratime = senstime4$tratime
data.scores$gentratime = senstime4$gentratime
data.scores$time = senstime4$time

head(data.scores)
##          NMDS1       NMDS2    gen   trat gentrat gentime tratime gentratime
## 1 -0.102632741 -0.07645270 ICS 95 Large   ICS95L  ICS954      L4    ICS95L4
## 2 -0.081675107 -0.22175524 ICS 95 Large   ICS95L  ICS954      L4    ICS95L4
## 3  0.003558008  0.01225024 ICS 95 Large   ICS95L  ICS954      L4    ICS95L4
## 4 -0.112573416 -0.09979150 ICS 95 Large   ICS95L  ICS954      L4    ICS95L4
## 5 -0.212164398 -0.18110499 ICS 95 Large   ICS95L  ICS954      L4    ICS95L4
## 6 -0.054502983 -0.17087750 ICS 95 Large   ICS95L  ICS954      L4    ICS95L4
##   time
## 1    4
## 2    4
## 3    4
## 4    4
## 5    4
## 6    4
cbp1 <- c("#999999", "#E69F00", "#56B4E9", "#009E73","#F0E442", "#0072B2", "#D55E00", "#CC79A7")

library(ggplot2)
xx = ggplot(data.scores, aes(x = NMDS1, y = NMDS2)) + 
  geom_point(size = 4, aes(shape = gen, colour = trat)) + 
  stat_ellipse(aes(fill=gen), alpha=.2,type='t',size =1, geom="polygon") +
    theme(axis.text.y = element_text(colour = "black", size = 12, face = "bold"), 
        axis.text.x = element_text(colour = "black", face = "bold", size = 12), 
        legend.text = element_text(size = 12, face ="bold", colour ="black"), 
        legend.position = "right", axis.title.y = element_text(face = "bold", size = 14), 
        axis.title.x = element_text(face = "bold", size = 14, colour = "black"), 
        legend.title = element_text(size = 14, colour = "black", face = "bold"), 
        panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA, size = 1.2),
        legend.key=element_blank()) + 
  labs(x = "NMDS1", colour = "Batch", y = "NMDS2", shape ="Genotype", fill="Genotype")  + 
  scale_colour_manual(values = cbp1)

xx

ggsave("NMDS4.svg")
## Saving 7 x 5 in image
detach(senstime4)
attach(senstime5)

# Generando la matriz de perfil sensorial - extrayendo columnas con la información de sabor
sens = senstime5[,9:ncol(senstime5)]
# Convirtiendo las columnas extraidas en una matriz
m_sens=as.matrix(sens)
# Obteniendo las distancias Bray-Curtis de la matriz
set.seed(123)
nmds = metaMDS(m_sens, distance = "bray")
## Run 0 stress 0.1668436 
## Run 1 stress 0.1668436 
## ... Procrustes: rmse 8.152131e-06  max resid 3.142023e-05 
## ... Similar to previous best
## Run 2 stress 0.1668436 
## ... Procrustes: rmse 1.158189e-05  max resid 5.376688e-05 
## ... Similar to previous best
## Run 3 stress 0.2144496 
## Run 4 stress 0.166092 
## ... New best solution
## ... Procrustes: rmse 0.01648325  max resid 0.07378744 
## Run 5 stress 0.1666191 
## Run 6 stress 0.1668436 
## Run 7 stress 0.1673176 
## Run 8 stress 0.1673176 
## Run 9 stress 0.166092 
## ... New best solution
## ... Procrustes: rmse 4.272779e-05  max resid 0.0002245771 
## ... Similar to previous best
## Run 10 stress 0.166619 
## Run 11 stress 0.2151078 
## Run 12 stress 0.166092 
## ... Procrustes: rmse 2.638393e-05  max resid 0.0001398299 
## ... Similar to previous best
## Run 13 stress 0.166092 
## ... Procrustes: rmse 3.883905e-06  max resid 2.016202e-05 
## ... Similar to previous best
## Run 14 stress 0.1673176 
## Run 15 stress 0.166092 
## ... Procrustes: rmse 1.554511e-05  max resid 8.324576e-05 
## ... Similar to previous best
## Run 16 stress 0.1668436 
## Run 17 stress 0.166346 
## ... Procrustes: rmse 0.007596523  max resid 0.03229617 
## Run 18 stress 0.166346 
## ... Procrustes: rmse 0.007596686  max resid 0.03228999 
## Run 19 stress 0.2293322 
## Run 20 stress 0.1668436 
## *** Solution reached
nmds
## 
## Call:
## metaMDS(comm = m_sens, distance = "bray") 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     m_sens 
## Distance: bray 
## 
## Dimensions: 2 
## Stress:     0.166092 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'm_sens'
# Generando el gráfico Non-Metric multidimensional scaling
plot(nmds)

# extrayendo los puntajes NMDS (coordenadas x and y)
data.scores = as.data.frame(scores(nmds))
# adicionando columnas al data frame 
data.scores$gen = senstime5$gen
data.scores$trat = senstime5$trat
data.scores$gentrat = senstime5$gentrat
data.scores$gentime = senstime5$gentime
data.scores$tratime = senstime5$tratime
data.scores$gentratime = senstime5$gentratime
data.scores$time = senstime5$time

head(data.scores)
##          NMDS1       NMDS2    gen   trat gentrat gentime tratime gentratime
## 7  -0.04149516 -0.14229134 ICS 95 Large   ICS95L  ICS955      L5    ICS95L5
## 8  -0.23714571 -0.13105445 ICS 95 Large   ICS95L  ICS955      L5    ICS95L5
## 9   0.05045478 -0.06054047 ICS 95 Large   ICS95L  ICS955      L5    ICS95L5
## 10 -0.12947458 -0.08978748 ICS 95 Large   ICS95L  ICS955      L5    ICS95L5
## 11  0.02378278 -0.19668392 ICS 95 Large   ICS95L  ICS955      L5    ICS95L5
## 12  0.07757157 -0.17309936 ICS 95 Large   ICS95L  ICS955      L5    ICS95L5
##    time
## 7     5
## 8     5
## 9     5
## 10    5
## 11    5
## 12    5
cbp1 <- c("#999999", "#E69F00", "#56B4E9", "#009E73","#F0E442", "#0072B2", "#D55E00", "#CC79A7")

library(ggplot2)
xx = ggplot(data.scores, aes(x = NMDS1, y = NMDS2)) + 
  geom_point(size = 4, aes(shape = gen, colour = trat)) + 
  stat_ellipse(aes(fill=gen), alpha=.2,type='t',size =1, geom="polygon") +
  theme(axis.text.y = element_text(colour = "black", size = 12, face = "bold"), 
        axis.text.x = element_text(colour = "black", face = "bold", size = 12), 
        legend.text = element_text(size = 12, face ="bold", colour ="black"), 
        legend.position = "right", axis.title.y = element_text(face = "bold", size = 14), 
        axis.title.x = element_text(face = "bold", size = 14, colour = "black"), 
        legend.title = element_text(size = 14, colour = "black", face = "bold"), 
        panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA, size = 1.2),
        legend.key=element_blank()) + 
  labs(x = "NMDS1", colour = "Batch", y = "NMDS2", shape ="Genotype", fill="Genotype")  + 
  scale_colour_manual(values = cbp1)

xx

ggsave("NMDS5.svg")
## Saving 7 x 5 in image
detach(senstime5)
attach(senstime6)

