Introduction

This code compiles summary information about the gene NADSYN1 (NAD synthetase 1). This protein is a coenzyme in metabolic redox reactions, a precursor for several cell signaling molecules, and a substrate for protein posttranslational modifications.

Resources / References

Key information use to make this script can be found here: - Refseq Gene: https://www.ncbi.nlm.nih.gov/gene/55191 - Refseq Homologene: https://www.ncbi.nlm.nih.gov/homologene?LinkName=gene_homologene&from_uid=55191

Other resources consulted includes - Neanderthal genome: http://neandertal.ensemblgenomes.org/index.html

Other interesting resources and online tools include: - REPPER: https://toolkit.tuebingen.mpg.de/jobs/4621683 - Sub-cellular locations prediction: https://wolfpsort.hgc.jp/

Preparation

Load necessary packages:

Download and load drawProteins from Bioconductor

library(BiocManager)
## Bioconductor version '3.13' is out-of-date; the current release version '3.14'
##   is available with R version '4.1'; see https://bioconductor.org/install
#install("drawProteins")

library(drawProteins)

Load other packages

# github packages
library(compbio4all)
library(ggmsa)
## Registered S3 methods overwritten by 'ggalt':
##   method                  from   
##   grid.draw.absoluteGrob  ggplot2
##   grobHeight.absoluteGrob ggplot2
##   grobWidth.absoluteGrob  ggplot2
##   grobX.absoluteGrob      ggplot2
##   grobY.absoluteGrob      ggplot2
# CRAN packages
library(rentrez)
library(seqinr)
library(ape)
## 
## Attaching package: 'ape'
## The following objects are masked from 'package:seqinr':
## 
##     as.alignment, consensus
library(pander)


library(ggplot2)

# Bioconductor packages
library(msa)
## Loading required package: Biostrings
## Loading required package: BiocGenerics
## Loading required package: parallel
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
## 
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##     clusterExport, clusterMap, parApply, parCapply, parLapply,
##     parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##     union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
## 
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
## 
##     expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: XVector
## Loading required package: GenomeInfoDb
## 
## Attaching package: 'Biostrings'
## The following object is masked from 'package:ape':
## 
##     complement
## The following object is masked from 'package:seqinr':
## 
##     translate
## The following object is masked from 'package:base':
## 
##     strsplit
## 
## Attaching package: 'msa'
## The following object is masked from 'package:BiocManager':
## 
##     version
## Biostrings
library(Biostrings)

library(drawProteins)



library(HGNChelper)

Accession numbers

Accession numbers were obtained from RefSeq, Refseq Homologene, UniProt and PDB. UniProt accession numbers can be found by searching for the gene name. PDB accessions can be found by searching with a UniProt accession or a gene name, though many proteins are not in PDB.

A protein BLAST search (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) was carried out excluding vertebrates to determine if it occurred outside of vertebrates. The gene appears in non-vertebrates.

OPTIONAL: Use the function to confirm the validity of your gene name and any aliases

# this is optional
HGNChelper::checkGeneSymbols(x = c("NADSYN1"))
## Maps last updated on: Thu Oct 24 12:31:05 2019
##         x Approved Suggested.Symbol
## 1 NADSYN1     TRUE          NADSYN1

Accession number table

Not available: - Drosophila

#                       RefSeq           Uniprot     PDB    sci name                common name          gene name
NADSYN1_table_vector<-c("NP_060631.2",     "Q6IA69", "6OFB",  "Homo sapiens" ,           "Human",               "NADSYN1",
                     "XP_001174076.2",  "K7BU87",     "NA",    "Pan troglodytes" ,        "Chimpanzee",          "NADSYN1",
                     "XP_001098992.2",  "NA",     "NA",    "Macaca mulatta",            "Rhesus monkey",              "NADSYN1",
                     "XP_540795.4",  "NA",     "NA",    "Canis lupus",           "Dog",              "NADSYN1",
                     "NP_001029615.1",  "Q3ZBF0.1",     "NA",    "Bos taurus",  "Cattle",               "NADSYN1",
                     "NP_084497.1",  "Q711T7",     "NA",    "Mus musculus",            "House mouse",  "NADSYN1",
                     "NP_852145.1",  "Q812E8.1",     "NA",    "Rattus norvegicus",          "Norway rat",      "NADSYN1",
                     "NP_001006465.1",  "Q5ZMA6.1",     "NA",    "Gallus gallus",     "Chicken",        "NADSYN1",
                     "NP_001120406.1",  "NA",     "NA",    "Xenopus tropicalis",        "Tropical clawed frog",      "NADSYN1",
                     "NP_001092723.1",  "NA",     "NA",    "Danio rerio",    "Zebrafish",              "NADSYN1")

NADSYN1_matrix <- matrix( NADSYN1_table_vector, ncol = 6, byrow = TRUE)
NADSYN1_df <- data.frame( NADSYN1_matrix )

colnames( NADSYN1_df ) <- c("ncbi.protein.accession", "UniProt.id", "PDB", "species", "common.name",
                          "gene.name")

The finished table

pander::pander( NADSYN1_df )
Table continues below
ncbi.protein.accession UniProt.id PDB species
NP_060631.2 Q6IA69 6OFB Homo sapiens
XP_001174076.2 K7BU87 NA Pan troglodytes
XP_001098992.2 NA NA Macaca mulatta
XP_540795.4 NA NA Canis lupus
NP_001029615.1 Q3ZBF0.1 NA Bos taurus
NP_084497.1 Q711T7 NA Mus musculus
NP_852145.1 Q812E8.1 NA Rattus norvegicus
NP_001006465.1 Q5ZMA6.1 NA Gallus gallus
NP_001120406.1 NA NA Xenopus tropicalis
NP_001092723.1 NA NA Danio rerio
common.name gene.name
Human NADSYN1
Chimpanzee NADSYN1
Rhesus monkey NADSYN1
Dog NADSYN1
Cattle NADSYN1
House mouse NADSYN1
Norway rat NADSYN1
Chicken NADSYN1
Tropical clawed frog NADSYN1
Zebrafish NADSYN1

Data Preparation

Download Sequences

All sequences were downloaded using a wrapper compbio4all::entrez_fetch_list() which uses rentrez::entrez_fetch() to access NCBI databases.

