library(foreign)
library(dplyr)
library(reshape)
library(WRS)
rm(list = ls())
D_data <- read.spss("Duplicate_data.sav")
# Changing the data into a data frame
D_data <- as.data.frame(D_data)
# Checking the Dataset
str(D_data)
'data.frame': 13 obs. of 14 variables:
$ Std_ID : chr "Student 1 " "Student 2 " "Student 4 " "Sudent 5 " ...
$ Gender : Factor w/ 2 levels "Male","Female": 2 2 1 2 2 2 1 1 2 1 ...
$ Grade : Factor w/ 3 levels "Third Grade",..: 1 1 1 1 1 2 2 2 2 3 ...
$ Teacher : Factor w/ 4 levels "Luna","Oliver",..: 1 1 1 1 1 2 2 2 2 4 ...
$ Attendance : num 16 18 17 14 15 17 15 18 18 14 ...
$ Wordsread : num 51858 28575 38867 33160 108885 ...
$ MARSIGRSPre : num 2.4 1.8 3.4 3 3.4 1.6 3.4 2.6 1.2 2.2 ...
$ MARSIGRSPost : num 3.2 3.4 4 3.2 3.2 2.6 5 3.8 3.4 4 ...
$ MARSIPSSPre : num 3 4 2.6 4.4 3.8 3.8 4 2.2 3.4 4.4 ...
$ MARSIPSSPost : num 3 5 2.6 3.8 3.8 3 5 4.2 3.6 4.6 ...
$ MARSISRSPre : num 2.8 2 3 4 3.6 3.6 4.2 3.4 3.2 3.8 ...
$ MARSISRSPost : num 2.8 4.2 3 3.4 4.2 4 5 2.8 3.2 4.2 ...
$ MARSITotalPre : num 2.73 2.6 3 3.8 3.8 3 3.86 2.73 2.6 3.46 ...
$ MARSITotalPost: num 3 4.2 3.2 3.46 3.73 3.2 5 3.6 3.4 4.26 ...
MARSI2_data <- D_data[-c(4)]
summary(MARSI2_data)
Std_ID Gender Grade Attendance
Length:13 Male :4 Third Grade :5 Min. :14.00
Class :character Female:9 Fourth Grade:4 1st Qu.:15.00
Mode :character Fifth Grade :4 Median :17.00
Mean :16.38
3rd Qu.:18.00
Max. :18.00
Wordsread MARSIGRSPre MARSIGRSPost MARSIPSSPre
Min. : 16631 Min. :1.200 Min. :2.600 Min. :2.200
1st Qu.: 21316 1st Qu.:2.200 1st Qu.:3.200 1st Qu.:3.400
Median : 31066 Median :3.000 Median :3.400 Median :4.000
Mean : 37261 Mean :2.692 Mean :3.569 Mean :3.769
3rd Qu.: 38867 3rd Qu.:3.400 3rd Qu.:4.000 3rd Qu.:4.400
Max. :108885 Max. :3.400 Max. :5.000 Max. :4.800
MARSIPSSPost MARSISRSPre MARSISRSPost MARSITotalPre
Min. :2.600 Min. :2.000 Min. :2.800 Min. :2.600
1st Qu.:3.600 1st Qu.:3.200 1st Qu.:3.200 1st Qu.:2.730
Median :4.200 Median :3.600 Median :4.200 Median :3.460
Mean :4.046 Mean :3.662 Mean :3.831 Mean :3.387
3rd Qu.:4.600 3rd Qu.:4.200 3rd Qu.:4.200 3rd Qu.:3.860
Max. :5.000 Max. :5.000 Max. :5.000 Max. :4.260
MARSITotalPost
Min. :3.000
1st Qu.:3.400
Median :3.730
Mean :3.813
3rd Qu.:4.200
Max. :5.000
Got rid of teacher variable
# Pretest Only Dataset
Pretest_Data <- dplyr::select(MARSI2_data, Std_ID, MARSIGRSPre, MARSIPSSPre, MARSISRSPre, MARSITotalPre)
#Posttest Only Dataset
Posttest_Data <- dplyr::select(MARSI2_data, Std_ID, MARSIGRSPost, MARSIPSSPost, MARSISRSPost, MARSITotalPost)
# Demographic Information Only Dataset
Demo_Data <- dplyr::select(MARSI2_data, Std_ID, Gender, Grade, Attendance, Wordsread)
# Checking the New Datasets
Pretest_Data
