Tugas Akhir Mandarel

Engine SQL

Database yang digunakan pada publikasi ini berasal dari sampel chinook . Supaya dapat mengakses dan mengolah database ini adapun packages yang akan digunakan yaitu DBI dan RSQLite.

install.packages(c("RSQLite", "DBI"), dependencies = TRUE)

Selanjutnya package tidyverse yang mencakup beberapa package diretrieve. Fungsi dalam suatu package dapat juga dipanggil tanpa perintah library() atau require() jika sintaks yang ditulis menyertakan nama package tempat fungsi tersebut berasal. Penyertaan ini dengan menggunakan tanda ::.

library(tidyverse)
library(RSQLite)
library(DBI)

Secara umum, koneksi terhadap database pada R dapat menggunakan sintaks berikut: DBI::dbConnect(RSQLite::SQLite(), path = ":dbname:")

chinook<-DBI::dbConnect(RSQLite::SQLite(), "C:/sqlite/chinook.db")
RSQLite::dbListTables(chinook)
##  [1] "albums"          "artists"         "customers"       "employees"      
##  [5] "genres"          "invoice_items"   "invoices"        "media_types"    
##  [9] "playlist_track"  "playlists"       "sqlite_sequence" "sqlite_stat1"   
## [13] "tracks"

Setelah melakukan dbConnect() kita dapat melakukan perintah SQL.

SELECT 
  *
FROM
  invoices;
Displaying records 1 - 10
InvoiceId CustomerId InvoiceDate BillingAddress BillingCity BillingState BillingCountry BillingPostalCode Total
1 2 2009-01-01 00:00:00 Theodor-Heuss-Straße 34 Stuttgart NA Germany 70174 1.98
2 4 2009-01-02 00:00:00 Ullevålsveien 14 Oslo NA Norway 0171 3.96
3 8 2009-01-03 00:00:00 Grétrystraat 63 Brussels NA Belgium 1000 5.94
4 14 2009-01-06 00:00:00 8210 111 ST NW Edmonton AB Canada T6G 2C7 8.91
5 23 2009-01-11 00:00:00 69 Salem Street Boston MA USA 2113 13.86
6 37 2009-01-19 00:00:00 Berger Straße 10 Frankfurt NA Germany 60316 0.99
7 38 2009-02-01 00:00:00 Barbarossastraße 19 Berlin NA Germany 10779 1.98
8 40 2009-02-01 00:00:00 8, Rue Hanovre Paris NA France 75002 1.98
9 42 2009-02-02 00:00:00 9, Place Louis Barthou Bordeaux NA France 33000 3.96
10 46 2009-02-03 00:00:00 3 Chatham Street Dublin Dublin Ireland NA 5.94

Setelah selesai mengolah database tersebut, saat akan memutuskan hubungan dapat menggunakan fungsi dbDisconnect() dan ketika akan menyambungkan kembali cukup menggunakan kembali dbConnect()

dbDisconnect(chinook)

Menggunakan DPLYR

chinook<-DBI::dbConnect(RSQLite::SQLite(), "C:/sqlite/chinook.db")

RSQLite::dbListTables(chinook)
##  [1] "albums"          "artists"         "customers"       "employees"      
##  [5] "genres"          "invoice_items"   "invoices"        "media_types"    
##  [9] "playlist_track"  "playlists"       "sqlite_sequence" "sqlite_stat1"   
## [13] "tracks"
dplyr::tbl(chinook,"invoices")
## # Source:   table<invoices> [?? x 9]
## # Database: sqlite 3.37.0 [C:\sqlite\chinook.db]
##    InvoiceId CustomerId InvoiceDate    BillingAddress   BillingCity BillingState
##        <int>      <int> <chr>          <chr>            <chr>       <chr>       
##  1         1          2 2009-01-01 00~ Theodor-Heuss-S~ Stuttgart   <NA>        
##  2         2          4 2009-01-02 00~ Ullevålsveien 14 Oslo        <NA>        
##  3         3          8 2009-01-03 00~ Grétrystraat 63  Brussels    <NA>        
##  4         4         14 2009-01-06 00~ 8210 111 ST NW   Edmonton    AB          
##  5         5         23 2009-01-11 00~ 69 Salem Street  Boston      MA          
##  6         6         37 2009-01-19 00~ Berger Straße 10 Frankfurt   <NA>        
##  7         7         38 2009-02-01 00~ Barbarossastraß~ Berlin      <NA>        
##  8         8         40 2009-02-01 00~ 8, Rue Hanovre   Paris       <NA>        
##  9         9         42 2009-02-02 00~ 9, Place Louis ~ Bordeaux    <NA>        
## 10        10         46 2009-02-03 00~ 3 Chatham Street Dublin      Dublin      
## # ... with more rows, and 3 more variables: BillingCountry <chr>,
## #   BillingPostalCode <chr>, Total <dbl>
invoices <- dplyr::tbl(chinook,"invoices")
class(invoices)
## [1] "tbl_SQLiteConnection" "tbl_dbi"              "tbl_sql"             
## [4] "tbl_lazy"             "tbl"
invoices
## # Source:   table<invoices> [?? x 9]
## # Database: sqlite 3.37.0 [C:\sqlite\chinook.db]
##    InvoiceId CustomerId InvoiceDate    BillingAddress   BillingCity BillingState
##        <int>      <int> <chr>          <chr>            <chr>       <chr>       
##  1         1          2 2009-01-01 00~ Theodor-Heuss-S~ Stuttgart   <NA>        
##  2         2          4 2009-01-02 00~ Ullevålsveien 14 Oslo        <NA>        
##  3         3          8 2009-01-03 00~ Grétrystraat 63  Brussels    <NA>        
##  4         4         14 2009-01-06 00~ 8210 111 ST NW   Edmonton    AB          
##  5         5         23 2009-01-11 00~ 69 Salem Street  Boston      MA          
##  6         6         37 2009-01-19 00~ Berger Straße 10 Frankfurt   <NA>        
##  7         7         38 2009-02-01 00~ Barbarossastraß~ Berlin      <NA>        
##  8         8         40 2009-02-01 00~ 8, Rue Hanovre   Paris       <NA>        
##  9         9         42 2009-02-02 00~ 9, Place Louis ~ Bordeaux    <NA>        
## 10        10         46 2009-02-03 00~ 3 Chatham Street Dublin      Dublin      
## # ... with more rows, and 3 more variables: BillingCountry <chr>,
## #   BillingPostalCode <chr>, Total <dbl>
query <- invoices  %>% select(-InvoiceDate)
query
## # Source:   lazy query [?? x 8]
## # Database: sqlite 3.37.0 [C:\sqlite\chinook.db]
##    InvoiceId CustomerId BillingAddress   BillingCity BillingState BillingCountry
##        <int>      <int> <chr>            <chr>       <chr>        <chr>         
##  1         1          2 Theodor-Heuss-S~ Stuttgart   <NA>         Germany       
##  2         2          4 Ullevålsveien 14 Oslo        <NA>         Norway        
##  3         3          8 Grétrystraat 63  Brussels    <NA>         Belgium       
##  4         4         14 8210 111 ST NW   Edmonton    AB           Canada        
##  5         5         23 69 Salem Street  Boston      MA           USA           
##  6         6         37 Berger Straße 10 Frankfurt   <NA>         Germany       
##  7         7         38 Barbarossastraß~ Berlin      <NA>         Germany       
##  8         8         40 8, Rue Hanovre   Paris       <NA>         France        
##  9         9         42 9, Place Louis ~ Bordeaux    <NA>         France        
## 10        10         46 3 Chatham Street Dublin      Dublin       Ireland       
## # ... with more rows, and 2 more variables: BillingPostalCode <chr>,
## #   Total <dbl>
dplyr::show_query(query)
## <SQL>
## SELECT `InvoiceId`, `CustomerId`, `BillingAddress`, `BillingCity`, `BillingState`, `BillingCountry`, `BillingPostalCode`, `Total`
## FROM `invoices`