# Generando la matriz de perfil sensorial - extrayendo columnas con la información de sabor
sens = senstime6[,9:ncol(senstime6)]
# Convirtiendo las columnas extraidas en una matriz
m_sens=as.matrix(sens)
# Obteniendo las distancias Bray-Curtis de la matriz
set.seed(123)
nmds = metaMDS(m_sens, distance = "bray")
## Run 0 stress 0.1450454 
## Run 1 stress 0.1489288 
## Run 2 stress 0.1570882 
## Run 3 stress 0.1610604 
## Run 4 stress 0.1443303 
## ... New best solution
## ... Procrustes: rmse 0.01253153  max resid 0.05814487 
## Run 5 stress 0.1548939 
## Run 6 stress 0.1583799 
## Run 7 stress 0.151111 
## Run 8 stress 0.1449351 
## Run 9 stress 0.1645562 
## Run 10 stress 0.1512594 
## Run 11 stress 0.167403 
## Run 12 stress 0.1489976 
## Run 13 stress 0.1449351 
## Run 14 stress 0.1576266 
## Run 15 stress 0.1610704 
## Run 16 stress 0.1548938 
## Run 17 stress 0.1551659 
## Run 18 stress 0.1511105 
## Run 19 stress 0.1442032 
## ... New best solution
## ... Procrustes: rmse 0.003459466  max resid 0.01443468 
## Run 20 stress 0.157441 
## *** No convergence -- monoMDS stopping criteria:
##     17: stress ratio > sratmax
##      3: scale factor of the gradient < sfgrmin
nmds
## 
## Call:
## metaMDS(comm = m_sens, distance = "bray") 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     m_sens 
## Distance: bray 
## 
## Dimensions: 2 
## Stress:     0.1442032 
## Stress type 1, weak ties
## No convergent solutions - best solution after 20 tries
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'm_sens'
# Generando el gráfico Non-Metric multidimensional scaling
plot(nmds)

# extrayendo los puntajes NMDS (coordenadas x and y)
data.scores = as.data.frame(scores(nmds))
# adicionando columnas al data frame 
data.scores$gen = senstime6$gen
data.scores$trat = senstime6$trat
data.scores$gentrat = senstime6$gentrat
data.scores$gentime = senstime6$gentime
data.scores$tratime = senstime6$tratime
data.scores$gentratime = senstime6$gentratime
data.scores$time = senstime6$time

head(data.scores)
##         NMDS1       NMDS2    gen   trat gentrat gentime tratime gentratime time
## 13 -0.4133056  0.02017611 ICS 95 Large   ICS95L  ICS956      L6    ICS95L6    6
## 14 -0.4288186 -0.10508298 ICS 95 Large   ICS95L  ICS956      L6    ICS95L6    6
## 15 -0.3645059  0.10118830 ICS 95 Large   ICS95L  ICS956      L6    ICS95L6    6
## 16 -0.2983109 -0.14585245 ICS 95 Large   ICS95L  ICS956      L6    ICS95L6    6
## 17 -0.3097928  0.04559518 ICS 95 Large   ICS95L  ICS956      L6    ICS95L6    6
## 18 -0.3189945  0.01154651 ICS 95 Large   ICS95L  ICS956      L6    ICS95L6    6
cbp1 <- c("#999999", "#E69F00", "#56B4E9", "#009E73","#F0E442", "#0072B2", "#D55E00", "#CC79A7")

library(ggplot2)
xx = ggplot(data.scores, aes(x = NMDS1, y = NMDS2)) + 
  geom_point(size = 4, aes(shape = gen, colour = trat)) + 
  stat_ellipse(aes(fill=gen), alpha=.2,type='t',size =1, geom="polygon") +
  theme(axis.text.y = element_text(colour = "black", size = 12, face = "bold"), 
        axis.text.x = element_text(colour = "black", face = "bold", size = 12), 
        legend.text = element_text(size = 12, face ="bold", colour ="black"), 
        legend.position = "right", axis.title.y = element_text(face = "bold", size = 14), 
        axis.title.x = element_text(face = "bold", size = 14, colour = "black"), 
        legend.title = element_text(size = 14, colour = "black", face = "bold"), 
        panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA, size = 1.2),
        legend.key=element_blank()) + 
  labs(x = "NMDS1", colour = "Batch", y = "NMDS2", shape ="Genotype", fill="Genotype")  + 
  scale_colour_manual(values = cbp1)

xx

ggsave("NMDS6.svg")
## Saving 7 x 5 in image
detach(senstime6)
attach(senstime7)

# Generando la matriz de perfil sensorial - extrayendo columnas con la información de sabor
sens = senstime7[,9:ncol(senstime7)]
# Convirtiendo las columnas extraidas en una matriz
m_sens=as.matrix(sens)
# Obteniendo las distancias Bray-Curtis de la matriz
set.seed(123)
nmds = metaMDS(m_sens, distance = "bray")
## Run 0 stress 0.1423392 
## Run 1 stress 0.1535313 
## Run 2 stress 0.1537953 
## Run 3 stress 0.1514841 
## Run 4 stress 0.1570495 
## Run 5 stress 0.1556572 
## Run 6 stress 0.1472975 
## Run 7 stress 0.1411384 
## ... New best solution
## ... Procrustes: rmse 0.03535789  max resid 0.1735487 
## Run 8 stress 0.1563372 
## Run 9 stress 0.1547771 
## Run 10 stress 0.1543733 
## Run 11 stress 0.1472973 
## Run 12 stress 0.1511298 
## Run 13 stress 0.1499119 
## Run 14 stress 0.1415652 
## ... Procrustes: rmse 0.05135007  max resid 0.215461 
## Run 15 stress 0.156228 
## Run 16 stress 0.1556344 
## Run 17 stress 0.147714 
## Run 18 stress 0.1423395 
## Run 19 stress 0.1498844 
## Run 20 stress 0.1423458 
## *** No convergence -- monoMDS stopping criteria:
##      1: no. of iterations >= maxit
##     18: stress ratio > sratmax
##      1: scale factor of the gradient < sfgrmin
nmds
## 
## Call:
## metaMDS(comm = m_sens, distance = "bray") 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     m_sens 
## Distance: bray 
## 
## Dimensions: 2 
## Stress:     0.1411384 
## Stress type 1, weak ties
## No convergent solutions - best solution after 20 tries
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'm_sens'
# Generando el gráfico Non-Metric multidimensional scaling
plot(nmds)