# download FASTA sequences
NADSYN1_list <- compbio4all::entrez_fetch_list( db = "protein",
                                              id = NADSYN1_df$ncbi.protein.accession,
                                              rettype = "fasta"
                                              ) 

Number of FASTA files obtained

length( NADSYN1_list )
## [1] 10

The first entry

NADSYN1_list[[1]]
## [1] ">NP_060631.2 glutamine-dependent NAD(+) synthetase [Homo sapiens]\nMGRKVTVATCALNQWALDFEGNLQRILKSIEIAKNRGARYRLGPELEICGYGCWDHYYESDTLLHSFQVL\nAALVESPVTQDIICDVGMPVMHRNVRYNCRVIFLNRKILLIRPKMALANEGNYRELRWFTPWSRSRHTEE\nYFLPRMIQDLTKQETVPFGDAVLVTWDTCIGSEICEELWTPHSPHIDMGLDGVEIITNASGSHQVLRKAN\nTRVDLVTMVTSKNGGIYLLANQKGCDGDRLYYDGCAMIAMNGSVFAQGSQFSLDDVEVLTATLDLEDVRS\nYRAEISSRNLAASRASPYPRVKVDFALSCHEDLLAPISEPIEWKYHSPEEEISLGPACWLWDFLRRSQQA\nGFLLPLSGGVDSAATACLIYSMCCQVCEAVRSGNEEVLADVRTIVNQISYTPQDPRDLCGRILTTCYMAS\nKNSSQETCTRARELAQQIGSHHISLNIDPAVKAVMGIFSLVTGKSPLFAAHGGSSRENLALQNVQARIRM\nVLAYLFAQLSLWSRGVHGGLLVLGSANVDESLLGYLTKYDCSSADINPIGGISKTDLRAFVQFCIQRFQL\nPALQSILLAPATAELEPLADGQVSQTDEEDMGMTYAELSVYGKLRKVAKMGPYSMFCKLLGMWRHICTPR\nQVADKVKRFFSKYSMNRHKMTTLTPAYHAENYSPEDNRFDLRPFLYNTSWPWQFRCIENQVLQLERAEPQ\nSLDGVD\n\n"
# output should be the FASTA sequence with header information and newlines still included

Initial Data Cleaning

Remove FASTA header

for(i in 1:length(NADSYN1_list)){
  NADSYN1_list[[i]] <- compbio4all::fasta_cleaner(NADSYN1_list[[i]], parse = F)
}

Specific additional cleaning steps will be as needed for particular analyses

General Protein Information

Protein Diagram

For code see https://rpubs.com/lowbrowR/drawProtein

Q6IA69_json <- drawProteins::get_features("Q6IA69")
## [1] "Download has worked"
my_prot_df <- drawProteins::feature_to_dataframe(Q6IA69_json)
is(my_prot_df)
## [1] "data.frame"       "list"             "oldClass"         "vector"          
## [5] "list_OR_List"     "vector_OR_Vector" "vector_OR_factor"
my_canvas <- draw_canvas(my_prot_df)  
my_canvas <- draw_chains(my_canvas, my_prot_df, 
                         label_size = 2.5)
my_canvas <- draw_domains(my_canvas, my_prot_df)
my_canvas

Draw dotplot

Prepare Data

NADSYN1_list[[1]]
## [1] "MGRKVTVATCALNQWALDFEGNLQRILKSIEIAKNRGARYRLGPELEICGYGCWDHYYESDTLLHSFQVLAALVESPVTQDIICDVGMPVMHRNVRYNCRVIFLNRKILLIRPKMALANEGNYRELRWFTPWSRSRHTEEYFLPRMIQDLTKQETVPFGDAVLVTWDTCIGSEICEELWTPHSPHIDMGLDGVEIITNASGSHQVLRKANTRVDLVTMVTSKNGGIYLLANQKGCDGDRLYYDGCAMIAMNGSVFAQGSQFSLDDVEVLTATLDLEDVRSYRAEISSRNLAASRASPYPRVKVDFALSCHEDLLAPISEPIEWKYHSPEEEISLGPACWLWDFLRRSQQAGFLLPLSGGVDSAATACLIYSMCCQVCEAVRSGNEEVLADVRTIVNQISYTPQDPRDLCGRILTTCYMASKNSSQETCTRARELAQQIGSHHISLNIDPAVKAVMGIFSLVTGKSPLFAAHGGSSRENLALQNVQARIRMVLAYLFAQLSLWSRGVHGGLLVLGSANVDESLLGYLTKYDCSSADINPIGGISKTDLRAFVQFCIQRFQLPALQSILLAPATAELEPLADGQVSQTDEEDMGMTYAELSVYGKLRKVAKMGPYSMFCKLLGMWRHICTPRQVADKVKRFFSKYSMNRHKMTTLTPAYHAENYSPEDNRFDLRPFLYNTSWPWQFRCIENQVLQLERAEPQSLDGVD"
NADSYN1_human_vector <- unlist(strsplit( NADSYN1_list[[1]], "" ))
seqinr::dotPlot( NADSYN1_human_vector, NADSYN1_human_vector )