Data Wrangling

Dataset yang digunakan adalah storms yang tersedia pada package default R datasets.

library(datasets)
library(help = "datasets")
Theoph 
##     Subject   Wt Dose  Time  conc
## 1         1 79.6 4.02  0.00  0.74
## 2         1 79.6 4.02  0.25  2.84
## 3         1 79.6 4.02  0.57  6.57
## 4         1 79.6 4.02  1.12 10.50
## 5         1 79.6 4.02  2.02  9.66
## 6         1 79.6 4.02  3.82  8.58
## 7         1 79.6 4.02  5.10  8.36
## 8         1 79.6 4.02  7.03  7.47
## 9         1 79.6 4.02  9.05  6.89
## 10        1 79.6 4.02 12.12  5.94
## 11        1 79.6 4.02 24.37  3.28
## 12        2 72.4 4.40  0.00  0.00
## 13        2 72.4 4.40  0.27  1.72
## 14        2 72.4 4.40  0.52  7.91
## 15        2 72.4 4.40  1.00  8.31
## 16        2 72.4 4.40  1.92  8.33
## 17        2 72.4 4.40  3.50  6.85
## 18        2 72.4 4.40  5.02  6.08
## 19        2 72.4 4.40  7.03  5.40
## 20        2 72.4 4.40  9.00  4.55
## 21        2 72.4 4.40 12.00  3.01
## 22        2 72.4 4.40 24.30  0.90
## 23        3 70.5 4.53  0.00  0.00
## 24        3 70.5 4.53  0.27  4.40
## 25        3 70.5 4.53  0.58  6.90
## 26        3 70.5 4.53  1.02  8.20
## 27        3 70.5 4.53  2.02  7.80
## 28        3 70.5 4.53  3.62  7.50
## 29        3 70.5 4.53  5.08  6.20
## 30        3 70.5 4.53  7.07  5.30
## 31        3 70.5 4.53  9.00  4.90
## 32        3 70.5 4.53 12.15  3.70
## 33        3 70.5 4.53 24.17  1.05
## 34        4 72.7 4.40  0.00  0.00
## 35        4 72.7 4.40  0.35  1.89
## 36        4 72.7 4.40  0.60  4.60
## 37        4 72.7 4.40  1.07  8.60
## 38        4 72.7 4.40  2.13  8.38
## 39        4 72.7 4.40  3.50  7.54
## 40        4 72.7 4.40  5.02  6.88
## 41        4 72.7 4.40  7.02  5.78
## 42        4 72.7 4.40  9.02  5.33
## 43        4 72.7 4.40 11.98  4.19
## 44        4 72.7 4.40 24.65  1.15
## 45        5 54.6 5.86  0.00  0.00
## 46        5 54.6 5.86  0.30  2.02
## 47        5 54.6 5.86  0.52  5.63
## 48        5 54.6 5.86  1.00 11.40
## 49        5 54.6 5.86  2.02  9.33
## 50        5 54.6 5.86  3.50  8.74
## 51        5 54.6 5.86  5.02  7.56
## 52        5 54.6 5.86  7.02  7.09
## 53        5 54.6 5.86  9.10  5.90
## 54        5 54.6 5.86 12.00  4.37
## 55        5 54.6 5.86 24.35  1.57
## 56        6 80.0 4.00  0.00  0.00
## 57        6 80.0 4.00  0.27  1.29
## 58        6 80.0 4.00  0.58  3.08
## 59        6 80.0 4.00  1.15  6.44
## 60        6 80.0 4.00  2.03  6.32
## 61        6 80.0 4.00  3.57  5.53
## 62        6 80.0 4.00  5.00  4.94
## 63        6 80.0 4.00  7.00  4.02
## 64        6 80.0 4.00  9.22  3.46
## 65        6 80.0 4.00 12.10  2.78
## 66        6 80.0 4.00 23.85  0.92
## 67        7 64.6 4.95  0.00  0.15
## 68        7 64.6 4.95  0.25  0.85
## 69        7 64.6 4.95  0.50  2.35
## 70        7 64.6 4.95  1.02  5.02
## 71        7 64.6 4.95  2.02  6.58
## 72        7 64.6 4.95  3.48  7.09
## 73        7 64.6 4.95  5.00  6.66
## 74        7 64.6 4.95  6.98  5.25
## 75        7 64.6 4.95  9.00  4.39
## 76        7 64.6 4.95 12.05  3.53
## 77        7 64.6 4.95 24.22  1.15
## 78        8 70.5 4.53  0.00  0.00
## 79        8 70.5 4.53  0.25  3.05
## 80        8 70.5 4.53  0.52  3.05
## 81        8 70.5 4.53  0.98  7.31
## 82        8 70.5 4.53  2.02  7.56
## 83        8 70.5 4.53  3.53  6.59
## 84        8 70.5 4.53  5.05  5.88
## 85        8 70.5 4.53  7.15  4.73
## 86        8 70.5 4.53  9.07  4.57
## 87        8 70.5 4.53 12.10  3.00
## 88        8 70.5 4.53 24.12  1.25
## 89        9 86.4 3.10  0.00  0.00
## 90        9 86.4 3.10  0.30  7.37
## 91        9 86.4 3.10  0.63  9.03
## 92        9 86.4 3.10  1.05  7.14
## 93        9 86.4 3.10  2.02  6.33
## 94        9 86.4 3.10  3.53  5.66
## 95        9 86.4 3.10  5.02  5.67
## 96        9 86.4 3.10  7.17  4.24
## 97        9 86.4 3.10  8.80  4.11
## 98        9 86.4 3.10 11.60  3.16
## 99        9 86.4 3.10 24.43  1.12
## 100      10 58.2 5.50  0.00  0.24
## 101      10 58.2 5.50  0.37  2.89
## 102      10 58.2 5.50  0.77  5.22
## 103      10 58.2 5.50  1.02  6.41
## 104      10 58.2 5.50  2.05  7.83
## 105      10 58.2 5.50  3.55 10.21
## 106      10 58.2 5.50  5.05  9.18
## 107      10 58.2 5.50  7.08  8.02
## 108      10 58.2 5.50  9.38  7.14
## 109      10 58.2 5.50 12.10  5.68
## 110      10 58.2 5.50 23.70  2.42
## 111      11 65.0 4.92  0.00  0.00
## 112      11 65.0 4.92  0.25  4.86
## 113      11 65.0 4.92  0.50  7.24
## 114      11 65.0 4.92  0.98  8.00
## 115      11 65.0 4.92  1.98  6.81
## 116      11 65.0 4.92  3.60  5.87
## 117      11 65.0 4.92  5.02  5.22
## 118      11 65.0 4.92  7.03  4.45
## 119      11 65.0 4.92  9.03  3.62
## 120      11 65.0 4.92 12.12  2.69
## 121      11 65.0 4.92 24.08  0.86
## 122      12 60.5 5.30  0.00  0.00
## 123      12 60.5 5.30  0.25  1.25
## 124      12 60.5 5.30  0.50  3.96
## 125      12 60.5 5.30  1.00  7.82
## 126      12 60.5 5.30  2.00  9.72
## 127      12 60.5 5.30  3.52  9.75
## 128      12 60.5 5.30  5.07  8.57
## 129      12 60.5 5.30  7.07  6.59
## 130      12 60.5 5.30  9.03  6.11
## 131      12 60.5 5.30 12.05  4.57
## 132      12 60.5 5.30 24.15  1.17

