library(astsa)
Johnson & Johnson Quarterly Earnings Per Share: 1960-1980
data(jj)
plot(jj,type='o',main='J&J Quarterly Earnings Per Share: 1960-1980',
ylab='Earnings',xlab='Quarter')

Flu Data
data(flu)
plot(flu,type='o',main='Monthly Pneumonia & Influenza Deaths in USA',
ylab='Deaths per 10000',xlab='Months')

Global Temperature
data(globtemp)
plot(globtemp,type='o',main='Global mean land-ocean deviation from Average Temp: 1880-2015',ylab='Temperature Deviation',xlab='Years')

Global Temperature (Land Only)
data(globtempl)
plot(globtempl,type='o',main='Global mean land deviation from Average Temp: 1880-2015',ylab='Temperature Deviation',xlab='Years')

Star Data
data(star)
plot(star,
main='Magnitude of star taken at midnight for 600 consecutive days',
ylab='Magnitude',xlab='Days')

Random Walk
x <- NULL
x[1] <- 0
for (i in 2:1000) {x[i] = x[i-1] + rnorm(1)}
random_walk <- ts(x) # convert x vector to time series
plot(random_walk,main='A Random Walk', xlab='Days',lwd=2)

acf(random_walk) # we see that `random_walk` is not stationary.

plot(diff(random_walk)) # remove trend component from time series to generate white noise

acf(diff(random_walk))

Lab: Simulating MA(2) process
# Generate noise
noise=rnorm(10000)
# Introduce a variable
ma_2=NULL
# Loop for generating MA(2) process
for(i in 3:10000){
ma_2[i]=noise[i]+0.7*noise[i-1]+0.2*noise[i-2]
}
# Shift data to left by 2 units
moving_average_process=ma_2[3:10000]
# Put time series structure on a vanilla data
moving_average_process=ts(moving_average_process)
# Partition output graphics as a multi frame of 2 rows and 1 column
par(mfrow=c(2,1))
# plot the process and plot its ACF
plot(moving_average_process, main='A moving average process of order 2', ylab=' ', col='blue',lwd=2)
acf(moving_average_process, main='Correlogram of a moving average process of order 2',lwd=2)