TODO:

par(mfrow = c(2,2), 
    mar = c(0,0,2,1))

# plot 1: Defaults
seqinr::dotPlot(NADSYN1_human_vector, NADSYN1_human_vector, 
        wsize = 1, 
        nmatch = 1, 
        main = "size=1, num match=1")

# plot 2 size = 10, nmatch = 10
seqinr::dotPlot(NADSYN1_human_vector, NADSYN1_human_vector, 
        wsize = 10, 
        nmatch = 1, 
        main = "size = 10, nmatch = 10")

# plot 3: size = 10, nmatch = 5
seqinr::dotPlot(NADSYN1_human_vector, NADSYN1_human_vector, 
        wsize = 10, 
        nmatch = 5, 
        main = "size = 10, nmatch = 5")

# plot 4: size = 20, nmatch = 5
seqinr::dotPlot(NADSYN1_human_vector, NADSYN1_human_vector, 
        wsize = 20,
        nmatch = 5,
        main = "size = 20, nmatch = 5")

par(mfrow = c(1,1), 
    mar = c(4,4,4,4))
seqinr::dotPlot(NADSYN1_human_vector, NADSYN1_human_vector, 
        wsize = 20,
        nmatch = 5,
        main = "NADSYN1 human dot plot")

Protein properties compiled from databases

TODO: Create table

Below are links to relevant information. 1. Pfam: http://pfam.xfam.org/protein/Q6IA69; “CN hydrolase” from region 6-283, “NAD synthetase” from 337 to 651 2. DisProt: NA 3. RepeatDB: NA 4. PDB secondary structural location: NA

The Homo sapiens homolog is listed in Alphafold (https://alphafold.ebi.ac.uk/entry/Q6IA69). The predicted structure contains alpha helices, beta sheets, and disordered regions.

Protein feature prediction

Uniprot (which uses http://www.csbio.sjtu.edu) indicates that this protein is a NAD(+) synthetase that catalyzes the final step of the nicotinamide adenine dinucleotide (NAD) de novo synthesis pathway, the ATP-dependent amidation of deamido-NAD using L-glutamine as a nitrogen source.

Predict protein fold

Alphafold indicates that there are a mix of alpha helices and beta sheets. I therefore predict that machine-learning methods will indicate an a+b and a/b structure.

NOTE: My protein does NOT contain “U”.

First, I need the data from Chou and Zhang (1994) Table 5. Code to build this table is available at https://rpubs.com/lowbrowR/843543

The table looks like this:

# enter once
aa.1.1 <- c("A","R","N","D","C","Q","E","G","H","I",
            "L","K","M","F","P","S","T","W","Y","V")
# alpha proteins
alpha <- c(285, 53, 97, 163, 22, 67, 134, 197, 111, 91, 
           221, 249, 48, 123, 82, 122, 119, 33, 63, 167)
# beta proteins
beta <- c(203, 67, 139, 121, 75, 122, 86, 297, 49, 120, 
          177, 115, 16, 85, 127, 341, 253, 44, 110, 229)
# alpha + beta
a.plus.b <- c(175, 78, 120, 111, 74, 74, 86, 171, 33, 93,
              110, 112, 25, 52, 71, 126, 117, 30, 108, 123)
# alpha/beta
a.div.b <- c(361, 146, 183, 244, 63, 114, 257, 377, 107, 239, 
             339, 321, 91, 158, 188, 327, 238, 72, 130, 378)

pander(data.frame(aa.1.1, alpha, beta, a.plus.b, a.div.b))
aa.1.1 alpha beta a.plus.b a.div.b
A 285 203 175 361
R 53 67 78 146
N 97 139 120 183
D 163 121 111 244
C 22 75 74 63
Q 67 122 74 114
E 134 86 86 257
G 197 297 171 377
H 111 49 33 107
I 91 120 93 239
L 221 177 110 339
K 249 115 112 321
M 48 16 25 91
F 123 85 52 158
P 82 127 71 188
S 122 341 126 327
T 119 253 117 238
W 33 44 30 72
Y 63 110 108 130
V 167 229 123 378

Convert to frequencies Table 5 therefore becomes this

alpha.prop <- alpha/sum(alpha)
beta.prop <- beta/sum(beta)
a.plus.b.prop <- a.plus.b/sum(a.plus.b)
a.div.b <- a.div.b/sum(a.div.b)

aa.prop <- data.frame(alpha.prop,
                      beta.prop,
                      a.plus.b.prop,
                      a.div.b)
row.names(aa.prop) <- aa.1.1

pander::pander(aa.prop)
  alpha.prop beta.prop a.plus.b.prop a.div.b
A 0.1165 0.07313 0.09264 0.08331
R 0.02166 0.02414 0.04129 0.03369
N 0.03964 0.05007 0.06353 0.04223
D 0.06661 0.04359 0.05876 0.05631
C 0.008991 0.02702 0.03917 0.01454
Q 0.02738 0.04395 0.03917 0.02631
E 0.05476 0.03098 0.04553 0.05931
G 0.08051 0.107 0.09052 0.08701
H 0.04536 0.01765 0.01747 0.02469
I 0.03719 0.04323 0.04923 0.05516
L 0.09031 0.06376 0.05823 0.07824
K 0.1018 0.04143 0.05929 0.07408
M 0.01962 0.005764 0.01323 0.021
F 0.05027 0.03062 0.02753 0.03646
P 0.03351 0.04575 0.03759 0.04339
S 0.04986 0.1228 0.0667 0.07547
T 0.04863 0.09114 0.06194 0.05493
W 0.01349 0.01585 0.01588 0.01662
Y 0.02575 0.03963 0.05717 0.03
V 0.06825 0.08249 0.06511 0.08724

Determine the number of each amino acid in my protein.