Theop Kerangka data Theoph memiliki 132 baris dan 5 kolom data dari eksperimen farmakokinetik teofilin. Formatnya Objek kelas c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame") Untuk mengetahui informasi terkait dataset dapat menggunakan sintaks ?dan meletakannya sebelum nama dataset .

?Theoph 
View(Theoph)

Dataset tersebut akan dilakukan perintah arrange , mutate ,filter,select, dan summarise.

Theoph %>% select(Subject, Wt, Dose, Time,conc)
##     Subject   Wt Dose  Time  conc
## 1         1 79.6 4.02  0.00  0.74
## 2         1 79.6 4.02  0.25  2.84
## 3         1 79.6 4.02  0.57  6.57
## 4         1 79.6 4.02  1.12 10.50
## 5         1 79.6 4.02  2.02  9.66
## 6         1 79.6 4.02  3.82  8.58
## 7         1 79.6 4.02  5.10  8.36
## 8         1 79.6 4.02  7.03  7.47
## 9         1 79.6 4.02  9.05  6.89
## 10        1 79.6 4.02 12.12  5.94
## 11        1 79.6 4.02 24.37  3.28
## 12        2 72.4 4.40  0.00  0.00
## 13        2 72.4 4.40  0.27  1.72
## 14        2 72.4 4.40  0.52  7.91
## 15        2 72.4 4.40  1.00  8.31
## 16        2 72.4 4.40  1.92  8.33
## 17        2 72.4 4.40  3.50  6.85
## 18        2 72.4 4.40  5.02  6.08
## 19        2 72.4 4.40  7.03  5.40
## 20        2 72.4 4.40  9.00  4.55
## 21        2 72.4 4.40 12.00  3.01
## 22        2 72.4 4.40 24.30  0.90
## 23        3 70.5 4.53  0.00  0.00
## 24        3 70.5 4.53  0.27  4.40
## 25        3 70.5 4.53  0.58  6.90
## 26        3 70.5 4.53  1.02  8.20
## 27        3 70.5 4.53  2.02  7.80
## 28        3 70.5 4.53  3.62  7.50
## 29        3 70.5 4.53  5.08  6.20
## 30        3 70.5 4.53  7.07  5.30
## 31        3 70.5 4.53  9.00  4.90
## 32        3 70.5 4.53 12.15  3.70
## 33        3 70.5 4.53 24.17  1.05
## 34        4 72.7 4.40  0.00  0.00
## 35        4 72.7 4.40  0.35  1.89
## 36        4 72.7 4.40  0.60  4.60
## 37        4 72.7 4.40  1.07  8.60
## 38        4 72.7 4.40  2.13  8.38
## 39        4 72.7 4.40  3.50  7.54
## 40        4 72.7 4.40  5.02  6.88
## 41        4 72.7 4.40  7.02  5.78
## 42        4 72.7 4.40  9.02  5.33
## 43        4 72.7 4.40 11.98  4.19
## 44        4 72.7 4.40 24.65  1.15
## 45        5 54.6 5.86  0.00  0.00
## 46        5 54.6 5.86  0.30  2.02
## 47        5 54.6 5.86  0.52  5.63
## 48        5 54.6 5.86  1.00 11.40
## 49        5 54.6 5.86  2.02  9.33
## 50        5 54.6 5.86  3.50  8.74
## 51        5 54.6 5.86  5.02  7.56
## 52        5 54.6 5.86  7.02  7.09
## 53        5 54.6 5.86  9.10  5.90
## 54        5 54.6 5.86 12.00  4.37
## 55        5 54.6 5.86 24.35  1.57
## 56        6 80.0 4.00  0.00  0.00
## 57        6 80.0 4.00  0.27  1.29
## 58        6 80.0 4.00  0.58  3.08
## 59        6 80.0 4.00  1.15  6.44
## 60        6 80.0 4.00  2.03  6.32
## 61        6 80.0 4.00  3.57  5.53
## 62        6 80.0 4.00  5.00  4.94
## 63        6 80.0 4.00  7.00  4.02
## 64        6 80.0 4.00  9.22  3.46
## 65        6 80.0 4.00 12.10  2.78
## 66        6 80.0 4.00 23.85  0.92
## 67        7 64.6 4.95  0.00  0.15
## 68        7 64.6 4.95  0.25  0.85
## 69        7 64.6 4.95  0.50  2.35
## 70        7 64.6 4.95  1.02  5.02
## 71        7 64.6 4.95  2.02  6.58
## 72        7 64.6 4.95  3.48  7.09
## 73        7 64.6 4.95  5.00  6.66
## 74        7 64.6 4.95  6.98  5.25
## 75        7 64.6 4.95  9.00  4.39
## 76        7 64.6 4.95 12.05  3.53
## 77        7 64.6 4.95 24.22  1.15
## 78        8 70.5 4.53  0.00  0.00
## 79        8 70.5 4.53  0.25  3.05
## 80        8 70.5 4.53  0.52  3.05
## 81        8 70.5 4.53  0.98  7.31
## 82        8 70.5 4.53  2.02  7.56
## 83        8 70.5 4.53  3.53  6.59
## 84        8 70.5 4.53  5.05  5.88
## 85        8 70.5 4.53  7.15  4.73
## 86        8 70.5 4.53  9.07  4.57
## 87        8 70.5 4.53 12.10  3.00
## 88        8 70.5 4.53 24.12  1.25
## 89        9 86.4 3.10  0.00  0.00
## 90        9 86.4 3.10  0.30  7.37
## 91        9 86.4 3.10  0.63  9.03
## 92        9 86.4 3.10  1.05  7.14
## 93        9 86.4 3.10  