Std_ID MARSIGRSPre MARSIPSSPre MARSISRSPre MARSITotalPre
1 Student 1 2.4 3.0 2.8 2.73
2 Student 2 1.8 4.0 2.0 2.60
3 Student 4 3.4 2.6 3.0 3.00
4 Sudent 5 3.0 4.4 4.0 3.80
5 Student 6 3.4 3.8 3.6 3.80
6 Student 7 1.6 3.8 3.6 3.00
7 Student 9 3.4 4.0 4.2 3.86
8 Student 10 2.6 2.2 3.4 2.73
9 Student 11 1.2 3.4 3.2 2.60
10 Student 13 2.2 4.4 3.8 3.46
11 Student 14 3.2 4.6 4.4 4.06
12 Student 15 3.4 4.8 4.6 4.26
13 Student 17 3.4 4.0 5.0 4.13
Posttest_Data
Std_ID MARSIGRSPost MARSIPSSPost MARSISRSPost MARSITotalPost
1 Student 1 3.2 3.0 2.8 3.00
2 Student 2 3.4 5.0 4.2 4.20
3 Student 4 4.0 2.6 3.0 3.20
4 Sudent 5 3.2 3.8 3.4 3.46
5 Student 6 3.2 3.8 4.2 3.73
6 Student 7 2.6 3.0 4.0 3.20
7 Student 9 5.0 5.0 5.0 5.00
8 Student 10 3.8 4.2 2.8 3.60
9 Student 11 3.4 3.6 3.2 3.40
10 Student 13 4.0 4.6 4.2 4.26
11 Student 14 4.2 4.6 4.6 4.46
12 Student 15 3.4 4.8 4.2 4.13
13 Student 17 3.0 4.6 4.2 3.93
Demo_Data
Std_ID Gender Grade Attendance Wordsread
1 Student 1 Female Third Grade 16 51858
2 Student 2 Female Third Grade 18 28575
3 Student 4 Male Third Grade 17 38867
4 Sudent 5 Female Third Grade 14 33160
5 Student 6 Female Third Grade 15 108885
6 Student 7 Female Fourth Grade 17 16631
7 Student 9 Male Fourth Grade 15 19578
8 Student 10 Male Fourth Grade 18 21316
9 Student 11 Female Fourth Grade 18 19662
10 Student 13 Male Fifth Grade 14 30453
11 Student 14 Female Fifth Grade 17 31066
12 Student 15 Female Fifth Grade 16 48149
13 Student 17 Female Fifth Grade 18 36191
Pretest_Data1 <- melt(Pretest_Data, id = "Std_ID", measured = c("MARSIGRSPre", "MARSIPSSPre", "MARSISRSPre", "MARSITotalPre"))
#Checking
Pretest_Data1
Std_ID variable value
1 Student 1 MARSIGRSPre 2.40
2 Student 2 MARSIGRSPre 1.80
3 Student 4 MARSIGRSPre 3.40
4 Sudent 5 MARSIGRSPre 3.00
5 Student 6 MARSIGRSPre 3.40
6 Student 7 MARSIGRSPre 1.60
7 Student 9 MARSIGRSPre 3.40
8 Student 10 MARSIGRSPre 2.60
9 Student 11 MARSIGRSPre 1.20
10 Student 13 MARSIGRSPre 2.20
11 Student 14 MARSIGRSPre 3.20
12 Student 15 MARSIGRSPre 3.40
13 Student 17 MARSIGRSPre 3.40
14 Student 1 MARSIPSSPre 3.00
15 Student 2 MARSIPSSPre 4.00
16 Student 4 MARSIPSSPre 2.60
17 Sudent 5 MARSIPSSPre 4.40
18 Student 6 MARSIPSSPre 3.80
19 Student 7 MARSIPSSPre 3.80
20 Student 9 MARSIPSSPre 4.00
21 Student 10 MARSIPSSPre 2.20
22 Student 11 MARSIPSSPre 3.40
23 Student 13 MARSIPSSPre 4.40
24 Student 14 MARSIPSSPre 4.60
25 Student 15 MARSIPSSPre 4.80
26 Student 17 MARSIPSSPre 4.00
27 Student 1 MARSISRSPre 2.80
28 Student 2 MARSISRSPre 2.00
29 Student 4 MARSISRSPre 3.00
30 Sudent 5 MARSISRSPre 4.00
31 Student 6 MARSISRSPre 3.60
32 Student 7 MARSISRSPre 3.60
33 Student 9 MARSISRSPre 4.20
34 Student 10 MARSISRSPre 3.40
35 Student 11 MARSISRSPre 3.20
36 Student 13 MARSISRSPre 3.80