A Function to convert a table into a vector is helpful here because R is goofy about tables not being the same as vectors.

table_to_vector <- function(table_x){
  table_names <- attr(table_x, "dimnames")[[1]]
  table_vect <- as.vector(table_x)
  names(table_vect) <- table_names
  return(table_vect)
}
NADSYN1_human_table <- table(NADSYN1_human_vector)/length(NADSYN1_human_vector)
NADSYN1.human.aa.freq <- table_to_vector(NADSYN1_human_table)
NADSYN1.human.aa.freq
##          A          C          D          E          F          G          H 
## 0.07790368 0.03257790 0.05382436 0.05807365 0.03257790 0.06232295 0.02266289 
##          I          K          L          M          N          P          Q 
## 0.05240793 0.03399433 0.10764873 0.02832861 0.03824363 0.04390935 0.04532578 
##          R          S          T          V          W          Y 
## 0.06515581 0.07648725 0.04957507 0.06373938 0.01841360 0.03682720

Check for the presence of “U” (unknown aa.)

aa.names <- names(NADSYN1.human.aa.freq)
i.U <- which(aa.names == "U")
aa.names[i.U]
## character(0)
NADSYN1.human.aa.freq[i.U]
## named numeric(0)

Add data on my focal protein to the amino acid frequency table.

aa.prop$NADSYN1.human.aa.freq <- NADSYN1.human.aa.freq
pander::pander(aa.prop)
  alpha.prop beta.prop a.plus.b.prop a.div.b NADSYN1.human.aa.freq
A 0.1165 0.07313 0.09264 0.08331 0.0779
R 0.02166 0.02414 0.04129 0.03369 0.03258
N 0.03964 0.05007 0.06353 0.04223 0.05382
D 0.06661 0.04359 0.05876 0.05631 0.05807
C 0.008991 0.02702 0.03917 0.01454 0.03258
Q 0.02738 0.04395 0.03917 0.02631 0.06232
E 0.05476 0.03098 0.04553 0.05931 0.02266
G 0.08051 0.107 0.09052 0.08701 0.05241
H 0.04536 0.01765 0.01747 0.02469 0.03399
I 0.03719 0.04323 0.04923 0.05516 0.1076
L 0.09031 0.06376 0.05823 0.07824 0.02833
K 0.1018 0.04143 0.05929 0.07408 0.03824
M 0.01962 0.005764 0.01323 0.021 0.04391
F 0.05027 0.03062 0.02753 0.03646 0.04533
P 0.03351 0.04575 0.03759 0.04339 0.06516
S 0.04986 0.1228 0.0667 0.07547 0.07649
T 0.04863 0.09114 0.06194 0.05493 0.04958
W 0.01349 0.01585 0.01588 0.01662 0.06374
Y 0.02575 0.03963 0.05717 0.03 0.01841
V 0.06825 0.08249 0.06511 0.08724 0.03683

Functions to calculate similarities

Two custom functions are needed: one to calculate correlates between two columns of our table, and one to calculate correlation similarities.

# Correlation used in Chou and Zhange 1992.
chou_cor <- function(x,y){
  numerator <- sum(x*y)
denominator <- sqrt((sum(x^2))*(sum(y^2)))
result <- numerator/denominator
return(result)
}

# Cosine similarity used in Higgs and Attwood (2005). 
chou_cosine <- function(z.1, z.2){
  z.1.abs <- sqrt(sum(z.1^2))
  z.2.abs <- sqrt(sum(z.2^2))
  my.cosine <- sum(z.1*z.2)/(z.1.abs*z.2.abs)
  return(my.cosine)
}

Calculate correlation between each column

corr.alpha <- chou_cor(aa.prop[,5], aa.prop[,1])
corr.beta  <- chou_cor(aa.prop[,5], aa.prop[,2])
corr.apb   <- chou_cor(aa.prop[,5], aa.prop[,3])
corr.adb   <- chou_cor(aa.prop[,5], aa.prop[,4])

Calculate cosine similarity

cos.alpha <- chou_cosine(aa.prop[,5], aa.prop[,1])
cos.beta  <- chou_cosine(aa.prop[,5], aa.prop[,2])
cos.apb   <- chou_cosine(aa.prop[,5], aa.prop[,3])
cos.adb   <- chou_cosine(aa.prop[,5], aa.prop[,4])