2.02  6.33
## 94        9 86.4 3.10  3.53  5.66
## 95        9 86.4 3.10  5.02  5.67
## 96        9 86.4 3.10  7.17  4.24
## 97        9 86.4 3.10  8.80  4.11
## 98        9 86.4 3.10 11.60  3.16
## 99        9 86.4 3.10 24.43  1.12
## 100      10 58.2 5.50  0.00  0.24
## 101      10 58.2 5.50  0.37  2.89
## 102      10 58.2 5.50  0.77  5.22
## 103      10 58.2 5.50  1.02  6.41
## 104      10 58.2 5.50  2.05  7.83
## 105      10 58.2 5.50  3.55 10.21
## 106      10 58.2 5.50  5.05  9.18
## 107      10 58.2 5.50  7.08  8.02
## 108      10 58.2 5.50  9.38  7.14
## 109      10 58.2 5.50 12.10  5.68
## 110      10 58.2 5.50 23.70  2.42
## 111      11 65.0 4.92  0.00  0.00
## 112      11 65.0 4.92  0.25  4.86
## 113      11 65.0 4.92  0.50  7.24
## 114      11 65.0 4.92  0.98  8.00
## 115      11 65.0 4.92  1.98  6.81
## 116      11 65.0 4.92  3.60  5.87
## 117      11 65.0 4.92  5.02  5.22
## 118      11 65.0 4.92  7.03  4.45
## 119      11 65.0 4.92  9.03  3.62
## 120      11 65.0 4.92 12.12  2.69
## 121      11 65.0 4.92 24.08  0.86
## 122      12 60.5 5.30  0.00  0.00
## 123      12 60.5 5.30  0.25  1.25
## 124      12 60.5 5.30  0.50  3.96
## 125      12 60.5 5.30  1.00  7.82
## 126      12 60.5 5.30  2.00  9.72
## 127      12 60.5 5.30  3.52  9.75
## 128      12 60.5 5.30  5.07  8.57
## 129      12 60.5 5.30  7.07  6.59
## 130      12 60.5 5.30  9.03  6.11
## 131      12 60.5 5.30 12.05  4.57
## 132      12 60.5 5.30 24.15  1.17
Theoph  %>% arrange(desc(Time))
##     Subject   Wt Dose  Time  conc
## 1         4 72.7 4.40 24.65  1.15
## 2         9 86.4 3.10 24.43  1.12
## 3         1 79.6 4.02 24.37  3.28
## 4         5 54.6 5.86 24.35  1.57
## 5         2 72.4 4.40 24.30  0.90
## 6         7 64.6 4.95 24.22  1.15
## 7         3 70.5 4.53 24.17  1.05
## 8        12 60.5 5.30 24.15  1.17
## 9         8 70.5 4.53 24.12  1.25
## 10       11 65.0 4.92 24.08  0.86
## 11        6 80.0 4.00 23.85  0.92
## 12       10 58.2 5.50 23.70  2.42
## 13        3 70.5 4.53 12.15  3.70
## 14        1 79.6 4.02 12.12  5.94
## 15       11 65.0 4.92 12.12  2.69
## 16        6 80.0 4.00 12.10  2.78
## 17        8 70.5 4.53 12.10  3.00
## 18       10 58.2 5.50 12.10  5.68
## 19        7 64.6 4.95 12.05  3.53
## 20       12 60.5 5.30 12.05  4.57
## 21        2 72.4 4.40 12.00  3.01
## 22        5 54.6 5.86 12.00  4.37
## 23        4 72.7 4.40 11.98  4.19
## 24        9 86.4 3.10 11.60  3.16
## 25       10 58.2 5.50  9.38  7.14
## 26        6 80.0 4.00  9.22  3.46
## 27        5 54.6 5.86  9.10  5.90
## 28        8 70.5 4.53  9.07  4.57
## 29        1 79.6 4.02  9.05  6.89
## 30       11 65.0 4.92  9.03  3.62
## 31       12 60.5 5.30  9.03  6.11
## 32        4 72.7 4.40  9.02  5.33
## 33        2 72.4 4.40  9.00  4.55
## 34        3 70.5 4.53  9.00  4.90
## 35        7 64.6 4.95  9.00  4.39
## 36        9 86.4 3.10  8.80  4.11
## 37        9 86.4 3.10  7.17  4.24
## 38        8 70.5 4.53  7.15  4.73
## 39       10 58.2 5.50  7.08  8.02
## 40        3 70.5 4.53  7.07  5.30
## 41       12 60.5 5.30  7.07  6.59
## 42        1 79.6 4.02  7.03  7.47
## 43        2 72.4 4.40  7.03  5.40
## 44       11 65.0 4.92  7.03  4.45
## 45        4 72.7 4.40  7.02  5.78
## 46        5 54.6 5.86  7.02  7.09
## 47        6 80.0 4.00  7.00  4.02
## 48        7 64.6 4.95  6.98  5.25
## 49        1 79.6 4.02  5.10  8.36
## 50        3 70.5 4.53  5.08  6.20
## 51       12 60.5 5.30  5.07  8.57
## 52        8 70.5 4.53  5.05  5.88
## 53       10 58.2 5.50  5.05  9.18
## 54        2 72.4 4.40  5.02  6.08
## 55        4 72.7 4.40  5.02  6.88
## 56        5 54.6 5.86  5.02  7.56
## 57        9 86.4 3.10  5.02  5.67
## 58       11 65.0 4.92  5.02  5.22
## 59        6 80.0 4.00  5.00  4.94
## 60        7 64.6 4.95  5.00  6.66
## 61        1 79.6 4.02  3.82  8.58
## 62        3 70.5 4.53  3.62  7.50
## 63       11 65.0 4.92  3.60  5.87
## 64        6 80.0 4.00  3.57  5.53
## 65       10 58.2 5.50  3.55 