# extrayendo los puntajes NMDS (coordenadas x and y)
data.scores = as.data.frame(scores(nmds))
# adicionando columnas al data frame 
data.scores$gen = senstime7$gen
data.scores$trat = senstime7$trat
data.scores$gentrat = senstime7$gentrat
data.scores$gentime = senstime7$gentime
data.scores$tratime = senstime7$tratime
data.scores$gentratime = senstime7$gentratime
data.scores$time = senstime7$time

head(data.scores)
##         NMDS1         NMDS2    gen   trat gentrat gentime tratime gentratime
## 19 -0.1234501  0.0124455706 ICS 95 Large   ICS95L  ICS957      L7    ICS95L7
## 20 -0.2886038 -0.0005105661 ICS 95 Large   ICS95L  ICS957      L7    ICS95L7
## 21 -0.1390190  0.0130434330 ICS 95 Large   ICS95L  ICS957      L7    ICS95L7
## 22 -0.2964903  0.1148874134 ICS 95 Large   ICS95L  ICS957      L7    ICS95L7
## 23 -0.3502034 -0.1018313350 ICS 95 Large   ICS95L  ICS957      L7    ICS95L7
## 24 -0.4267919 -0.0142100363 ICS 95 Large   ICS95L  ICS957      L7    ICS95L7
##    time
## 19    7
## 20    7
## 21    7
## 22    7
## 23    7
## 24    7
cbp1 <- c("#999999", "#E69F00", "#56B4E9", "#009E73","#F0E442", "#0072B2", "#D55E00", "#CC79A7")

library(ggplot2)
xx = ggplot(data.scores, aes(x = NMDS1, y = NMDS2)) + 
  geom_point(size = 4, aes(shape = gen, colour = trat)) + 
  stat_ellipse(aes(fill=gen), alpha=.2,type='t',size =1, geom="polygon") +
  theme(axis.text.y = element_text(colour = "black", size = 12, face = "bold"), 
        axis.text.x = element_text(colour = "black", face = "bold", size = 12), 
        legend.text = element_text(size = 12, face ="bold", colour ="black"), 
        legend.position = "right", axis.title.y = element_text(face = "bold", size = 14), 
        axis.title.x = element_text(face = "bold", size = 14, colour = "black"), 
        legend.title = element_text(size = 14, colour = "black", face = "bold"), 
        panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA, size = 1.2),
        legend.key=element_blank()) + 
  labs(x = "NMDS1", colour = "Batch", y = "NMDS2", shape ="Genotype", fill="Genotype")  + 
  scale_colour_manual(values = cbp1)

xx

ggsave("NMDS7.svg")
## Saving 7 x 5 in image
detach(senstime7)

## Probando si el perfil del sabor es estadísticamente distinto basado en los grupos (genotipos, tratamientos, genotipos*tratamientos) para cada tiempo evaluado
## Tiempo 4
attach(senstime4)
# Generando la matriz de perfil sensorial para el tiempo a evaluar - extrayendo columnas con la información de sabor
sens = senstime4[,9:ncol(senstime4)]
# Convirtiendo las columnas extraidas en una matriz
m_sens=as.matrix(sens)
# Análisis de similaridad identificando las diferencias en el perfil de sabor según los grupos evaluados
anogen <- anosim(m_sens, gen, distance = "bray", permutations = 9999)
anogen
## 
## Call:
## anosim(x = m_sens, grouping = gen, permutations = 9999, distance = "bray") 
## Dissimilarity: bray 
## 
## ANOSIM statistic R: 0.3528 
##       Significance: 1e-04 
## 
## Permutation: free
## Number of permutations: 9999
anotrat <- anosim(m_sens, trat, distance = "bray", permutations = 9999)
anotrat
## 
## Call:
## anosim(x = m_sens, grouping = trat, permutations = 9999, distance = "bray") 
## Dissimilarity: bray 
## 
## ANOSIM statistic R: 0.0343 
##       Significance: 0.172 
## 
## Permutation: free
## Number of permutations: 9999
anogentrat <- anosim(m_sens, gentrat, distance = "bray", permutations = 9999)
anogentrat
## 
## Call:
## anosim(x = m_sens, grouping = gentrat, permutations = 9999, distance = "bray") 
## Dissimilarity: bray 
## 
## ANOSIM statistic R: 0.4128 
##       Significance: 1e-04 
## 
## Permutation: free
## Number of permutations: 9999
# PostHoc análisis de las diferencias cuantitativas del perfil de sabor entre las categorias de los grupos evaluado.
library(pairwiseAdonis)
## Loading required package: cluster
pairwise.adonis2(m_sens ~ gen, data = senstime4)
## $parent_call
## [1] "m_sens ~ gen , strata = Null , permutations 999"
## 
## $`ICS 95_vs_EET8`
##          Df SumOfSqs      R2      F Pr(>F)   
## gen       1  0.09777 0.22669 6.4491  0.003 **
## Residual 22  0.33354 0.77331                 
## Total    23  0.43131 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`ICS 95_vs_TCS01`
##          Df SumOfSqs      R2      F Pr(>F)   
## gen       1  0.06945 0.17524 4.6744  0.003 **
## Residual 22  0.32687 0.82476                 
## Total    23  0.39632 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8_vs_TCS01
##          Df SumOfSqs      R2      F Pr(>F)    
## gen       1  0.13588 0.30343 9.5835  0.001 ***
## Residual 22  0.31193 0.69657                  
## Total    23  0.44782 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## attr(,"class")
## [1] "pwadstrata" "list"
pairwise.adonis2(m_sens ~ trat, data = senstime4)
## $parent_call
## [1] "m_sens ~ trat , strata = Null , permutations 999"
## 
## $`Large _vs_Small`
##          Df SumOfSqs      R2     F Pr(>F)
## trat      1  0.02420 0.03516 1.239  0.305
## Residual 34  0.66405 0.96484             
## Total    35  0.68824 1.00000             
## 
## attr(,"class")
## [1] "pwadstrata" "list"
pairwise.adonis2(m_sens ~ gentrat, data = senstime4)
## $parent_call
## [1] "m_sens ~ gentrat , strata = Null , permutations 999"
## 
## $ICS95L_vs_ICS95SM
##          Df SumOfSqs      R2     F Pr(>F)   
## gentrat   1 0.056685 0.32533 4.822  0.005 **
## Residual 10 0.117553 0.67467                
## Total    11 0.174238 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_EET8L
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.038723 0.24222 3.1964  0.045 *
## Residual 10 0.121146 0.75778                
## Total    11 0.159869 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_EET8SM
##          Df SumOfSqs      R2      F Pr(>F)    
## gentrat   1 0.078534 0.52642 11.116  0.001 ***
## Residual 10 0.070651 0.47358                  
## Total    11 0.149185 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1 0.079585 0.44574 8.0419  0.004 **
## Residual 10 0.098963 0.55426                 
## Total    11 0.178548 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1 0.074107 0.38843 6.3513   0.01 **
## Residual 10 0.116681 0.61157                 
## Total    11 0.190788 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_EET8L
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1  0.05389 0.24798 3.2976  0.032 *
## Residual 10  0.16342 0.75202                
## Total    11  0.21731 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_EET8SM
##          Df SumOfSqs      R2      F Pr(>F)    
## gentrat   1  0.12386 0.52309 10.969  0.001 ***
## Residual 10  0.11293 0.47691                  
## Total    11  0.23679 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.032462 0.18689 2.2984  0.044 *
## Residual 10 0.141239 0.81311                
## Total    11 0.173702 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)
## gentrat   1 0.021702 0.12013 1.3653  0.302
## Residual 10 0.158957 0.87987              
## Total    11 0.180659 1.00000              
## 
## $EET8L_vs_EET8SM
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1  0.04278 0.26855 3.6715  0.026 *
## Residual 10  0.11652 0.73145                
## Total    11  0.15930 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8L_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.038074 0.20816 2.6288  0.068 .
## Residual 10 0.144832 0.79184                
## Total    11 0.182905 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8L_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.052497 0.24412 3.2296  0.039 *
## Residual 10 0.162549 0.75588                
## Total    11 0.215046 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8SM_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)    
## gentrat   1 0.112756 0.54447 11.952  0.001 ***
## Residual 10 0.094337 0.45553                  
## Total    11 0.207093 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8SM_vs_TCS01L
##          Df SumOfSqs      R2     F Pr(>F)   
## gentrat   1  0.12349 0.52427 11.02  0.002 **
## Residual 10  0.11206 0.47573                
## Total    11  0.23554 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $TCS01SM_vs_TCS01L
##          Df SumOfSqs      R2     F Pr(>F)
## gentrat   1 0.012268 0.08037 0.874  0.514
## Residual 10 0.140367 0.91963             
## Total    11 0.152635 1.00000             
## 
## attr(,"class")
## [1] "pwadstrata" "list"
detach(senstime4)