Calculate distance. Note: we need to flip the dataframe on its side using a command called t()

aa.prop.flipped <- t(aa.prop)
round(aa.prop.flipped,2)
##                          A    R    N    D    C    Q    E    G    H    I    L
## alpha.prop            0.12 0.02 0.04 0.07 0.01 0.03 0.05 0.08 0.05 0.04 0.09
## beta.prop             0.07 0.02 0.05 0.04 0.03 0.04 0.03 0.11 0.02 0.04 0.06
## a.plus.b.prop         0.09 0.04 0.06 0.06 0.04 0.04 0.05 0.09 0.02 0.05 0.06
## a.div.b               0.08 0.03 0.04 0.06 0.01 0.03 0.06 0.09 0.02 0.06 0.08
## NADSYN1.human.aa.freq 0.08 0.03 0.05 0.06 0.03 0.06 0.02 0.05 0.03 0.11 0.03
##                          K    M    F    P    S    T    W    Y    V
## alpha.prop            0.10 0.02 0.05 0.03 0.05 0.05 0.01 0.03 0.07
## beta.prop             0.04 0.01 0.03 0.05 0.12 0.09 0.02 0.04 0.08
## a.plus.b.prop         0.06 0.01 0.03 0.04 0.07 0.06 0.02 0.06 0.07
## a.div.b               0.07 0.02 0.04 0.04 0.08 0.05 0.02 0.03 0.09
## NADSYN1.human.aa.freq 0.04 0.04 0.05 0.07 0.08 0.05 0.06 0.02 0.04

We can get distance matrix like this

dist(aa.prop.flipped, method = "euclidean")
##                       alpha.prop  beta.prop a.plus.b.prop    a.div.b
## beta.prop             0.13342098                                    
## a.plus.b.prop         0.09281824 0.08289406                         
## a.div.b               0.06699039 0.08659174    0.06175113           
## NADSYN1.human.aa.freq 0.15601389 0.14202150    0.12175640 0.13019379

Individual distances using dist()

dist.alpha <- dist((aa.prop.flipped[c(1,5),]),  method = "euclidean")
dist.beta  <- dist((aa.prop.flipped[c(2,5),]),  method = "euclidean")
dist.apb   <- dist((aa.prop.flipped[c(3,5),]),  method = "euclidean")
dist.adb  <- dist((aa.prop.flipped[c(4,5),]), method = "euclidean")

Compile the information. Rounding makes it easier to read

# fold types
fold.type <- c("alpha","beta","alpha plus beta", "alpha/beta")

# data
corr.sim <- round(c(corr.alpha,corr.beta,corr.apb,corr.adb),5)
cosine.sim <- round(c(cos.alpha,cos.beta,cos.apb,cos.adb),5)
Euclidean.dist <- round(c(dist.alpha,dist.beta,dist.apb,dist.adb),5)

# summary
sim.sum <- c("","","most.sim","")
dist.sum <- c("","","min.dist","")

df <- data.frame(fold.type,
           corr.sim ,
           cosine.sim ,
           Euclidean.dist ,
           sim.sum ,
           dist.sum )

Display output

pander::pander(df)
fold.type corr.sim cosine.sim Euclidean.dist sim.sum dist.sum
alpha 0.8078 0.8078 0.156
beta 0.844 0.844 0.142
alpha plus beta 0.8744 0.8744 0.1218 most.sim min.dist
alpha/beta 0.8593 0.8593 0.1302

Percent Identity Comparisons (PID)

Data Preparation

Convert all FASTA records intro entries in a single vector. FASTA entries are contained in a list produced at the beginning of the script. They were cleaned to remove the header and newline characters.

