library(readxl)
Yield <- read_excel("C:/Users/admin/Downloads/Yield.xlsx")
View(Yield)
str(Yield)
## tibble [20 x 3] (S3: tbl_df/tbl/data.frame)
## $ Replication: num [1:20] 1 1 1 1 1 2 2 2 2 2 ...
## $ Variety : chr [1:20] "African tall" "Co-11" "FS-1" "K-7" ...
## $ Yield : num [1:20] 22.9 29.5 28.8 47 28.9 25.9 30.4 24.4 40.9 20.4 ...
Yield$Replication = factor(Yield$Replication)
#Fitting of linear model Ho:African tall=Co-11=FS-1=K-7=Co-24, Ha: Atleast one variety is different
model <- lm(Yield ~ Replication + Variety, data = Yield)
anova <-anova(model)
anova
## Analysis of Variance Table
##
## Response: Yield
## Df Sum Sq Mean Sq F value Pr(>F)
## Replication 3 80.80 26.934 0.9205 0.46033
## Variety 4 520.53 130.133 4.4476 0.01958 *
## Residuals 12 351.11 29.259
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
As we can observe from the table, “Variety” have a p-value of 0.01958 which is a significant value. Hence, we reject the null hypothesis. We can conclude that, atleast one variety either African tall, Co-11, FS-1, K-7, or Co-24 is different.
Model assumptions The model assumes: 1 Errors ei are independent, have homogeneous variance, and a normal distribution. 2 Additivity: means are µ + αj + βk, i.e. the trt differences are the same for every block and the block differences are the same for every trt. No interaction.
#Below codes are used to obtain plots of fitted vs Residuals and Normal QQ plots
par(mfrow=c(1,2))
plot(model, which=1)
plot(model, which=2)
As we observe in the Normal Q-Q plot, almost all of the yields are close to the line and on the line. So, the residuals are normally distributed. Normality is met.
with(Yield,
interaction.plot(Variety, Replication, Yield, col=1:4) )
with(Yield,
interaction.plot(Replication, Variety, Yield, col=1:4) )
The Variety differences are the same for every Replication and the Replication differences are the same for every Variety. Thus, no interaction.
library(agricolae)
#Duncan test
DNMRT <-duncan.test(Yield$Yield, Yield$Variety,12,29.259)
DNMRT
## $statistics
## MSerror Df Mean CV
## 29.259 12 31.275 17.29547
##
## $parameters
## test name.t ntr alpha
## Duncan Yield$Variety 5 0.05
##
## $duncan
## Table CriticalRange
## 2 3.081307 8.333639
## 3 3.225244 8.722927
## 4 3.312453 8.958792
## 5 3.370172 9.114897
##
## $means
## Yield$Yield std r Min Max Q25 Q50 Q75
## African tall 30.450 7.403378 4 22.9 39.1 25.150 29.90 35.200
## Co-11 31.200 2.762849 4 29.5 35.3 29.575 30.00 31.625
## Co-24 25.550 5.674798 4 20.4 31.8 20.925 25.00 29.625
## FS-1 28.475 3.155287 4 24.4 32.1 27.550 28.70 29.625
## K-7 40.700 6.274286 4 32.1 47.0 38.700 41.85 43.850
##
## $comparison
## NULL
##
## $groups
## Yield$Yield groups
## K-7 40.700 a
## Co-11 31.200 b
## African tall 30.450 b
## FS-1 28.475 b
## Co-24 25.550 b
##
## attr(,"class")
## [1] "group"
By the Duncan test, we will be able to know which of the variety is different. So in this experiment, we know that the variety ‘K-7’ is significantly different form the other variety. While the the variety ‘Co-11’, ‘African tall’, ‘FS-1’, and ‘Co-24’ are not significantly different from each other.
#LSD test
LSD <-LSD.test(Yield$Yield, Yield$Variety,12,29.259)
LSD
## $statistics
## MSerror Df Mean CV t.value LSD
## 29.259 12 31.275 17.29547 2.178813 8.333639
##
## $parameters
## test p.ajusted name.t ntr alpha
## Fisher-LSD none Yield$Variety 5 0.05
##
## $means
## Yield$Yield std r LCL UCL Min Max Q25 Q50
## African tall 30.450 7.403378 4 24.55723 36.34277 22.9 39.1 25.150 29.90
## Co-11 31.200 2.762849 4 25.30723 37.09277 29.5 35.3 29.575 30.00
## Co-24 25.550 5.674798 4 19.65723 31.44277 20.4 31.8 20.925 25.00
## FS-1 28.475 3.155287 4 22.58223 34.36777 24.4 32.1 27.550 28.70
## K-7 40.700 6.274286 4 34.80723 46.59277 32.1 47.0 38.700 41.85
## Q75
## African tall 35.200
## Co-11 31.625
## Co-24 29.625
## FS-1 29.625
## K-7 43.850
##
## $comparison
## NULL
##
## $groups
## Yield$Yield groups
## K-7 40.700 a
## Co-11 31.200 b
## African tall 30.450 b
## FS-1 28.475 b
## Co-24 25.550 b
##
## attr(,"class")
## [1] "group"
#Save the file in txt
sink("Yield.txt")
print(anova)
## Analysis of Variance Table
##
## Response: Yield
## Df Sum Sq Mean Sq F value Pr(>F)
## Replication 3 80.80 26.934 0.9205 0.46033
## Variety 4 520.53 130.133 4.4476 0.01958 *
## Residuals 12 351.11 29.259
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print("DNMRT Result")
## [1] "DNMRT Result"
print(DNMRT$statistics)
## MSerror Df Mean CV
## 29.259 12 31.275 17.29547
print(DNMRT$groups)
## Yield$Yield groups
## K-7 40.700 a
## Co-11 31.200 b
## African tall 30.450 b
## FS-1 28.475 b
## Co-24 25.550 b
print("LSD Result")
## [1] "LSD Result"
print(LSD$statistics)
## MSerror Df Mean CV t.value LSD
## 29.259 12 31.275 17.29547 2.178813 8.333639
print(LSD$groups)
## Yield$Yield groups
## K-7 40.700 a
## Co-11 31.200 b
## African tall 30.450 b
## FS-1 28.475 b
## Co-24 25.550 b
sink()
#Script Prepared by Raj Popat, PhD scholar, Department of Agricultural Statistics, Anand Agricultural University, Anand