37 Student 14 MARSISRSPre 4.40
38 Student 15 MARSISRSPre 4.60
39 Student 17 MARSISRSPre 5.00
40 Student 1 MARSITotalPre 2.73
41 Student 2 MARSITotalPre 2.60
42 Student 4 MARSITotalPre 3.00
43 Sudent 5 MARSITotalPre 3.80
44 Student 6 MARSITotalPre 3.80
45 Student 7 MARSITotalPre 3.00
46 Student 9 MARSITotalPre 3.86
47 Student 10 MARSITotalPre 2.73
48 Student 11 MARSITotalPre 2.60
49 Student 13 MARSITotalPre 3.46
50 Student 14 MARSITotalPre 4.06
51 Student 15 MARSITotalPre 4.26
52 Student 17 MARSITotalPre 4.13
colnames(Pretest_Data1)<- c("Std_ID", "Measures", "Pretest_Scores")
head(Pretest_Data1)
Std_ID Measures Pretest_Scores
1 Student 1 MARSIGRSPre 2.4
2 Student 2 MARSIGRSPre 1.8
3 Student 4 MARSIGRSPre 3.4
4 Sudent 5 MARSIGRSPre 3.0
5 Student 6 MARSIGRSPre 3.4
6 Student 7 MARSIGRSPre 1.6
Pretest_Data1$Measures <- factor(Pretest_Data1$Measures, labels = c("MARSIGRS", "MARSIPSS", "MARSISRS", "MARSITotal"))
str(Pretest_Data1)
'data.frame': 52 obs. of 3 variables:
$ Std_ID : chr "Student 1 " "Student 2 " "Student 4 " "Sudent 5 " ...
$ Measures : Factor w/ 4 levels "MARSIGRS","MARSIPSS",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Pretest_Scores: num 2.4 1.8 3.4 3 3.4 1.6 3.4 2.6 1.2 2.2 ...
# Putting the Data in Order by Std_ID
Pretest_Data1 <- Pretest_Data1[order(Pretest_Data1$Std_ID),]
Pretest_Data1
Std_ID Measures Pretest_Scores
1 Student 1 MARSIGRS 2.40
14 Student 1 MARSIPSS 3.00
27 Student 1 MARSISRS 2.80
40 Student 1 MARSITotal 2.73
8 Student 10 MARSIGRS 2.60
21 Student 10 MARSIPSS 2.20
34 Student 10 MARSISRS 3.40
47 Student 10 MARSITotal 2.73
9 Student 11 MARSIGRS 1.20
22 Student 11 MARSIPSS 3.40
35 Student 11 MARSISRS 3.20
48 Student 11 MARSITotal 2.60
10 Student 13 MARSIGRS 2.20
23 Student 13 MARSIPSS 4.40
36 Student 13 MARSISRS 3.80
49 Student 13 MARSITotal 3.46
11 Student 14 MARSIGRS 3.20
24 Student 14 MARSIPSS 4.60
37 Student 14 MARSISRS 4.40
50 Student 14 MARSITotal 4.06
12 Student 15 MARSIGRS 3.40
25 Student 15 MARSIPSS 4.80
38 Student 15 MARSISRS 4.60
51 Student 15 MARSITotal 4.26
13 Student 17 MARSIGRS 3.40
26 Student 17 MARSIPSS 4.00
39 Student 17 MARSISRS 5.00
52 Student 17 MARSITotal 4.13
2 Student 2 MARSIGRS 1.80
15 Student 2 MARSIPSS 4.00
28 Student 2 MARSISRS 2.00
41 Student 2 MARSITotal 2.60
3 Student 4 MARSIGRS 3.40
16 Student 4 MARSIPSS 2.60
29 Student 4 MARSISRS 3.00
42 Student 4 MARSITotal 3.00
5 Student 6 MARSIGRS 3.40
18 Student 6 MARSIPSS 3.80
31 Student 6 MARSISRS 3.60
44 Student 6 MARSITotal 3.80
6 Student 7 MARSIGRS 1.60
19 Student 7 MARSIPSS 3.80
32 Student 7 MARSISRS 3.60
45 Student 7 MARSITotal 3.00
7 Student 9 MARSIGRS 3.40
20 Student 9 MARSIPSS 4.00
33 Student 9 MARSISRS 4.20
46 Student 9 MARSITotal 3.86