NADSYN1_list 
## $NP_060631.2
## [1] "MGRKVTVATCALNQWALDFEGNLQRILKSIEIAKNRGARYRLGPELEICGYGCWDHYYESDTLLHSFQVLAALVESPVTQDIICDVGMPVMHRNVRYNCRVIFLNRKILLIRPKMALANEGNYRELRWFTPWSRSRHTEEYFLPRMIQDLTKQETVPFGDAVLVTWDTCIGSEICEELWTPHSPHIDMGLDGVEIITNASGSHQVLRKANTRVDLVTMVTSKNGGIYLLANQKGCDGDRLYYDGCAMIAMNGSVFAQGSQFSLDDVEVLTATLDLEDVRSYRAEISSRNLAASRASPYPRVKVDFALSCHEDLLAPISEPIEWKYHSPEEEISLGPACWLWDFLRRSQQAGFLLPLSGGVDSAATACLIYSMCCQVCEAVRSGNEEVLADVRTIVNQISYTPQDPRDLCGRILTTCYMASKNSSQETCTRARELAQQIGSHHISLNIDPAVKAVMGIFSLVTGKSPLFAAHGGSSRENLALQNVQARIRMVLAYLFAQLSLWSRGVHGGLLVLGSANVDESLLGYLTKYDCSSADINPIGGISKTDLRAFVQFCIQRFQLPALQSILLAPATAELEPLADGQVSQTDEEDMGMTYAELSVYGKLRKVAKMGPYSMFCKLLGMWRHICTPRQVADKVKRFFSKYSMNRHKMTTLTPAYHAENYSPEDNRFDLRPFLYNTSWPWQFRCIENQVLQLERAEPQSLDGVD"
## 
## $XP_001174076.2
## [1] "MGRKVTVATCALNQWALDFEGNLQRILKSIEIAKNRGARYRLGPELEICGYGCWDHYYESDTLLHSFEVLAALLESPVTQDIICDVGMPVMHRNVRYNCRVIFLTGRKILLIRPKMALANEGNYRELRWFTPWSRSRHTEEYFLPRMIQDLTKQETVPFGDAVLVTWDTCIGSEICEELWTPHSPHIDMGLDGVEIITNASGSHHVLRKANTRVDLVTMVTSKNGGIYLLANQKGCDGDRLYYDGCAMIAMNGSVFAQGSQFSLDDVEVLTATLDLEDVRSYRAEISSRNLAASRASPYPRVKVDFALSCHEDLLAPISEPIEWKYHSPEEEISLGPACWLWDFLRRSQQAGFLLPLSGGVDSAATACLIYSMCCQVCEAVRSGNEEVLADVRTIVNQISYTPQDPRDLCGRILTTCYMASKNSSQETCTRARELAQQIGSHHISLNIDPAVKAVMGIFSLVTGKSPLFAAHGGSSRENLALQNVQARIRMVLAYLFAQLSLWSRGVHGGLLVLGSANVDESLLGYLTKYDCSSADINPIGGISKTDLRVFVQFCIQRFQLPALQSILLAPATAELEPLADGQVSQTDEEDMGMTYAELSVYGKLRKVAKMGPYSMFCKLLGMWRHICTPRQVADKVKRFFSKYSMNRHKMTTLTPAYHAENYSPEDNRFDLRPFLYNTSWPWQFRCIENQVLQLERAEPQSLDGVD"
## 
## $XP_001098992.2
## [1] "MGRKVTVATCALNQWALDFEGNLQRILKSIEIAKNRGARYRLGPELEICGYGCWDHYYESDTLLHSFQVLAALLESPVTQDIICDVGMPVMHRNVRYNCRVIFLNRKILLIRPKMALANEGNYRELRWFTPWSRSRHTEEYLLPRMIQDLTKQETAPFGDAVLATWDTCIGSEICEELWTPHSPHIDMGLDGVEIITNASGSHHVLRKANTRVDLVTMATSKNGGIYLLANQKGCDGDRLYYDGCAMIAMNGSVFAQGSQFSLDDVEVLTATLDLEDVRSYRAEISSRNLAASRASPYPRVKVDFALSCHEDLLAPVSEPIEWKYHSPEEEISLGPACWLWDFLRRSQQGGFLLPLSGGVDSAATACLVYSMCCQVCKSVRSGNQEVLADVRTIVNQISYTPQDPRDLCGRILTTCYMASKNSSQETCTRARELAQQIGRWILYVRTVEGEHLSREERLGSIWNVPSGALGQSLQNVQARIRMVLAYLFAQLSLWSRGIRGGLLVLGSANVDESLLGYLTKYDCSSADINPIGGISKTDLRAFVQFCIERFQLTALQSIVSAPATAELEPLADGQVSQTDEEDMGMTYAELSVYGKLRKVAKMGPYSMFCKLLGMWRHVCTPRQVADKVKWFFTKHSMNRHKMTTLTPAYHAENYSPEDNRFDLRPFLYNTSWPWQFRCIENQVLQLERAAPQSLDGVD"
## 
## $XP_540795.4
## [1] "MGRKVTVAACALNQWALDFQGNLQRILKSIEIAKRKGARYRLGPELEICGYGCWDHYYESDTLLHSLQVLAALLESPVTQDIICDVGMPVLHRNVRYNCRVIFLNRRILLIRPKMALANEGNYRELRWFTPWSRSRQTEEYFLPRMIQDVTKQETVPFGDAVLATRDTCIGSEICEELWTPHSPHVDMGLDGVEIFTNASGSHHVLRKAHARVDLVTMATTKNGGIYLLANQKGCDGDRLYYDGCALIAMNGHIFAQGSQFSLDDVEVLTATLDLEDVRSYRAEISSRNLAASRVSPYPRVKVDFALSCREDLLEPPSEPVEWMYHSPAEEISLGPACWLWDFLRRSRQAGFFLPLSGGVDSAATACLVYSMCRQVCEAVRNGNQEVLADVRAIVDQLSYTPQDPRDLCGRLLTTCYMASENSSQETCDRAKELARQIGSHHIGLNIDPAVTAVVGIFSLVTGKRPLFAAHGGSSRENLALQNVQARLRMVLAYLFAQLSLWARGARGGLLVLGSANVDESLLGYLTKYDCSSADINPIGGISKTDLKAFVHFCMEHFQLPALQRILAAPATAELEPLTDGQVSQTDEEDMGMTYAELSVYGRLRKIAKAGPYSMFCKLVNMWKDACSPRQVADKVRQFFSKYAMNRHKMTTLTPAYHAESYSPDDNRFDLRPFLYNSSWPWQFRCIEDQVHQLESRGPQDLDGVD"
## 
## $NP_001029615.1
## [1] "MGRKVTVATCALNQWALDFEGNLQRILKSIEIAKHRGARYRLGPELEICGYGCWDHYYESDTLLHSLQVLAALLESPVTQDIICDVGMPVMHRNVRYNCRVIFLNRKILLIRPKMALANEGNYRELRWFTPWSRSRQTEEYFLPRMLQDLTKQETVPFGDAVLSTWDTCIGSEVCEELWTPHSPHVDMGLDGVEIFTNASGSHHVLRKAHARVDLVTMATTKNGGIYLLANQKGCDGDRLYYDGCALIAMNGSIFAQGSQFSLDDVEVLTATLDLEDIRSYRAEISSRNLAASRVSPYPRVKVDFALSCHEDLLEPVSEPIEWKYHSPAEEISLGPACWLWDFLRRSRQAGFFLPLSGGVDSAATACLVYSMCHQVCEAVKRGNLEVLADVRTIVNQLSYTPQDPRELCGRVLTTCYMASENSSQETCDRARELAQQIGSHHIGLHIDPVVKALVGLFSLVTGASPRFAVHGGSDRENLALQNVQARVRMVIAYLFAQLSLWSRGAPGGLLVLGSANVDESLLGYLTKYDCSSADINPIGGISKTDLRAFVQLCVERFQLPALQSILAAPATAELEPLAHGRVSQTDEEDMGMTYAELSVYGRLRKVAKTGPYSMFCKLLDMWRDTCSPRQVADKVKCFFSKYSMNRHKMTTLTPAYHAESYSPDDNRFDLRPFLYNTRWPWQFRCIENQVLQLEGRQRQELDGVD"
## 
## $NP_084497.1