## Tiempo 5
attach(senstime5)
# Generando la matriz de perfil sensorial para el tiempo a evaluar - extrayendo columnas con la información de sabor
sens = senstime5[,9:ncol(senstime5)]
# Convirtiendo las columnas extraidas en una matriz
m_sens=as.matrix(sens)
# Análisis de similaridad identificando las diferencias en el perfil de sabor según los grupos evaluados
anogen <- anosim(m_sens, gen, distance = "bray", permutations = 9999)
anogen
## 
## Call:
## anosim(x = m_sens, grouping = gen, permutations = 9999, distance = "bray") 
## Dissimilarity: bray 
## 
## ANOSIM statistic R: 0.293 
##       Significance: 1e-04 
## 
## Permutation: free
## Number of permutations: 9999
anotrat <- anosim(m_sens, trat, distance = "bray", permutations = 9999)
anotrat
## 
## Call:
## anosim(x = m_sens, grouping = trat, permutations = 9999, distance = "bray") 
## Dissimilarity: bray 
## 
## ANOSIM statistic R: -0.04856 
##       Significance: 0.9622 
## 
## Permutation: free
## Number of permutations: 9999
anogentrat <- anosim(m_sens, gentrat, distance = "bray", permutations = 9999)
anogentrat
## 
## Call:
## anosim(x = m_sens, grouping = gentrat, permutations = 9999, distance = "bray") 
## Dissimilarity: bray 
## 
## ANOSIM statistic R: 0.2255 
##       Significance: 6e-04 
## 
## Permutation: free
## Number of permutations: 9999
# PostHoc análisis de las diferencias cuantitativas del perfil de sabor entre las categorias de los grupos evaluado.
library(pairwiseAdonis)
pairwise.adonis2(m_sens ~ gen, data = senstime5)
## $parent_call
## [1] "m_sens ~ gen , strata = Null , permutations 999"
## 
## $`ICS 95_vs_EET8`
##          Df SumOfSqs      R2      F Pr(>F)   
## gen       1 0.060948 0.19795 5.4296  0.008 **
## Residual 22 0.246955 0.80205                 
## Total    23 0.307903 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`ICS 95_vs_TCS01`
##          Df SumOfSqs      R2      F Pr(>F)    
## gen       1  0.08456 0.25308 7.4543  0.001 ***
## Residual 22  0.24957 0.74692                  
## Total    23  0.33413 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8_vs_TCS01
##          Df SumOfSqs      R2      F Pr(>F)   
## gen       1 0.055744 0.19787 5.4271  0.002 **
## Residual 22 0.225969 0.80213                 
## Total    23 0.281713 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## attr(,"class")
## [1] "pwadstrata" "list"
pairwise.adonis2(m_sens ~ trat, data = senstime5)
## $parent_call
## [1] "m_sens ~ trat , strata = Null , permutations 999"
## 
## $`Large _vs_Small`
##          Df SumOfSqs      R2      F Pr(>F)
## trat      1  0.00648 0.01307 0.4504  0.779
## Residual 34  0.48894 0.98693              
## Total    35  0.49542 1.00000              
## 
## attr(,"class")
## [1] "pwadstrata" "list"
pairwise.adonis2(m_sens ~ gentrat, data = senstime5)
## $parent_call
## [1] "m_sens ~ gentrat , strata = Null , permutations 999"
## 
## $ICS95L_vs_ICS95SM
##          Df SumOfSqs     R2      F Pr(>F)  
## gentrat   1 0.029802 0.2203 2.8254  0.054 .
## Residual 10 0.105476 0.7797                
## Total    11 0.135278 1.0000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_EET8L
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.033413 0.24778 3.2939  0.038 *
## Residual 10 0.101438 0.75222                
## Total    11 0.134850 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_EET8SM
##          Df SumOfSqs      R2      F Pr(>F)
## gentrat   1 0.023223 0.18101 2.2102  0.112
## Residual 10 0.105076 0.81899              
## Total    11 0.128299 1.00000              
## 
## $ICS95L_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1 0.051349 0.34661 5.3047  0.002 **
## Residual 10 0.096799 0.65339                 
## Total    11 0.148148 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_TCS01L
##          Df SumOfSqs     R2      F Pr(>F)   
## gentrat   1 0.081101 0.4435 7.9695  0.005 **
## Residual 10 0.101764 0.5565                 
## Total    11 0.182865 1.0000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_EET8L
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.048097 0.30492 4.3868  0.032 *
## Residual 10 0.109638 0.69508                
## Total    11 0.157735 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_EET8SM
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.049404 0.30369 4.3613  0.013 *
## Residual 10 0.113277 0.69631                
## Total    11 0.162680 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1 0.034846 0.24918 3.3187  0.007 **
## Residual 10 0.105000 0.75082                 
## Total    11 0.139846 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.044637 0.28872 4.0592  0.012 *
## Residual 10 0.109965 0.71128                
## Total    11 0.154601 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8L_vs_EET8SM
##          Df SumOfSqs      R2      F Pr(>F)
## gentrat   1 0.002439 0.02184 0.2233  0.883
## Residual 10 0.109238 0.97816              
## Total    11 0.111677 1.00000              
## 
## $EET8L_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.027022 0.21114 2.6765  0.067 .
## Residual 10 0.100961 0.78886                
## Total    11 0.127982 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8L_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.039228 0.27025 3.7034  0.038 *
## Residual 10 0.105926 0.72975                
## Total    11 0.145154 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8SM_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.021416 0.16995 2.0474  0.063 .
## Residual 10 0.104599 0.83005                
## Total    11 0.126015 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8SM_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.039266 0.26383 3.5839  0.016 *
## Residual 10 0.109564 0.73617                
## Total    11 0.148831 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $TCS01SM_vs_TCS01L
##          Df SumOfSqs      R2     F Pr(>F)
## gentrat   1 0.013005 0.11379 1.284  0.286
## Residual 10 0.101287 0.88621             
## Total    11 0.114292 1.00000             
## 
## attr(,"class")
## [1] "pwadstrata" "list"
detach(senstime5)

