db<-DBI::dbConnect (RSQLite::SQLite(), "D:/BERLIANA/Kuliah/Materi Kuliah/Semester 3/Manajemen Data Relasional/chinook.db")
SELECT
*
FROM
customers;
| CustomerId | FirstName | LastName | Company | Address | City | State | Country | PostalCode | Phone | Fax | SupportRepId | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Luís | Gonçalves | Embraer - Empresa Brasileira de Aeronáutica S.A. | Av. Brigadeiro Faria Lima, 2170 | São José dos Campos | SP | Brazil | 12227-000 | +55 (12) 3923-5555 | +55 (12) 3923-5566 | luisg@embraer.com.br | 3 |
| 2 | Leonie | Köhler | NA | Theodor-Heuss-Straße 34 | Stuttgart | NA | Germany | 70174 | +49 0711 2842222 | NA | leonekohler@surfeu.de | 5 |
| 3 | François | Tremblay | NA | 1498 rue Bélanger | Montréal | QC | Canada | H2G 1A7 | +1 (514) 721-4711 | NA | ftremblay@gmail.com | 3 |
| 4 | Bjørn | Hansen | NA | Ullevålsveien 14 | Oslo | NA | Norway | 0171 | +47 22 44 22 22 | NA | bjorn.hansen@yahoo.no | 4 |
| 5 | František | Wichterlová | JetBrains s.r.o. | Klanova 9/506 | Prague | NA | Czech Republic | 14700 | +420 2 4172 5555 | +420 2 4172 5555 | frantisekw@jetbrains.com | 4 |
| 6 | Helena | Holý | NA | Rilská 3174/6 | Prague | NA | Czech Republic | 14300 | +420 2 4177 0449 | NA | hholy@gmail.com | 5 |
| 7 | Astrid | Gruber | NA | Rotenturmstraße 4, 1010 Innere Stadt | Vienne | NA | Austria | 1010 | +43 01 5134505 | NA | astrid.gruber@apple.at | 5 |
| 8 | Daan | Peeters | NA | Grétrystraat 63 | Brussels | NA | Belgium | 1000 | +32 02 219 03 03 | NA | daan_peeters@apple.be | 4 |
| 9 | Kara | Nielsen | NA | Sønder Boulevard 51 | Copenhagen | NA | Denmark | 1720 | +453 3331 9991 | NA | kara.nielsen@jubii.dk | 4 |
| 10 | Eduardo | Martins | Woodstock Discos | Rua Dr. Falcão Filho, 155 | São Paulo | SP | Brazil | 01007-010 | +55 (11) 3033-5446 | +55 (11) 3033-4564 | eduardo@woodstock.com.br | 4 |
chinook <-DBI::dbConnect (RSQLite::SQLite(), "D:/BERLIANA/Kuliah/Materi Kuliah/Semester 3/Manajemen Data Relasional/chinook.db")
chinook <-DBI::dbConnect (RSQLite::SQLite(), "D:/BERLIANA/Kuliah/Materi Kuliah/Semester 3/Manajemen Data Relasional/chinook.db")
RSQLite ::dbListTables(chinook)
## [1] "albums" "artists" "customers" "employees"
## [5] "genres" "invoice_items" "invoices" "media_types"
## [9] "playlist_track" "playlists" "sqlite_sequence" "sqlite_stat1"
## [13] "tracks"
dplyr::tbl(chinook, "customers")
## # Source: table<customers> [?? x 13]
## # Database: sqlite 3.37.0 [D:\BERLIANA\Kuliah\Materi Kuliah\Semester
## # 3\Manajemen Data Relasional\chinook.db]
## CustomerId FirstName LastName Company Address City State Country PostalCode
## <int> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 1 Luís Gonçalves Embrae~ Av. Br~ São ~ SP Brazil 12227-000
## 2 2 Leonie Köhler <NA> Theodo~ Stut~ <NA> Germany 70174
## 3 3 François Tremblay <NA> 1498 r~ Mont~ QC Canada H2G 1A7
## 4 4 Bjørn Hansen <NA> Ullevå~ Oslo <NA> Norway 0171
## 5 5 František Wichterl~ JetBra~ Klanov~ Prag~ <NA> Czech ~ 14700
## 6 6 Helena Holý <NA> Rilská~ Prag~ <NA> Czech ~ 14300
## 7 7 Astrid Gruber <NA> Rotent~ Vien~ <NA> Austria 1010
## 8 8 Daan Peeters <NA> Grétry~ Brus~ <NA> Belgium 1000
## 9 9 Kara Nielsen <NA> Sønder~ Cope~ <NA> Denmark 1720
## 10 10 Eduardo Martins Woodst~ Rua Dr~ São ~ SP Brazil 01007-010
## # ... with more rows, and 4 more variables: Phone <chr>, Fax <chr>,
## # Email <chr>, SupportRepId <int>
customers <- dplyr::tbl(chinook, "customers")