## [1] "MGRKVTVATCALNQWALDFEGNFQRILKSIQIAKGKGARYRLGPELEICGYGCWDHYHESDTLLHSLQVLAALLDSPVTQDIICDVGMPIMHRNVRYNCRVIFLNRKILLIRPKMALANEGNYRELRWFTPWTRSRQTEEYVLPRMLQDLTKQKTVPFGDVVLATQDTCVGSEICEELWTPRSPHIDMGLDGVEIITNASGSHHVLRKAHTRVDLVTMATSKNGGIYLLANQKGCDGDRLYYDGCAMIAMNGSIFAQGTQFSLDDVEVLTATLDLEDVRSYKAEISSRNLEATRVSPYPRVTVDFALSVSEDLLEPVSEPMEWTYHRPEEEISLGPACWLWDFLRRSKQAGFFLPLSGGVDSAASACIVYSMCCLVCDAVKSGNQQVLTDVQNLVDESSYTPQDPRELCGRLLTTCYMASENSSQETHSRATKLAQLIGSYHINLSIDTAVKAVLGIFSLMTGKLPRFSAHGGSSRENLALQNVQARIRMVLAYLFAQLSLWSRGARGSLLVLGSANVDESLLGYLTKYDCSSADINPIGGISKTDLRAFVQFCAERFQLPVLQTILSAPATAELEPLADGQVSQMDEEDMGMTYAELSIFGRLRKVAKAGPYSMFCKLLNMWRDSYTPTQVAEKVKLFFSKYSMNRHKMTTLTPAYHAENYSPDDNRFDLRPFLYNTRWPWQFLCIDNQVLQLERKASQTREEQVLEHFKEPSPIWKQLLPKDP"
## 
## $NP_852145.1
## [1] "MGRKVTVATCALNQWALDFEGNFQRILKSIQIAKGKGARYRLGPELEICGYGCWDHYHESDTLLHSLQVLAALLDAPATQDIICDVGMPIMHRNVRYNCLVIFLNRKILLIRPKMALANEGNYRELRWFTPWARSRQTEEYVLPRMLQDLTKQETVPFGDVVLATQDTCIGSEICEELWTPCSPHVNMGLDGVEIITNASGSHHVLRKAHTRVDLVTMATSKNGGIYLLANQKGCDGHLLYYDGCAMIAMNGSIFAQGTQFSLDDVEVLTATLDLEDVRSYRAKISSRNLEATRVNPYPRVTVDFALSVSEDLLEPVSEPVEWTYHRPEEEISLGPACWLWDFLRRNNQAGFFLPLSGGVDSAASACVVYSMCCLVCEAVKSGNQQVLTDVQNLVDESSYTPQDPRELCGRLLTTCYMASENSSQETHNRATELAQQIGSYHISLNIDPAVKAILGIFSLVTGKFPRFSAHGGSSRENLALQNVQARIRMVLAYLFAQLSLWSRGARGSLLVLGSANVDESLLGYLTKYDCSSADINPIGGISKTDLRAFVQLCAERFQLPVLQAILSAPATAELEPLADGQVSQMDEEDMGMTYTELSIFGRLRKVAKAGPYSMFCKLLNMWKDSCTPRQVAEKVKRFFSKYSINRHKMTTLTPAYHAENYSPDDNRFDLRPFLYNTRWPWQFLCIDNQVVQLERKTSQTLEEQIQEHFKEPSPIWKQLLPKDP"
## 
## $NP_001006465.1
## [1] "MGRAVSVAACALNQWALDFEGNAERILRSISIAKSKGARYRLGPELEICGYGCADHYYESDTLLHSFQVLAKLLESPATQDIICDVGMPLMHRNVRYNCRVIFLNKKILLIRPKISLANAGNYRELRWFTPWNKARHVEEYLLPRIIQEVTGQDTVPFGDAVLATKDTCLGTEICEELWAPNSPHIEMGLDGVEIFTNSSGSHHVLRKAHTRVDLVNSATAKNGGIYILSNQKGCDGDRLYYDGCAMISMNGETVAQGSQFSLDDVEVLVATLDLEDVRSYRAEISSRNLAASKVNPFPRIKVNFALSCSDDLSVPICVPIQWRHHSPEEEICLGPACWLWDYLRRSKQAGFLLPLSGGIDSSATACIVYSMCRQVCLAVKNGNSEVLADARKIVHDETYIPEDPQEFCKRVFTTCYMASENSSQDTRNRAKLLAEQIGSYHINLNIDAAVKAIVGIFSMVTGRTPRFSVYGGSRRENLALQNVQARVRMVPAYLFAQLTLWTRGMPGGLLVLGSANVDESLRGYLTKYDCSSADINPIGGISKTDLKNFIQYCIENFQLTALRSIMAAPPTAELEPLMDGQVSQTDEADMGMTYAELSIYGKLRKIAKAGPYSMFCKLINLWKEICTPREVASKVKHFFRMYSVNRHKMTTLTPSYHAENYSPDDNRFDLRPFLYNTTWSWQFRCIDNQVSHLEKKEGISVAEDTD"
## 
## $NP_001120406.1
## [1] "MGRKVTVATCALNQWALDFEGNLNRILRSISIAKEKKARYRLGPELEICGYGCSDHFYESDTIFHSFQVLAKLLESPETTDIICDVGMPVMHKNVRYNCRVIFLNRKILLIRPKMVMANEGNYRELRWFTPWSRIREVEDFFLPRTIQCITGQITVPFGDAVIATKDTCVGTEICEELWAPNSPHIDMGLDGVEIITNGSASHHELRKAYLRVDLIKSTTAKNGGIYLLSNMKGCDSDRLYFDGCAMVSLNGDIVAQGSQFSLTDVEVLTATLDLEDVRSYRAQISSRCISASRVRPFHRVHVDFSLSSFDDLDLPTNDLIQWKYHTPEEEISLGPACWLWDYLRRSKQSGFLLPLSGGVDSSAVACIVYSMCTLVCEAVATGNGDVLTEVQGIVQDDTYLPTSPQDLCKRILTTCYMASENSSQDTHDRAKHLAEQIGSYHLTPKIDGAVKAIMNIFQVVTGKVPKFRAHGGSGRENLALQNVQARIRMVIAYLFAQLSLWARGLEGGLLVLGSANVDESLRGYLTKYDCSSADLNPIGGISKTDLRGFIQYSIDRFQLHALKGIMSAPPTAELEPLTDGKVSQTDEDDMGMTYAELSVYGKLRKVLKAGPYSMFCKLLLMWKNICTPKQVADKVKHFFRTYSINRHKMTTLTPAYHAESYSPDDNRFDLRPFLYNTAWNWQFRCIDNEVSHLERNRDANISEEID"
## 
## $NP_001092723.1
## [1] "MGRKVTLATCSLNQWALDFDGNLGRILKSIEIAKQKGAKYRLGPELEICGYGCADHFYESDTLLHCFQVLKSLLESPLTQDIICDVGMPVMHHNVRYNCRVIFLNKKILFIRPKMLLANYGNNREFRWFSPWSRPRYVEEYFLPRMIQDVTEQSTVPFGDVVLSTIDTCIGSEICAELWNPRSPHVDMGLDGIEIFTNSSASYHELRKADHRVNLVKSATTKSGGIYMFANQRGCDGDRLYYDGCAMIAINGDIVARGAQFSLEDVEVVTATLDLEDVRSYRGERCHPHMEYEHKPYQRIKTDFSLSDCDDRCLPTHQPVEWIFHTPEEEISLGPACWLWDYLRRSGQAGFLLPLSGGVDSSSSACIVYSMCVQICQAVEHGNCQVLEDVQRVVGDSSYRPQDPRELCGRLFTTCYMASENSSEDTRNRAKDLAAQIGSNHLNINIDMAVKAMLGIFSMVTGKWPQFRANGGSARENLALQNVQARIRMVLAYLFAQLCLWAQGKTGGLLVLGSANVDESLTGYFTKYDCSSADINPIGGVSKTDLKGFLEYCVKRLQLTSLIGILEAPPTAELEPLTDGKVVQTDEADMGMTYSELSVIGRLRKISKCGPYSMFCKLISSWKDTFSPSQVATKVKHFFRMYSINRHKMTTVTPSYHADSYGPDDNRFDLRPFLYNTRWSWQFRCIDNEVAKME"
names(NADSYN1_list)
##  [1] "NP_060631.2"    "XP_001174076.2" "XP_001098992.2" "XP_540795.4"   
##  [5] "NP_001029615.1" "NP_084497.1"    "NP_852145.1"    "NP_001006465.1"
##  [9] "NP_001120406.1" "NP_001092723.1"
length( NADSYN1_list )
## [1] 10