## Tiempo 6
attach(senstime6)
# Generando la matriz de perfil sensorial para el tiempo a evaluar - extrayendo columnas con la información de sabor
sens = senstime6[,9:ncol(senstime6)]
# Convirtiendo las columnas extraidas en una matriz
m_sens=as.matrix(sens)
# Análisis de similaridad identificando las diferencias en el perfil de sabor según los grupos evaluados
anogen <- anosim(m_sens, gen, distance = "bray", permutations = 9999)
anogen
## 
## Call:
## anosim(x = m_sens, grouping = gen, permutations = 9999, distance = "bray") 
## Dissimilarity: bray 
## 
## ANOSIM statistic R: 0.6674 
##       Significance: 1e-04 
## 
## Permutation: free
## Number of permutations: 9999
anotrat <- anosim(m_sens, trat, distance = "bray", permutations = 9999)
anotrat
## 
## Call:
## anosim(x = m_sens, grouping = trat, permutations = 9999, distance = "bray") 
## Dissimilarity: bray 
## 
## ANOSIM statistic R: 0.04205 
##       Significance: 0.1323 
## 
## Permutation: free
## Number of permutations: 9999
anogentrat <- anosim(m_sens, gentrat, distance = "bray", permutations = 9999)
anogentrat
## 
## Call:
## anosim(x = m_sens, grouping = gentrat, permutations = 9999, distance = "bray") 
## Dissimilarity: bray 
## 
## ANOSIM statistic R: 0.6635 
##       Significance: 1e-04 
## 
## Permutation: free
## Number of permutations: 9999
# PostHoc análisis de las diferencias cuantitativas del perfil de sabor entre las categorias de los grupos evaluado.
library(pairwiseAdonis)
pairwise.adonis2(m_sens ~ gen, data = senstime6)
## $parent_call
## [1] "m_sens ~ gen , strata = Null , permutations 999"
## 
## $`ICS 95_vs_EET8`
##          Df SumOfSqs      R2      F Pr(>F)    
## gen       1  0.20590 0.36664 12.736  0.001 ***
## Residual 22  0.35568 0.63336                  
## Total    23  0.56158 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`ICS 95_vs_TCS01`
##          Df SumOfSqs      R2      F Pr(>F)    
## gen       1  0.56635 0.60827 34.161  0.001 ***
## Residual 22  0.36473 0.39173                  
## Total    23  0.93109 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8_vs_TCS01
##          Df SumOfSqs      R2      F Pr(>F)    
## gen       1  0.13602 0.23016 6.5774  0.001 ***
## Residual 22  0.45494 0.76984                  
## Total    23  0.59096 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## attr(,"class")
## [1] "pwadstrata" "list"
pairwise.adonis2(m_sens ~ trat, data = senstime6)
## $parent_call
## [1] "m_sens ~ trat , strata = Null , permutations 999"
## 
## $`Large _vs_Small`
##          Df SumOfSqs      R2      F Pr(>F)
## trat      1  0.03006 0.02519 0.8786  0.413
## Residual 34  1.16313 0.97481              
## Total    35  1.19319 1.00000              
## 
## attr(,"class")
## [1] "pwadstrata" "list"
pairwise.adonis2(m_sens ~ gentrat, data = senstime6)
## $parent_call
## [1] "m_sens ~ gentrat , strata = Null , permutations 999"
## 
## $ICS95L_vs_ICS95SM
##          Df SumOfSqs      R2      F Pr(>F)    
## gentrat   1 0.046480 0.35017 5.3887  0.001 ***
## Residual 10 0.086255 0.64983                  
## Total    11 0.132735 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_EET8L
##          Df SumOfSqs      R2      F Pr(>F)    
## gentrat   1  0.19618 0.64817 18.423  0.001 ***
## Residual 10  0.10649 0.35183                  
## Total    11  0.30267 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_EET8SM
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1  0.13868 0.48039 9.2453  0.003 **
## Residual 10  0.15000 0.51961                 
## Total    11  0.28867 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)    
## gentrat   1  0.31249 0.65701 19.155  0.001 ***
## Residual 10  0.16314 0.34299                  
## Total    11  0.47563 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1  0.45319 0.77418 34.283  0.002 **
## Residual 10  0.13219 0.22582                 
## Total    11  0.58538 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_EET8L
##          Df SumOfSqs     R2      F Pr(>F)   
## gentrat   1  0.11555 0.5345 11.482  0.002 **
## Residual 10  0.10063 0.4655                 
## Total    11  0.21618 1.0000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_EET8SM
##          Df SumOfSqs      R2      F Pr(>F)    
## gentrat   1 0.066444 0.31553 4.6098  0.001 ***
## Residual 10 0.144138 0.68447                  
## Total    11 0.210583 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1  0.16965 0.51892 10.787  0.007 **
## Residual 10  0.15728 0.48108                 
## Total    11  0.32693 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1  0.27264 0.68335 21.581  0.003 **
## Residual 10  0.12633 0.31665                 
## Total    11  0.39897 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8L_vs_EET8SM
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1 0.058574 0.26272 3.5635  0.006 **
## Residual 10 0.164373 0.73728                 
## Total    11 0.222946 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8L_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.053275 0.23084 3.0012  0.031 *
## Residual 10 0.177512 0.76916                
## Total    11 0.230787 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8L_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1 0.059995 0.29044 4.0933  0.005 **
## Residual 10 0.146567 0.70956                 
## Total    11 0.206562 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8SM_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1  0.11848 0.34898 5.3606  0.013 *
## Residual 10  0.22102 0.65102                
## Total    11  0.33950 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8SM_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1  0.12764 0.40174 6.7153  0.005 **
## Residual 10  0.19007 0.59826                 
## Total    11  0.31771 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $TCS01SM_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)
## gentrat   1 0.028784 0.12407 1.4164   0.22
## Residual 10 0.203213 0.87593              
## Total    11 0.231997 1.00000              
## 
## attr(,"class")
## [1] "pwadstrata" "list"
detach(senstime6)