4 Sudent 5 MARSIGRS 3.00
17 Sudent 5 MARSIPSS 4.40
30 Sudent 5 MARSISRS 4.00
43 Sudent 5 MARSITotal 3.80
Postest_Data1 <- melt(Posttest_Data, id = "Std_ID", measured = c("MARSIGRSPost", "MARSIPSSPost", "MARSISRSPost", "MARSITotalPos"))
#Checking
Postest_Data1
Std_ID variable value
1 Student 1 MARSIGRSPost 3.20
2 Student 2 MARSIGRSPost 3.40
3 Student 4 MARSIGRSPost 4.00
4 Sudent 5 MARSIGRSPost 3.20
5 Student 6 MARSIGRSPost 3.20
6 Student 7 MARSIGRSPost 2.60
7 Student 9 MARSIGRSPost 5.00
8 Student 10 MARSIGRSPost 3.80
9 Student 11 MARSIGRSPost 3.40
10 Student 13 MARSIGRSPost 4.00
11 Student 14 MARSIGRSPost 4.20
12 Student 15 MARSIGRSPost 3.40
13 Student 17 MARSIGRSPost 3.00
14 Student 1 MARSIPSSPost 3.00
15 Student 2 MARSIPSSPost 5.00
16 Student 4 MARSIPSSPost 2.60
17 Sudent 5 MARSIPSSPost 3.80
18 Student 6 MARSIPSSPost 3.80
19 Student 7 MARSIPSSPost 3.00
20 Student 9 MARSIPSSPost 5.00
21 Student 10 MARSIPSSPost 4.20
22 Student 11 MARSIPSSPost 3.60
23 Student 13 MARSIPSSPost 4.60
24 Student 14 MARSIPSSPost 4.60
25 Student 15 MARSIPSSPost 4.80
26 Student 17 MARSIPSSPost 4.60
27 Student 1 MARSISRSPost 2.80
28 Student 2 MARSISRSPost 4.20
29 Student 4 MARSISRSPost 3.00
30 Sudent 5 MARSISRSPost 3.40
31 Student 6 MARSISRSPost 4.20
32 Student 7 MARSISRSPost 4.00
33 Student 9 MARSISRSPost 5.00
34 Student 10 MARSISRSPost 2.80
35 Student 11 MARSISRSPost 3.20
36 Student 13 MARSISRSPost 4.20
37 Student 14 MARSISRSPost 4.60
38 Student 15 MARSISRSPost 4.20
39 Student 17 MARSISRSPost 4.20
40 Student 1 MARSITotalPost 3.00
41 Student 2 MARSITotalPost 4.20
42 Student 4 MARSITotalPost 3.20
43 Sudent 5 MARSITotalPost 3.46
44 Student 6 MARSITotalPost 3.73
45 Student 7 MARSITotalPost 3.20
46 Student 9 MARSITotalPost 5.00
47 Student 10 MARSITotalPost 3.60
48 Student 11 MARSITotalPost 3.40
49 Student 13 MARSITotalPost 4.26
50 Student 14 MARSITotalPost 4.46
51 Student 15 MARSITotalPost 4.13
52 Student 17 MARSITotalPost 3.93
#Chaning the Column Names
colnames(Postest_Data1)<- c("Std_ID", "Measures", "Posttest_Scores")
head(Postest_Data1)
Std_ID Measures Posttest_Scores
1 Student 1 MARSIGRSPost 3.2
2 Student 2 MARSIGRSPost 3.4
3 Student 4 MARSIGRSPost 4.0
4 Sudent 5 MARSIGRSPost 3.2
5 Student 6 MARSIGRSPost 3.2
6 Student 7 MARSIGRSPost 2.6
#Changing the Measures to Match the Pretest Data
Postest_Data1$Measures <- factor(Postest_Data1$Measures, labels = c("MARSIGRS", "MARSIPSS", "MARSISRS", "MARSITotal"))
str(Postest_Data1)
'data.frame': 52 obs. of 3 variables:
$ Std_ID : chr "Student 1 " "Student 2 " "Student 4 " "Sudent 5 " ...
$ Measures : Factor w/ 4 levels "MARSIGRS","MARSIPSS",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Posttest_Scores: num 3.2 3.4 4 3.2 3.2 2.6 5 3.8 3.4 4 ...