10.21
## 66        8 70.5 4.53  3.53  6.59
## 67        9 86.4 3.10  3.53  5.66
## 68       12 60.5 5.30  3.52  9.75
## 69        2 72.4 4.40  3.50  6.85
## 70        4 72.7 4.40  3.50  7.54
## 71        5 54.6 5.86  3.50  8.74
## 72        7 64.6 4.95  3.48  7.09
## 73        4 72.7 4.40  2.13  8.38
## 74       10 58.2 5.50  2.05  7.83
## 75        6 80.0 4.00  2.03  6.32
## 76        1 79.6 4.02  2.02  9.66
## 77        3 70.5 4.53  2.02  7.80
## 78        5 54.6 5.86  2.02  9.33
## 79        7 64.6 4.95  2.02  6.58
## 80        8 70.5 4.53  2.02  7.56
## 81        9 86.4 3.10  2.02  6.33
## 82       12 60.5 5.30  2.00  9.72
## 83       11 65.0 4.92  1.98  6.81
## 84        2 72.4 4.40  1.92  8.33
## 85        6 80.0 4.00  1.15  6.44
## 86        1 79.6 4.02  1.12 10.50
## 87        4 72.7 4.40  1.07  8.60
## 88        9 86.4 3.10  1.05  7.14
## 89        3 70.5 4.53  1.02  8.20
## 90        7 64.6 4.95  1.02  5.02
## 91       10 58.2 5.50  1.02  6.41
## 92        2 72.4 4.40  1.00  8.31
## 93        5 54.6 5.86  1.00 11.40
## 94       12 60.5 5.30  1.00  7.82
## 95        8 70.5 4.53  0.98  7.31
## 96       11 65.0 4.92  0.98  8.00
## 97       10 58.2 5.50  0.77  5.22
## 98        9 86.4 3.10  0.63  9.03
## 99        4 72.7 4.40  0.60  4.60
## 100       3 70.5 4.53  0.58  6.90
## 101       6 80.0 4.00  0.58  3.08
## 102       1 79.6 4.02  0.57  6.57
## 103       2 72.4 4.40  0.52  7.91
## 104       5 54.6 5.86  0.52  5.63
## 105       8 70.5 4.53  0.52  3.05
## 106       7 64.6 4.95  0.50  2.35
## 107      11 65.0 4.92  0.50  7.24
## 108      12 60.5 5.30  0.50  3.96
## 109      10 58.2 5.50  0.37  2.89
## 110       4 72.7 4.40  0.35  1.89
## 111       5 54.6 5.86  0.30  2.02
## 112       9 86.4 3.10  0.30  7.37
## 113       2 72.4 4.40  0.27  1.72
## 114       3 70.5 4.53  0.27  4.40
## 115       6 80.0 4.00  0.27  1.29
## 116       1 79.6 4.02  0.25  2.84
## 117       7 64.6 4.95  0.25  0.85
## 118       8 70.5 4.53  0.25  3.05
## 119      11 65.0 4.92  0.25  4.86
## 120      12 60.5 5.30  0.25  1.25
## 121       1 79.6 4.02  0.00  0.74
## 122       2 72.4 4.40  0.00  0.00
## 123       3 70.5 4.53  0.00  0.00
## 124       4 72.7 4.40  0.00  0.00
## 125       5 54.6 5.86  0.00  0.00
## 126       6 80.0 4.00  0.00  0.00
## 127       7 64.6 4.95  0.00  0.15
## 128       8 70.5 4.53  0.00  0.00
## 129       9 86.4 3.10  0.00  0.00
## 130      10 58.2 5.50  0.00  0.24
## 131      11 65.0 4.92  0.00  0.00
## 132      12 60.5 5.30  0.00  0.00
Theoph %>% filter(Time>6.70)
##    Subject   Wt Dose  Time conc
## 1        1 79.6 4.02  7.03 7.47
## 2        1 79.6 4.02  9.05 6.89
## 3        1 79.6 4.02 12.12 5.94
## 4        1 79.6 4.02 24.37 3.28
## 5        2 72.4 4.40  7.03 5.40
## 6        2 72.4 4.40  9.00 4.55
## 7        2 72.4 4.40 12.00 3.01
## 8        2 72.4 4.40 24.30 0.90
## 9        3 70.5 4.53  7.07 5.30
## 10       3 70.5 4.53  9.00 4.90
## 11       3 70.5 4.53 12.15 3.70
## 12       3 70.5 4.53 24.17 1.05
## 13       4 72.7 4.40  7.02 5.78
## 14       4 72.7 4.40  9.02 5.33
## 15       4 72.7 4.40 11.98 4.19
## 16       4 72.7 4.40 24.65 1.15
## 17       5 54.6 5.86  7.02 7.09
## 18       5 54.6 5.86  9.10 5.90
## 19       5 54.6 5.86 12.00 4.37
## 20       5 54.6 5.86 24.35 1.57
## 21       6 80.0 4.00  7.00 4.02
## 22       6 80.0 4.00  9.22 3.46
## 23       6 80.0 4.00 12.10 2.78
## 24       6 80.0 4.00 23.85 0.92
## 25       7 64.6 4.95  6.98 5.25
## 26       7 64.6 4.95  9.00 4.39
## 27       7 64.6 4.95 12.05 3.53
## 28       7 64.6 4.95 24.22 1.15
## 29       8 70.5 4.53  7.15 4.73
## 30       8 70.5 4.53  9.07 4.57
## 31       8 70.5 4.53 12.10 3.00
## 32       8 70.5 4.53 24.12 1.25
## 33       9 86.4 3.10  7.17 4.24
## 34       9 86.4 3.10  8.80 4.11
## 35       9 86.4 3.10 11.60 3.16
## 36       9 86.4 3.10 24.43 1.12
## 37      10 58.2 5.50  7.08 8.02
## 38      10 58.2 5.50  9.38 7.14
## 39      10 58.2 5.50 12.10 5.68
## 40      10 58.2 5.50 23.70 2.42
## 41      11 65.0 4.92  7.03 4.45
## 42      11 65.0 4.92  9.03 3.62
## 43      11 65.0 4.92 12.12 2.69
## 44      11 65.0 4.92 24.08 0.86
## 45      12 60.5 5.30  7.07 6.59
## 46      12 60.5 5.30  9.03 6.11
## 47      12 60.5 5.30 12.05 4.57
## 48      12 60.5 5.30 24.15 1.17
Theoph  %>% mutate(Month=Time*30)