## Tiempo 7
attach(senstime7)
# Generando la matriz de perfil sensorial para el tiempo a evaluar - extrayendo columnas con la información de sabor
sens = senstime7[,9:ncol(senstime7)]
# Convirtiendo las columnas extraidas en una matriz
m_sens=as.matrix(sens)
# Análisis de similaridad identificando las diferencias en el perfil de sabor según los grupos evaluados
anogen <- anosim(m_sens, gen, distance = "bray", permutations = 9999)
anogen
## 
## Call:
## anosim(x = m_sens, grouping = gen, permutations = 9999, distance = "bray") 
## Dissimilarity: bray 
## 
## ANOSIM statistic R: 0.4992 
##       Significance: 1e-04 
## 
## Permutation: free
## Number of permutations: 9999
anotrat <- anosim(m_sens, trat, distance = "bray", permutations = 9999)
anotrat
## 
## Call:
## anosim(x = m_sens, grouping = trat, permutations = 9999, distance = "bray") 
## Dissimilarity: bray 
## 
## ANOSIM statistic R: 0.164 
##       Significance: 0.0067 
## 
## Permutation: free
## Number of permutations: 9999
anogentrat <- anosim(m_sens, gentrat, distance = "bray", permutations = 9999)
anogentrat
## 
## Call:
## anosim(x = m_sens, grouping = gentrat, permutations = 9999, distance = "bray") 
## Dissimilarity: bray 
## 
## ANOSIM statistic R: 0.6896 
##       Significance: 1e-04 
## 
## Permutation: free
## Number of permutations: 9999
# PostHoc análisis de las diferencias cuantitativas del perfil de sabor entre las categorias de los grupos evaluado.
library(pairwiseAdonis)
pairwise.adonis2(m_sens ~ gen, data = senstime7)
## $parent_call
## [1] "m_sens ~ gen , strata = Null , permutations 999"
## 
## $`ICS 95_vs_EET8`
##          Df SumOfSqs      R2      F Pr(>F)  
## gen       1  0.08008 0.15063 3.9014  0.013 *
## Residual 22  0.45156 0.84937                
## Total    23  0.53164 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`ICS 95_vs_TCS01`
##          Df SumOfSqs      R2      F Pr(>F)    
## gen       1  0.40086 0.49752 21.782  0.001 ***
## Residual 22  0.40486 0.50248                  
## Total    23  0.80573 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8_vs_TCS01
##          Df SumOfSqs      R2      F Pr(>F)    
## gen       1  0.26419 0.33386 11.026  0.001 ***
## Residual 22  0.52713 0.66614                  
## Total    23  0.79133 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## attr(,"class")
## [1] "pwadstrata" "list"
pairwise.adonis2(m_sens ~ trat, data = senstime7)
## $parent_call
## [1] "m_sens ~ trat , strata = Null , permutations 999"
## 
## $`Large _vs_Small`
##          Df SumOfSqs      R2      F Pr(>F)
## trat      1  0.05592 0.04705 1.6788  0.163
## Residual 34  1.13261 0.95295              
## Total    35  1.18853 1.00000              
## 
## attr(,"class")
## [1] "pwadstrata" "list"
pairwise.adonis2(m_sens ~ gentrat, data = senstime7)
## $parent_call
## [1] "m_sens ~ gentrat , strata = Null , permutations 999"
## 
## $ICS95L_vs_ICS95SM
##          Df SumOfSqs      R2     F Pr(>F)   
## gentrat   1 0.062292 0.37834 6.086  0.004 **
## Residual 10 0.102352 0.62166                
## Total    11 0.164644 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_EET8L
##          Df SumOfSqs      R2     F Pr(>F)
## gentrat   1 0.024291 0.16479 1.973  0.128
## Residual 10 0.123117 0.83521             
## Total    11 0.147408 1.00000             
## 
## $ICS95L_vs_EET8SM
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1  0.16242 0.55374 12.408  0.002 **
## Residual 10  0.13090 0.44626                 
## Total    11  0.29331 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)    
## gentrat   1  0.21189 0.61333 15.862  0.001 ***
## Residual 10  0.13358 0.38667                  
## Total    11  0.34547 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95L_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1  0.39792 0.75438 30.713  0.004 **
## Residual 10  0.12956 0.24562                 
## Total    11  0.52748 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_EET8L
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1 0.079302 0.39057 6.4088  0.003 **
## Residual 10 0.123741 0.60943                 
## Total    11 0.203043 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_EET8SM
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1 0.091067 0.40913 6.9242  0.006 **
## Residual 10 0.131519 0.59087                 
## Total    11 0.222586 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_TCS01SM
##          Df SumOfSqs     R2      F Pr(>F)   
## gentrat   1  0.11259 0.4562 8.3893  0.002 **
## Residual 10  0.13421 0.5438                 
## Total    11  0.24680 1.0000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $ICS95SM_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1  0.22043 0.62869 16.932  0.003 **
## Residual 10  0.13018 0.37131                 
## Total    11  0.35061 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8L_vs_EET8SM
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1  0.13463 0.46923 8.8407  0.005 **
## Residual 10  0.15228 0.53077                 
## Total    11  0.28691 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8L_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1  0.21925 0.58588 14.148  0.002 **
## Residual 10  0.15497 0.41412                 
## Total    11  0.37422 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8L_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1  0.35602 0.70226 23.586  0.003 **
## Residual 10  0.15095 0.29774                 
## Total    11  0.50697 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8SM_vs_TCS01SM
##          Df SumOfSqs      R2      F Pr(>F)   
## gentrat   1 0.092948 0.36351 5.7111  0.005 **
## Residual 10 0.162750 0.63649                 
## Total    11 0.255697 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $EET8SM_vs_TCS01L
##          Df SumOfSqs     R2      F Pr(>F)   
## gentrat   1 0.073602 0.3168 4.6371  0.003 **
## Residual 10 0.158727 0.6832                 
## Total    11 0.232329 1.0000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $TCS01SM_vs_TCS01L
##          Df SumOfSqs      R2      F Pr(>F)  
## gentrat   1 0.078807 0.32806 4.8823  0.014 *
## Residual 10 0.161414 0.67194                
## Total    11 0.240221 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## attr(,"class")
## [1] "pwadstrata" "list"
detach(senstime7)