# Putting the Data in Order by Std_ID
Postest_Data1 <- Postest_Data1[order(Postest_Data1$Std_ID),]
Postest_Data1
Std_ID Measures Posttest_Scores
1 Student 1 MARSIGRS 3.20
14 Student 1 MARSIPSS 3.00
27 Student 1 MARSISRS 2.80
40 Student 1 MARSITotal 3.00
8 Student 10 MARSIGRS 3.80
21 Student 10 MARSIPSS 4.20
34 Student 10 MARSISRS 2.80
47 Student 10 MARSITotal 3.60
9 Student 11 MARSIGRS 3.40
22 Student 11 MARSIPSS 3.60
35 Student 11 MARSISRS 3.20
48 Student 11 MARSITotal 3.40
10 Student 13 MARSIGRS 4.00
23 Student 13 MARSIPSS 4.60
36 Student 13 MARSISRS 4.20
49 Student 13 MARSITotal 4.26
11 Student 14 MARSIGRS 4.20
24 Student 14 MARSIPSS 4.60
37 Student 14 MARSISRS 4.60
50 Student 14 MARSITotal 4.46
12 Student 15 MARSIGRS 3.40
25 Student 15 MARSIPSS 4.80
38 Student 15 MARSISRS 4.20
51 Student 15 MARSITotal 4.13
13 Student 17 MARSIGRS 3.00
26 Student 17 MARSIPSS 4.60
39 Student 17 MARSISRS 4.20
52 Student 17 MARSITotal 3.93
2 Student 2 MARSIGRS 3.40
15 Student 2 MARSIPSS 5.00
28 Student 2 MARSISRS 4.20
41 Student 2 MARSITotal 4.20
3 Student 4 MARSIGRS 4.00
16 Student 4 MARSIPSS 2.60
29 Student 4 MARSISRS 3.00
42 Student 4 MARSITotal 3.20
5 Student 6 MARSIGRS 3.20
18 Student 6 MARSIPSS 3.80
31 Student 6 MARSISRS 4.20
44 Student 6 MARSITotal 3.73
6 Student 7 MARSIGRS 2.60
19 Student 7 MARSIPSS 3.00
32 Student 7 MARSISRS 4.00
45 Student 7 MARSITotal 3.20
7 Student 9 MARSIGRS 5.00
20 Student 9 MARSIPSS 5.00
33 Student 9 MARSISRS 5.00
46 Student 9 MARSITotal 5.00
4 Sudent 5 MARSIGRS 3.20
17 Sudent 5 MARSIPSS 3.80
30 Sudent 5 MARSISRS 3.40
43 Sudent 5 MARSITotal 3.46
pre_post <- merge(Pretest_Data1, Postest_Data1, by = c("Std_ID", "Measures"))
pre_post
Std_ID Measures Pretest_Scores Posttest_Scores
1 Student 1 MARSIGRS 2.40 3.20
2 Student 1 MARSIPSS 3.00 3.00
3 Student 1 MARSISRS 2.80 2.80
4 Student 1 MARSITotal 2.73 3.00
5 Student 10 MARSIGRS 2.60 3.80
6 Student 10 MARSIPSS 2.20 4.20
7 Student 10 MARSISRS 3.40 2.80
8 Student 10 MARSITotal 2.73 3.60
9 Student 11 MARSIGRS 1.20 3.40
10 Student 11 MARSIPSS 3.40 3.60
11 Student 11 MARSISRS 3.20 3.20
12 Student 11 MARSITotal 2.60 3.40
13 Student 13 MARSIGRS 2.20 4.00
14 Student 13 MARSIPSS 4.40 4.60
15 Student 13 MARSISRS 3.80 4.20
16 Student 13 MARSITotal 3.46 4.26
17 Student 14 MARSIGRS 3.20 4.20
18 Student 14 MARSIPSS 4.60 4.60
19 Student 14 MARSISRS 4.40 4.60
20 Student 14 MARSITotal 4.06 4.46
21 Student 15 MARSIGRS 3.40 3.40
22 Student 15 MARSIPSS 4.80 4.80
23 Student 15 MARSISRS 4.60 4.20
24 Student 15 MARSITotal 4.26 4.13
25 Student 17 MARSIGRS 3.40 3.00
26 Student 17 MARSIPSS 4.00 4.60
27 Student 17 MARSISRS 5.00 4.20
28 Student 17 MARSITotal 4.13 3.93
29 Student 2 MARSIGRS 1.80 3.40
30 Student 2 MARSIPSS 4.00 5.00
31 Student 2 MARSISRS 2.00 4.20