class("customers")
## [1] "character"
customers
## # Source: table<customers> [?? x 13]
## # Database: sqlite 3.37.0 [D:\BERLIANA\Kuliah\Materi Kuliah\Semester
## # 3\Manajemen Data Relasional\chinook.db]
## CustomerId FirstName LastName Company Address City State Country PostalCode
## <int> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 1 Luís Gonçalves Embrae~ Av. Br~ São ~ SP Brazil 12227-000
## 2 2 Leonie Köhler <NA> Theodo~ Stut~ <NA> Germany 70174
## 3 3 François Tremblay <NA> 1498 r~ Mont~ QC Canada H2G 1A7
## 4 4 Bjørn Hansen <NA> Ullevå~ Oslo <NA> Norway 0171
## 5 5 František Wichterl~ JetBra~ Klanov~ Prag~ <NA> Czech ~ 14700
## 6 6 Helena Holý <NA> Rilská~ Prag~ <NA> Czech ~ 14300
## 7 7 Astrid Gruber <NA> Rotent~ Vien~ <NA> Austria 1010
## 8 8 Daan Peeters <NA> Grétry~ Brus~ <NA> Belgium 1000
## 9 9 Kara Nielsen <NA> Sønder~ Cope~ <NA> Denmark 1720
## 10 10 Eduardo Martins Woodst~ Rua Dr~ São ~ SP Brazil 01007-010
## # ... with more rows, and 4 more variables: Phone <chr>, Fax <chr>,
## # Email <chr>, SupportRepId <int>
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
PRAGUE.customers<- customers %>%
select(CustomerId, City)%>%
filter(City=="Prague")
PRAGUE.customers
## # Source: lazy query [?? x 2]
## # Database: sqlite 3.37.0 [D:\BERLIANA\Kuliah\Materi Kuliah\Semester
## # 3\Manajemen Data Relasional\chinook.db]
## CustomerId City
## <int> <chr>
## 1 5 Prague
## 2 6 Prague
dplyr::show_query(PRAGUE.customers)
## <SQL>
## SELECT *
## FROM (SELECT `CustomerId`, `City`
## FROM `customers`)
## WHERE (`City` = 'Prague')
data(cars)
cars <-tibble ::as_tibble(cars)
cars %>% summarise(mean=mean(speed), .groups="drop")
## # A tibble: 1 x 1
## mean
## <dbl>
## 1 15.4
cars %>% arrange(desc(dist))
## # A tibble: 50 x 2
## speed dist
## <dbl> <dbl>
## 1 24 120
## 2 24 93
## 3 24 92
## 4 25 85
## 5 18 84
## 6 14 80
## 7 18 76
## 8 24 70
## 9 19 68
## 10 22 66
## # ... with 40 more rows
cars %>% filter(speed=="11")
## # A tibble: 2 x 2
## speed dist
## <dbl> <dbl>
## 1 11 17
## 2 11 28
cars %>% mutate(Y=speed + dist)
## # A tibble: 50 x 3
## speed dist Y
## <dbl> <dbl> <dbl>
## 1 4 2 6
## 2 4 10 14
## 3 7 4 11
## 4 7 22 29
## 5 8 16 24
## 6 9 10 19
## 7 10 18 28
## 8 10 26 36
## 9 10 34 44
## 10 11 17 28
## # ... with 40 more rows
cars %>% select(speed)
## # A tibble: 50 x 1
## speed
## <dbl>
## 1 4
## 2 4
## 3 7
## 4 7
## 5 8
## 6 9
## 7 10
## 8 10
## 9 10
## 10 11
## # ... with 40 more rows
cars %>% mutate(x=speed/dist) %>%
filter(speed==12) %>%
group_by(speed,dist) %>%
summarise(mean=mean(speed), .groups="drop") %>%
arrange(desc(dist))
## # A tibble: 4 x 3
## speed dist mean
## <dbl> <dbl> <dbl>
## 1 12 28 12
## 2 12 24 12
## 3 12 20 12
## 4 12 14 12