setwd("/Volumes/Gus_HD/")
data <- read.csv("../Gus_HD/Curso avanzado R/Machine_Learning_Data_Science con Rstudio/Rmackdown/data/daily-bike-rentals.csv")
head(data,5)
## instant dteday season yr mnth holiday weekday workingday weathersit
## 1 1 2011-01-01 1 0 1 0 6 0 2
## 2 2 2011-01-02 1 0 1 0 0 0 2
## 3 3 2011-01-03 1 0 1 0 1 1 1
## 4 4 2011-01-04 1 0 1 0 2 1 1
## 5 5 2011-01-05 1 0 1 0 3 1 1
## temp atemp hum windspeed casual registered cnt
## 1 0.344167 0.363625 0.805833 0.160446 331 654 985
## 2 0.363478 0.353739 0.696087 0.248539 131 670 801
## 3 0.196364 0.189405 0.437273 0.248309 120 1229 1349
## 4 0.200000 0.212122 0.590435 0.160296 108 1454 1562
## 5 0.226957 0.229270 0.436957 0.186900 82 1518 1600
attach(data)
data$season <- factor(data$season,
levels = c(1,2,3,4),
labels = c("Invierno", "Primavera", "Verano",
"Otoño")
)
data$workingday <- factor(data$workingday,
levels = c(0,1),
labels = c("Festivo",
"De trabajo")
)
data$weathersit <- factor(data$weathersit,
levels = c(1,2,3),
labels = c("Despejado", "Nublado",
"Lluvia/Nieve ligera")
)
data$dteday <- as.Date(data$dteday, format = "%Y-%m-%d")
winter <- subset(data, season == "Invierno")$cnt
spring <- subset(data, season == "Primavera")$cnt
summer <- subset(data, season == "Verano")$cnt
fall <- subset(data, season == "Otoño")$cnt
par(mfrow=c(2,2))
#INVIERNO
hist(winter, prob = TRUE,
xlab = "Alquiler diario en Invierno",
main = "")
lines(density(winter))
abline(v = mean(winter), col = "red")
abline(v = median(winter), col = "blue")
# PRIMAVERA
hist(spring, prob = TRUE,
col = "green",
xlab = "Alquiler diario en Primavera",
main = "")
lines(density(spring))
abline(v = mean(spring), col = "red")
abline(v = median(spring), col = "blue")
# VERANO
hist(summer, prob = TRUE,
col = "yellow",
xlab = "Alquiler diario en Verano",
main = "")
lines(density(summer))
abline(v = mean(summer), col = "red")
abline(v = median(summer), col = "blue")
# OTOÑO
hist(fall, prob = TRUE,
col = "purple",
xlab = "Alquiler diario en Otoño",
main = "")
lines(density(fall))
abline(v = mean(fall), col = "red")
abline(v = median(fall), col = "blue")
library(beanplot)
par(mfrow = c(1,1))
beanplot(data$cnt ~ data$season, col = c("blue", "red", "yellow"))
library(lattice)
bwplot(cnt ~ weathersit, data = data,
layout = c(1,1),
xlab = "Pronostico del tiempo",
ylab = "Frecuencias",
panel = function(x,y,...){
panel.bwplot(x,y,...)
panel.stripplot(x,y, jitter.data = TRUE,...)
},
par.settings = list(box.rectangle = list(fill = c("red", "yellow", "green"))))