##     Subject   Wt Dose  Time  conc Month
## 1         1 79.6 4.02  0.00  0.74   0.0
## 2         1 79.6 4.02  0.25  2.84   7.5
## 3         1 79.6 4.02  0.57  6.57  17.1
## 4         1 79.6 4.02  1.12 10.50  33.6
## 5         1 79.6 4.02  2.02  9.66  60.6
## 6         1 79.6 4.02  3.82  8.58 114.6
## 7         1 79.6 4.02  5.10  8.36 153.0
## 8         1 79.6 4.02  7.03  7.47 210.9
## 9         1 79.6 4.02  9.05  6.89 271.5
## 10        1 79.6 4.02 12.12  5.94 363.6
## 11        1 79.6 4.02 24.37  3.28 731.1
## 12        2 72.4 4.40  0.00  0.00   0.0
## 13        2 72.4 4.40  0.27  1.72   8.1
## 14        2 72.4 4.40  0.52  7.91  15.6
## 15        2 72.4 4.40  1.00  8.31  30.0
## 16        2 72.4 4.40  1.92  8.33  57.6
## 17        2 72.4 4.40  3.50  6.85 105.0
## 18        2 72.4 4.40  5.02  6.08 150.6
## 19        2 72.4 4.40  7.03  5.40 210.9
## 20        2 72.4 4.40  9.00  4.55 270.0
## 21        2 72.4 4.40 12.00  3.01 360.0
## 22        2 72.4 4.40 24.30  0.90 729.0
## 23        3 70.5 4.53  0.00  0.00   0.0
## 24        3 70.5 4.53  0.27  4.40   8.1
## 25        3 70.5 4.53  0.58  6.90  17.4
## 26        3 70.5 4.53  1.02  8.20  30.6
## 27        3 70.5 4.53  2.02  7.80  60.6
## 28        3 70.5 4.53  3.62  7.50 108.6
## 29        3 70.5 4.53  5.08  6.20 152.4
## 30        3 70.5 4.53  7.07  5.30 212.1
## 31        3 70.5 4.53  9.00  4.90 270.0
## 32        3 70.5 4.53 12.15  3.70 364.5
## 33        3 70.5 4.53 24.17  1.05 725.1
## 34        4 72.7 4.40  0.00  0.00   0.0
## 35        4 72.7 4.40  0.35  1.89  10.5
## 36        4 72.7 4.40  0.60  4.60  18.0
## 37        4 72.7 4.40  1.07  8.60  32.1
## 38        4 72.7 4.40  2.13  8.38  63.9
## 39        4 72.7 4.40  3.50  7.54 105.0
## 40        4 72.7 4.40  5.02  6.88 150.6
## 41        4 72.7 4.40  7.02  5.78 210.6
## 42        4 72.7 4.40  9.02  5.33 270.6
## 43        4 72.7 4.40 11.98  4.19 359.4
## 44        4 72.7 4.40 24.65  1.15 739.5
## 45        5 54.6 5.86  0.00  0.00   0.0
## 46        5 54.6 5.86  0.30  2.02   9.0
## 47        5 54.6 5.86  0.52  5.63  15.6
## 48        5 54.6 5.86  1.00 11.40  30.0
## 49        5 54.6 5.86  2.02  9.33  60.6
## 50        5 54.6 5.86  3.50  8.74 105.0
## 51        5 54.6 5.86  5.02  7.56 150.6
## 52        5 54.6 5.86  7.02  7.09 210.6
## 53        5 54.6 5.86  9.10  5.90 273.0
## 54        5 54.6 5.86 12.00  4.37 360.0
## 55        5 54.6 5.86 24.35  1.57 730.5
## 56        6 80.0 4.00  0.00  0.00   0.0
## 57        6 80.0 4.00  0.27  1.29   8.1
## 58        6 80.0 4.00  0.58  3.08  17.4
## 59        6 80.0 4.00  1.15  6.44  34.5
## 60        6 80.0 4.00  2.03  6.32  60.9
## 61        6 80.0 4.00  3.57  5.53 107.1
## 62        6 80.0 4.00  5.00  4.94 150.0
## 63        6 80.0 4.00  7.00  4.02 210.0
## 64        6 80.0 4.00  9.22  3.46 276.6
## 65        6 80.0 4.00 12.10  2.78 363.0
## 66        6 80.0 4.00 23.85  0.92 715.5
## 67        7 64.6 4.95  0.00  0.15   0.0
## 68        7 64.6 4.95  0.25  0.85   7.5
## 69        7 64.6 4.95  0.50  2.35  15.0
## 70        7 64.6 4.95  1.02  5.02  30.6
## 71        7 64.6 4.95  2.02  6.58  60.6
## 72        7 64.6 4.95  3.48  7.09 104.4
## 73        7 64.6 4.95  5.00  6.66 150.0
## 74        7 64.6 4.95  6.98  5.25 209.4
## 75        7 64.6 4.95  9.00  4.39 270.0
## 76        7 64.6 4.95 12.05  3.53 361.5
## 77        7 64.6 4.95 24.22  1.15 726.6
## 78        8 70.5 4.53  0.00  0.00   0.0
## 79        8 70.5 4.53  0.25  3.05   7.5
## 80        8 70.5 4.53  0.52  3.05  15.6
## 81        8 70.5 4.53  0.98  7.31  29.4
## 82        8 70.5 4.53  2.02  7.56  60.6
## 83        