## Análisis de sabor indicador: este análisis permite identificar el sabor que es encontrado más a menudo 
## en una categoría (nivel) de un grupo comparado con otro para todos los grupos analizados (genotipos, tratamientos, genotipos*tratamientos) en cada tiempo evaluado 
library(indicspecies)
## Tiempo 4
attach(senstime4)
# Generando la matriz de perfil sensorial para el tiempo a evaluar - extrayendo columnas con la información de sabor
sens = senstime4[,9:ncol(senstime4)]
# Convirtiendo las columnas extraidas en una matriz
m_sens=as.matrix(sens)
## Análisis de sabor indicador
invgen <- multipatt(m_sens, gen, func = "r.g", control = how(nperm=9999), duleg = T)
summary(invgen, alpha = 1)
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: r.g
##  Significance level (alpha): 1
## 
##  Total number of species: 10
##  Selected number of species: 10 
##  Number of species associated to 1 group: 10 
##  Number of species associated to 2 groups: 0 
## 
##  List of species associated to each combination: 
## 
##  Group EET8  #sps.  3 
##              stat p.value  
## acido       0.386  0.0302 *
## floral      0.205  0.6037  
## astringente 0.191  0.5142  
## 
##  Group ICS 95  #sps.  3 
##         stat p.value   
## madera 0.494  0.0107 * 
## amargo 0.469  0.0091 **
## herbal 0.378  0.0651 . 
## 
##  Group TCS01  #sps.  4 
##         stat p.value  
## cacao  0.444  0.0163 *
## nuez   0.442  0.0259 *
## dulce  0.274  0.2275  
## frutal 0.233  0.3360  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
invtrat <- multipatt(m_sens, trat, func = "r.g", control = how(nperm=9999), duleg = T)
summary(invtrat, alpha = 1)
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: r.g
##  Significance level (alpha): 1
## 
##  Total number of species: 10
##  Selected number of species: 10 
##  Number of species associated to 1 group: 10 
## 
##  List of species associated to each combination: 
## 
##  Group Large   #sps.  8 
##              stat p.value   
## astringente 0.511  0.0033 **
## dulce       0.232  0.2553   
## madera      0.204  0.3039   
## cacao       0.188  0.3634   
## acido       0.136  0.5490   
## herbal      0.134  0.5538   
## floral      0.083  0.8730   
## amargo      0.060  0.8637   
## 
##  Group Small  #sps.  2 
##         stat p.value
## frutal 0.082   0.748
## nuez   0.052   0.887
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
invgentrat <- multipatt(m_sens, gentrat, func = "r.g", control = how(nperm=9999), duleg = T)
summary(invgentrat, alpha = 1)
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: r.g
##  Significance level (alpha): 1
## 
##  Total number of species: 10
##  Selected number of species: 10 
##  Number of species associated to 1 group: 10 
##  Number of species associated to 2 groups: 0 
##  Number of species associated to 3 groups: 0 
##  Number of species associated to 4 groups: 0 
##  Number of species associated to 5 groups: 0 
## 
##  List of species associated to each combination: 
## 
##  Group EET8L  #sps.  1 
##         stat p.value
## floral 0.407   0.291
## 
##  Group EET8SM  #sps.  1 
##        stat p.value  
## acido 0.427  0.0777 .
## 
##  Group ICS95L  #sps.  3 
##              stat p.value   
## astringente 0.524  0.0021 **
## madera      0.508  0.0214 * 
## amargo      0.458  0.0270 * 
## 
##  Group ICS95SM  #sps.  2 
##         stat p.value
## herbal 0.418   0.110
## frutal 0.332   0.229
## 
##  Group TCS01L  #sps.  2 
##        stat p.value
## dulce 0.381   0.214
## nuez  0.349   0.235
## 
##  Group TCS01SM  #sps.  1 
##        stat p.value
## cacao 0.365   0.112
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
detach(senstime4)
## Tiempo 5
attach(senstime5)
# Generando la matriz de perfil sensorial para el tiempo a evaluar - extrayendo columnas con la información de sabor
sens = senstime5[,9:ncol(senstime5)]
# Convirtiendo las columnas extraidas en una matriz
m_sens=as.matrix(sens)
## Análisis de sabor indicador
invgen <- multipatt(m_sens, gen, func = "r.g", control = how(nperm=9999), duleg = T)
summary(invgen, alpha = 1)
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: r.g
##  Significance level (alpha): 1
## 
##  Total number of species: 10
##  Selected number of species: 10 
##  Number of species associated to 1 group: 10 
##  Number of species associated to 2 groups: 0 
## 
##  List of species associated to each combination: 
## 
##  Group EET8  #sps.  1 
##              stat p.value   
## astringente 0.476  0.0099 **
## 
##  Group ICS 95  #sps.  5 
##         stat p.value   
## amargo 0.553  0.0028 **
## nuez   0.530  0.0051 **
## dulce  0.304  0.2476   
## frutal 0.238  0.3283   
## floral 0.224  0.4787   
## 
##  Group TCS01  #sps.  4 
##         stat p.value    
## cacao  0.602  0.0004 ***
## herbal 0.254  0.3020    
## acido  0.205  0.4599    
## madera 0.171  0.6402    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
invtrat <- multipatt(m_sens, trat, func = "r.g", control = how(nperm=9999), duleg = T)
summary(invtrat, alpha = 1)
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: r.g
##  Significance level (alpha): 1
## 
##  Total number of species: 10
##  Selected number of species: 10 
##  Number of species associated to 1 group: 10 
## 
##  List of species associated to each combination: 
## 
##  Group Large   #sps.  7 
##              stat p.value
## astringente 0.192   0.352
## cacao       0.131   0.566
## acido       0.097   0.708
## madera      0.081   0.816
## amargo      0.075   0.831
## nuez        0.060   0.862
## dulce       0.054   0.603
## 
##  Group Small  #sps.  3 
##         stat p.value
## frutal 0.067   0.674
## floral 0.000   1.000
## herbal 0.000   1.000
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
invgentrat <- multipatt(m_sens, gentrat, func = "r.g", control = how(nperm=9999), duleg = T)
summary(invgentrat, alpha = 1)
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: r.g
##  Significance level (alpha): 1
## 
##  Total number of species: 10
##  Selected number of species: 10 
##  Number of species associated to 1 group: 10 
##  Number of species associated to 2 groups: 0 
##  Number of species associated to 3 groups: 0 
##  Number of species associated to 4 groups: 0 
##  Number of species associated to 5 groups: 0 
## 
##  List of species associated to each combination: 
## 
##  Group EET8L  #sps.  1 
##        stat p.value
## acido 0.216   0.737
## 
##  Group EET8SM  #sps.  1 
##              stat p.value
## astringente 0.344   0.237
## 
##  Group ICS95L  #sps.  2 
##         stat p.value  
## amargo 0.500  0.0115 *
## nuez   0.456  0.0692 .
## 
##  Group ICS95SM  #sps.  3 
##         stat p.value
## frutal 0.331   0.215
## floral 0.283   0.596
## dulce  0.264   0.723
## 
##  Group TCS01L  #sps.  2 
##         stat p.value   
## cacao  0.645  0.0015 **
## madera 0.434  0.0464 * 
## 
##  Group TCS01SM  #sps.  1 
##         stat p.value
## herbal 0.161   0.945
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