32 Student 2 MARSITotal 2.60 4.20
33 Student 4 MARSIGRS 3.40 4.00
34 Student 4 MARSIPSS 2.60 2.60
35 Student 4 MARSISRS 3.00 3.00
36 Student 4 MARSITotal 3.00 3.20
37 Student 6 MARSIGRS 3.40 3.20
38 Student 6 MARSIPSS 3.80 3.80
39 Student 6 MARSISRS 3.60 4.20
40 Student 6 MARSITotal 3.80 3.73
41 Student 7 MARSIGRS 1.60 2.60
42 Student 7 MARSIPSS 3.80 3.00
43 Student 7 MARSISRS 3.60 4.00
44 Student 7 MARSITotal 3.00 3.20
45 Student 9 MARSIGRS 3.40 5.00
46 Student 9 MARSIPSS 4.00 5.00
47 Student 9 MARSISRS 4.20 5.00
48 Student 9 MARSITotal 3.86 5.00
49 Sudent 5 MARSIGRS 3.00 3.20
50 Sudent 5 MARSIPSS 4.40 3.80
51 Sudent 5 MARSISRS 4.00 3.40
52 Sudent 5 MARSITotal 3.80 3.46
long_MARSI <- merge(Demo_Data, pre_post, by = "Std_ID")
# Changing the Variables Types
long_MARSI$Std_ID <- as.factor(long_MARSI$Std_ID)
long_MARSI$Gender <- as.factor(long_MARSI$Gender)
long_MARSI$Grade <- as.factor(long_MARSI$Grade)
long_MARSI$Measures <- as.factor(long_MARSI$Measures)
# Checking
str(long_MARSI)
'data.frame': 52 obs. of 8 variables:
$ Std_ID : Factor w/ 13 levels "Student 1 ",..: 1 1 1 1 2 2 2 2 3 3 ...
$ Gender : Factor w/ 2 levels "Male","Female": 2 2 2 2 1 1 1 1 2 2 ...
$ Grade : Factor w/ 3 levels "Third Grade",..: 1 1 1 1 2 2 2 2 2 2 ...
$ Attendance : num 16 16 16 16 18 18 18 18 18 18 ...
$ Wordsread : num 51858 51858 51858 51858 21316 ...
$ Measures : Factor w/ 4 levels "MARSIGRS","MARSIPSS",..: 1 2 3 4 1 2 3 4 1 2 ...
$ Pretest_Scores : num 2.4 3 2.8 2.73 2.6 2.2 3.4 2.73 1.2 3.4 ...
$ Posttest_Scores: num 3.2 3 2.8 3 3.8 4.2 2.8 3.6 3.4 3.6 ...
summary(long_MARSI)
Std_ID Gender Grade Attendance
Student 1 : 4 Male :16 Third Grade :20 Min. :14.00
Student 10 : 4 Female:36 Fourth Grade:16 1st Qu.:15.00
Student 11 : 4 Fifth Grade :16 Median :17.00
Student 13 : 4 Mean :16.38
Student 14 : 4 3rd Qu.:18.00
Student 15 : 4 Max. :18.00
(Other) :28
Wordsread Measures Pretest_Scores Posttest_Scores
Min. : 16631 MARSIGRS :13 Min. :1.200 Min. :2.600
1st Qu.: 21316 MARSIPSS :13 1st Qu.:2.783 1st Qu.:3.200
Median : 31066 MARSISRS :13 Median :3.400 Median :3.800
Mean : 37261 MARSITotal:13 Mean :3.377 Mean :3.815
3rd Qu.: 38867 3rd Qu.:4.000 3rd Qu.:4.200
Max. :108885 Max. :5.000 Max. :5.000
head(long_MARSI)
Std_ID Gender Grade Attendance Wordsread Measures
1 Student 1 Female Third Grade 16 51858 MARSIGRS
2 Student 1 Female Third Grade 16 51858 MARSIPSS
3 Student 1 Female Third Grade 16 51858 MARSISRS
4 Student 1 Female Third Grade 16 51858 MARSITotal
5 Student 10 Male Fourth Grade 18 21316 MARSIGRS
6 Student 10 Male Fourth Grade 18 21316 MARSIPSS
Pretest_Scores Posttest_Scores
1 2.40 3.2
2 3.00 3.0
3 2.80 2.8
4 2.73 3.0
5 2.60 3.8
6 2.20 4.2
write.csv(long_MARSI, file = "long_MARSI.csv", row.names = FALSE)
Thank You