8 70.5 4.53  3.53  6.59 105.9
## 84        8 70.5 4.53  5.05  5.88 151.5
## 85        8 70.5 4.53  7.15  4.73 214.5
## 86        8 70.5 4.53  9.07  4.57 272.1
## 87        8 70.5 4.53 12.10  3.00 363.0
## 88        8 70.5 4.53 24.12  1.25 723.6
## 89        9 86.4 3.10  0.00  0.00   0.0
## 90        9 86.4 3.10  0.30  7.37   9.0
## 91        9 86.4 3.10  0.63  9.03  18.9
## 92        9 86.4 3.10  1.05  7.14  31.5
## 93        9 86.4 3.10  2.02  6.33  60.6
## 94        9 86.4 3.10  3.53  5.66 105.9
## 95        9 86.4 3.10  5.02  5.67 150.6
## 96        9 86.4 3.10  7.17  4.24 215.1
## 97        9 86.4 3.10  8.80  4.11 264.0
## 98        9 86.4 3.10 11.60  3.16 348.0
## 99        9 86.4 3.10 24.43  1.12 732.9
## 100      10 58.2 5.50  0.00  0.24   0.0
## 101      10 58.2 5.50  0.37  2.89  11.1
## 102      10 58.2 5.50  0.77  5.22  23.1
## 103      10 58.2 5.50  1.02  6.41  30.6
## 104      10 58.2 5.50  2.05  7.83  61.5
## 105      10 58.2 5.50  3.55 10.21 106.5
## 106      10 58.2 5.50  5.05  9.18 151.5
## 107      10 58.2 5.50  7.08  8.02 212.4
## 108      10 58.2 5.50  9.38  7.14 281.4
## 109      10 58.2 5.50 12.10  5.68 363.0
## 110      10 58.2 5.50 23.70  2.42 711.0
## 111      11 65.0 4.92  0.00  0.00   0.0
## 112      11 65.0 4.92  0.25  4.86   7.5
## 113      11 65.0 4.92  0.50  7.24  15.0
## 114      11 65.0 4.92  0.98  8.00  29.4
## 115      11 65.0 4.92  1.98  6.81  59.4
## 116      11 65.0 4.92  3.60  5.87 108.0
## 117      11 65.0 4.92  5.02  5.22 150.6
## 118      11 65.0 4.92  7.03  4.45 210.9
## 119      11 65.0 4.92  9.03  3.62 270.9
## 120      11 65.0 4.92 12.12  2.69 363.6
## 121      11 65.0 4.92 24.08  0.86 722.4
## 122      12 60.5 5.30  0.00  0.00   0.0
## 123      12 60.5 5.30  0.25  1.25   7.5
## 124      12 60.5 5.30  0.50  3.96  15.0
## 125      12 60.5 5.30  1.00  7.82  30.0
## 126      12 60.5 5.30  2.00  9.72  60.0
## 127      12 60.5 5.30  3.52  9.75 105.6
## 128      12 60.5 5.30  5.07  8.57 152.1
## 129      12 60.5 5.30  7.07  6.59 212.1
## 130      12 60.5 5.30  9.03  6.11 270.9
## 131      12 60.5 5.30 12.05  4.57 361.5
## 132      12 60.5 5.30 24.15  1.17 724.5
Theoph  %>% group_by(Time)%>%summarise(sum=sum(Wt))
## # A tibble: 78 x 2
##     Time   sum
##    <dbl> <dbl>
##  1  0    835  
##  2  0.25 340. 
##  3  0.27 223. 
##  4  0.3  141  
##  5  0.35  72.7
##  6  0.37  58.2
##  7  0.5  190. 
##  8  0.52 198. 
##  9  0.57  79.6
## 10  0.58 150. 
## # ... with 68 more rows
Theoph 
##     Subject   Wt Dose  Time  conc
## 1         1 79.6 4.02  0.00  0.74
## 2         1 79.6 4.02  0.25  2.84
## 3         1 79.6 4.02  0.57  6.57
## 4         1 79.6 4.02  1.12 10.50
## 5         1 79.6 4.02  2.02  9.66
## 6         1 79.6 4.02  3.82  8.58
## 7         1 79.6 4.02  5.10  8.36
## 8         1 79.6 4.02  7.03  7.47
## 9         1 79.6 4.02  9.05  6.89
## 10        1 79.6 4.02 12.12  5.94
## 11        1 79.6 4.02 24.37  3.28
## 12        2 72.4 4.40  0.00  0.00
## 13        2 72.4 4.40  0.27  1.72
## 14        2 72.4 4.40  0.52  7.91
## 15        2 72.4 4.40  1.00  8.31
## 16        2 72.4 4.40  1.92  8.33
## 17        2 72.4 4.40  3.50  6.85
## 18        2 72.4 4.40  5.02  6.08
## 19        2 72.4 4.40  7.03  5.40
## 20        2 72.4 4.40  9.00  4.55
## 21        2 72.4 4.40 12.00  3.01
## 22        2 72.4 4.40 24.30  0.90
## 23        3 70.5 4.53  0.00  0.00
## 24        3 70.5 4.53  0.27  4.40
## 25        3 70.5 4.53  0.58  6.90
## 26        3 70.5 4.53  1.02  8.20
## 27        3 70.5 4.53  2.02  7.80
## 28        3 70.5 4.53  3.62  7.50
## 29        3 70.5 4.53  5.08  6.20
## 30        3 70.5 4.53  7.07  5.30
## 31        3 70.5 4.53  9.00  4.90
## 32        3 70.5 4.53 12.15  3.70
## 33        3 70.5 4.53 24.17  1.05
## 34        4 72.7 4.40  0.00  0.00
## 35        4 72.7 4.40  0.35  1.89
## 36        4 72.7 4.40  0.60  4.60
## 37        4 72.7 4.40  1.07  8.60
## 38        4 72.7 4.40  2.13  8.38
## 39        4 72.7 