detach(senstime5)
## Tiempo 6
attach(senstime6)
# Generando la matriz de perfil sensorial para el tiempo a evaluar - extrayendo columnas con la información de sabor
sens = senstime6[,9:ncol(senstime6)]
# Convirtiendo las columnas extraidas en una matriz
m_sens=as.matrix(sens)
## Análisis de sabor indicador
invgen <- multipatt(m_sens, gen, func = "r.g", control = how(nperm=9999), duleg = T)
summary(invgen, alpha = 1)
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: r.g
##  Significance level (alpha): 1
## 
##  Total number of species: 10
##  Selected number of species: 10 
##  Number of species associated to 1 group: 10 
##  Number of species associated to 2 groups: 0 
## 
##  List of species associated to each combination: 
## 
##  Group EET8  #sps.  1 
##        stat p.value  
## acido 0.387  0.0492 *
## 
##  Group ICS 95  #sps.  2 
##              stat p.value    
## amargo      0.705   1e-04 ***
## astringente 0.528   5e-04 ***
## 
##  Group TCS01  #sps.  7 
##         stat p.value    
## dulce  0.821  0.0001 ***
## frutal 0.641  0.0004 ***
## floral 0.568  0.0015 ** 
## nuez   0.545  0.0010 ***
## cacao  0.507  0.0043 ** 
## herbal 0.343  0.0529 .  
## madera 0.076  0.9457    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
invtrat <- multipatt(m_sens, trat, func = "r.g", control = how(nperm=9999), duleg = T)
summary(invtrat, alpha = 1)
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: r.g
##  Significance level (alpha): 1
## 
##  Total number of species: 10
##  Selected number of species: 10 
##  Number of species associated to 1 group: 10 
## 
##  List of species associated to each combination: 
## 
##  Group Large   #sps.  5 
##              stat p.value
## cacao       0.293   0.102
## amargo      0.270   0.152
## floral      0.098   0.539
## nuez        0.081   0.603
## astringente 0.022   1.000
## 
##  Group Small  #sps.  5 
##         stat p.value
## madera 0.267   0.156
## herbal 0.255   0.170
## dulce  0.081   0.675
## frutal 0.074   0.752
## acido  0.061   0.608
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
invgentrat <- multipatt(m_sens, gentrat, func = "r.g", control = how(nperm=9999), duleg = T)
summary(invgentrat, alpha = 1)
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: r.g
##  Significance level (alpha): 1
## 
##  Total number of species: 10
##  Selected number of species: 10 
##  Number of species associated to 1 group: 10 
##  Number of species associated to 2 groups: 0 
##  Number of species associated to 3 groups: 0 
##  Number of species associated to 4 groups: 0 
##  Number of species associated to 5 groups: 0 
## 
##  List of species associated to each combination: 
## 
##  Group EET8SM  #sps.  1 
##        stat p.value
## acido 0.245   0.612
## 
##  Group ICS95L  #sps.  2 
##              stat p.value    
## amargo      0.699  0.0001 ***
## astringente 0.481  0.0074 ** 
## 
##  Group TCS01L  #sps.  3 
##         stat p.value  
## floral 0.465  0.0235 *
## cacao  0.452  0.0199 *
## nuez   0.345  0.1630  
## 
##  Group TCS01SM  #sps.  4 
##         stat p.value   
## dulce  0.628  0.0018 **
## frutal 0.480  0.0176 * 
## herbal 0.457  0.0531 . 
## madera 0.406  0.1076   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
detach(senstime6)
## Tiempo 7
attach(senstime7)
# Generando la matriz de perfil sensorial para el tiempo a evaluar - extrayendo columnas con la información de sabor
sens = senstime7[,9:ncol(senstime7)]
# Convirtiendo las columnas extraidas en una matriz
m_sens=as.matrix(sens)
## Análisis de sabor indicador
invgen <- multipatt(m_sens, gen, func = "r.g", control = how(nperm=9999), duleg = T)
summary(invgen, alpha = 1)
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: r.g
##  Significance level (alpha): 1
## 
##  Total number of species: 10
##  Selected number of species: 10 
##  Number of species associated to 1 group: 10 
##  Number of species associated to 2 groups: 0 
## 
##  List of species associated to each combination: 
## 
##  Group EET8  #sps.  4 
##         stat p.value   
## amargo 0.512  0.0053 **
## cacao  0.376  0.0564 . 
## madera 0.231  0.3866   
## acido  0.225  0.3917   
## 
##  Group ICS 95  #sps.  1 
##              stat p.value  
## astringente 0.388  0.0436 *
## 
##  Group TCS01  #sps.  5 
##         stat p.value    
## floral 0.705  0.0002 ***
## nuez   0.702  0.0001 ***
## herbal 0.456  0.0164 *  
## dulce  0.415  0.0306 *  
## frutal 0.237  0.3103    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
invtrat <- multipatt(m_sens, trat, func = "r.g", control = how(nperm=9999), duleg = T)
summary(invtrat, alpha = 1)
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: r.g
##  Significance level (alpha): 1
## 
##  Total number of species: 10
##  Selected number of species: 10 
##  Number of species associated to 1 group: 10 
## 
##  List of species associated to each combination: 
## 
##  Group Large   #sps.  4 
##              stat p.value  
## astringente 0.372  0.0343 *
## amargo      0.272  0.1045  
## cacao       0.169  0.3855  
## floral      0.073  0.7734  
## 
##  Group Small  #sps.  6 
##         stat p.value  
## dulce  0.410  0.0139 *
## madera 0.145  0.3207  
## frutal 0.126  0.4764  
## acido  0.064  0.8524  
## nuez   0.033  0.9233  
## herbal 0.024  1.0000  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
invgentrat <- multipatt(m_sens, gentrat, func = "r.g", control = how(nperm=9999), duleg = T)
summary(invgentrat, alpha = 1)
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: r.g
##  Significance level (alpha): 1
## 
##  Total number of species: 10
##  Selected number of species: 10 
##  Number of species associated to 1 group: 10 
##  Number of species associated to 2 groups: 0 
##  Number of species associated to 3 groups: 0 
##  Number of species associated to 4 groups: 0 
##  Number of species associated to 5 groups: 0 
## 
##  List of species associated to each combination: 
## 
##  Group EET8L  #sps.  2 
##              stat p.value    
## amargo      0.628  0.0004 ***
## astringente 0.535  0.0047 ** 
## 
##  Group EET8SM  #sps.  4 
##         stat p.value   
## dulce  0.551  0.0074 **
## cacao  0.464  0.0225 * 
## madera 0.195  0.8418   
## acido  0.142  0.9667   
## 
##  Group TCS01L  #sps.  3 
##         stat p.value    
## nuez   0.684  0.0004 ***
## floral 0.642  0.0011 ** 
## frutal 0.544  0.0088 ** 
## 
##  Group TCS01SM  #sps.  1 
##        stat p.value  
## herbal 0.48  0.0415 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
detach(senstime7)