dtos <- expand.grid(x = seq(7,84,7), y = seq(9,108,9))
plot(dtos)seq(7,84,7)## [1] 7 14 21 28 35 42 49 56 63 70 77 84
set.seed(123)
dtos$rto <- c(c(rnorm(16, 3.2, 0.3), rnorm(16, 3.2, 0.3), rnorm(16, 3.3, 0.3)),
c(rnorm(16, 3.0, 0.3), rnorm(16, 3.2, 0.3), rnorm(16, 3.5, 0.3)),
c(rnorm(16, 3.1, 0.3), rnorm(16, 3.2, 0.3), rnorm(16, 3.5, 0.3))
)
dtos$bloque <- gl(3, 48, 144)
dtos$fert <- gl(3, 16, 144, c('d0','d5','d10'))
dtos %>%
ggplot()+
aes(x,y, fill = rto)+
geom_tile()dtos %>%
ggplot()+
aes(x,y, fill = rto, col = bloque)+
geom_tile(size=1)+
geom_point(aes(shape = fert), size = 2)+
theme(legend.position = 'top') ### Gráficos de interacción
interaction.plot(dtos$fert, dtos$bloque, dtos$rto)interaction.plot(dtos$bloque, dtos$fert, dtos$rto)mod1 <- aov(rto ~ bloque + fert, data = dtos)
summary(mod1)## Df Sum Sq Mean Sq F value Pr(>F)
## bloque 2 0.066 0.0329 0.396 0.674
## fert 2 3.401 1.7006 20.456 1.63e-08 ***
## Residuals 139 11.556 0.0831
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
dtos %>%
ggplot() +
aes(bloque, rto, fill = fert) +
geom_boxplot() \[H_0: Los~datos~sigue~una~distribución~normal\\ H_a:Los~datos~sigue~una~distribución~normal\]
res_mod1 <- mod1$residuals
shapiro.test(res_mod1)##
## Shapiro-Wilk normality test
##
## data: res_mod1
## W = 0.9901, p-value = 0.4052
\[H_0: \sigma^2_1=\sigma^2_2=...=\sigma^2_k=\sigma^2\\ H_a:\sigma^2_i \neq \sigma^2_j~para~algún~i\neq j\]
bartlett.test(res_mod1, dtos$fert)##
## Bartlett test of homogeneity of variances
##
## data: res_mod1 and dtos$fert
## Bartlett's K-squared = 0.22047, df = 2, p-value = 0.8956
mod2 <- aov(rto ~ fert, dtos)
summary(mod2)## Df Sum Sq Mean Sq F value Pr(>F)
## fert 2 3.401 1.7006 20.63 1.38e-08 ***
## Residuals 141 11.621 0.0824
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# matriz de distancias
d = as.matrix(dist(dtos[,c('x','y')]))
di = 1/d
diag(di) = 0
W = di ## Matriz de pesos
# Modelo con bloques
Moran.I(mod1$residuals, W)## $observed
## [1] -0.007791896
##
## $expected
## [1] -0.006993007
##
## $sd
## [1] 0.007941199
##
## $p.value
## [1] 0.9198675
# Modelo sin bloques
Moran.I(mod2$residuals, W)## $observed
## [1] -0.009434653
##
## $expected
## [1] -0.006993007
##
## $sd
## [1] 0.007943143
##
## $p.value
## [1] 0.7585462
p valor> 5% no hay dependencia espacial
summary(mod1)## Df Sum Sq Mean Sq F value Pr(>F)
## bloque 2 0.066 0.0329 0.396 0.674
## fert 2 3.401 1.7006 20.456 1.63e-08 ***
## Residuals 139 11.556 0.0831
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
H = summary(mod1)[[1]][1,3]/summary(mod1)[[1]][3,3]
H## [1] 0.395927
\(H<1\) el bloqueo no es eficiente