4.40  3.50  7.54
## 40        4 72.7 4.40  5.02  6.88
## 41        4 72.7 4.40  7.02  5.78
## 42        4 72.7 4.40  9.02  5.33
## 43        4 72.7 4.40 11.98  4.19
## 44        4 72.7 4.40 24.65  1.15
## 45        5 54.6 5.86  0.00  0.00
## 46        5 54.6 5.86  0.30  2.02
## 47        5 54.6 5.86  0.52  5.63
## 48        5 54.6 5.86  1.00 11.40
## 49        5 54.6 5.86  2.02  9.33
## 50        5 54.6 5.86  3.50  8.74
## 51        5 54.6 5.86  5.02  7.56
## 52        5 54.6 5.86  7.02  7.09
## 53        5 54.6 5.86  9.10  5.90
## 54        5 54.6 5.86 12.00  4.37
## 55        5 54.6 5.86 24.35  1.57
## 56        6 80.0 4.00  0.00  0.00
## 57        6 80.0 4.00  0.27  1.29
## 58        6 80.0 4.00  0.58  3.08
## 59        6 80.0 4.00  1.15  6.44
## 60        6 80.0 4.00  2.03  6.32
## 61        6 80.0 4.00  3.57  5.53
## 62        6 80.0 4.00  5.00  4.94
## 63        6 80.0 4.00  7.00  4.02
## 64        6 80.0 4.00  9.22  3.46
## 65        6 80.0 4.00 12.10  2.78
## 66        6 80.0 4.00 23.85  0.92
## 67        7 64.6 4.95  0.00  0.15
## 68        7 64.6 4.95  0.25  0.85
## 69        7 64.6 4.95  0.50  2.35
## 70        7 64.6 4.95  1.02  5.02
## 71        7 64.6 4.95  2.02  6.58
## 72        7 64.6 4.95  3.48  7.09
## 73        7 64.6 4.95  5.00  6.66
## 74        7 64.6 4.95  6.98  5.25
## 75        7 64.6 4.95  9.00  4.39
## 76        7 64.6 4.95 12.05  3.53
## 77        7 64.6 4.95 24.22  1.15
## 78        8 70.5 4.53  0.00  0.00
## 79        8 70.5 4.53  0.25  3.05
## 80        8 70.5 4.53  0.52  3.05
## 81        8 70.5 4.53  0.98  7.31
## 82        8 70.5 4.53  2.02  7.56
## 83        8 70.5 4.53  3.53  6.59
## 84        8 70.5 4.53  5.05  5.88
## 85        8 70.5 4.53  7.15  4.73
## 86        8 70.5 4.53  9.07  4.57
## 87        8 70.5 4.53 12.10  3.00
## 88        8 70.5 4.53 24.12  1.25
## 89        9 86.4 3.10  0.00  0.00
## 90        9 86.4 3.10  0.30  7.37
## 91        9 86.4 3.10  0.63  9.03
## 92        9 86.4 3.10  1.05  7.14
## 93        9 86.4 3.10  2.02  6.33
## 94        9 86.4 3.10  3.53  5.66
## 95        9 86.4 3.10  5.02  5.67
## 96        9 86.4 3.10  7.17  4.24
## 97        9 86.4 3.10  8.80  4.11
## 98        9 86.4 3.10 11.60  3.16
## 99        9 86.4 3.10 24.43  1.12
## 100      10 58.2 5.50  0.00  0.24
## 101      10 58.2 5.50  0.37  2.89
## 102      10 58.2 5.50  0.77  5.22
## 103      10 58.2 5.50  1.02  6.41
## 104      10 58.2 5.50  2.05  7.83
## 105      10 58.2 5.50  3.55 10.21
## 106      10 58.2 5.50  5.05  9.18
## 107      10 58.2 5.50  7.08  8.02
## 108      10 58.2 5.50  9.38  7.14
## 109      10 58.2 5.50 12.10  5.68
## 110      10 58.2 5.50 23.70  2.42
## 111      11 65.0 4.92  0.00  0.00
## 112      11 65.0 4.92  0.25  4.86
## 113      11 65.0 4.92  0.50  7.24
## 114      11 65.0 4.92  0.98  8.00
## 115      11 65.0 4.92  1.98  6.81
## 116      11 65.0 4.92  3.60  5.87
## 117      11 65.0 4.92  5.02  5.22
## 118      11 65.0 4.92  7.03  4.45
## 119      11 65.0 4.92  9.03  3.62
## 120      11 65.0 4.92 12.12  2.69
## 121      11 65.0 4.92 24.08  0.86
## 122      12 60.5 5.30  0.00  0.00
## 123      12 60.5 5.30  0.25  1.25
## 124      12 60.5 5.30  0.50  3.96
## 125      12 60.5 5.30  1.00  7.82
## 126      12 60.5 5.30  2.00  9.72
## 127      12 60.5 5.30  3.52  9.75
## 128      12 60.5 5.30  5.07  8.57
## 129      12 60.5 5.30  7.07  6.59
## 130      12 60.5 5.30  9.03  6.11
## 131      12 60.5 5.30 12.05  4.57
## 132      12 60.5 5.30 24.15  1.17

Melakukan kelima perintah bersamaan

Theoph%>% select(Subject, Wt, Dose, Time,conc) %>% arrange(desc(Time)) %>%  filter(Time>6.70)%>% mutate(Month=Time*30)%>% group_by(Time)%>%summarise(sum=sum(Wt))
## # A tibble: 36 x 2
##     Time   sum
##    <dbl> <dbl>
##  1  6.98  64.6
##  2  7     80  
##  3  7.02 127. 
##  4  7.03 217  
##  5  7.07 131  
##  6  7.08  58.2
##  7  7.15  70.5
##  8  7.17  86.4
##  9  8.8   86.4
## 10  9    208. 
## # ... with 26 more rows