Each entry is a full entry with no spaces or parsing, and no header

NADSYN1_list[1]
## $NP_060631.2
## [1] "MGRKVTVATCALNQWALDFEGNLQRILKSIEIAKNRGARYRLGPELEICGYGCWDHYYESDTLLHSFQVLAALVESPVTQDIICDVGMPVMHRNVRYNCRVIFLNRKILLIRPKMALANEGNYRELRWFTPWSRSRHTEEYFLPRMIQDLTKQETVPFGDAVLVTWDTCIGSEICEELWTPHSPHIDMGLDGVEIITNASGSHQVLRKANTRVDLVTMVTSKNGGIYLLANQKGCDGDRLYYDGCAMIAMNGSVFAQGSQFSLDDVEVLTATLDLEDVRSYRAEISSRNLAASRASPYPRVKVDFALSCHEDLLAPISEPIEWKYHSPEEEISLGPACWLWDFLRRSQQAGFLLPLSGGVDSAATACLIYSMCCQVCEAVRSGNEEVLADVRTIVNQISYTPQDPRDLCGRILTTCYMASKNSSQETCTRARELAQQIGSHHISLNIDPAVKAVMGIFSLVTGKSPLFAAHGGSSRENLALQNVQARIRMVLAYLFAQLSLWSRGVHGGLLVLGSANVDESLLGYLTKYDCSSADINPIGGISKTDLRAFVQFCIQRFQLPALQSILLAPATAELEPLADGQVSQTDEEDMGMTYAELSVYGKLRKVAKMGPYSMFCKLLGMWRHICTPRQVADKVKRFFSKYSMNRHKMTTLTPAYHAENYSPEDNRFDLRPFLYNTSWPWQFRCIENQVLQLERAEPQSLDGVD"

Make each entry of the list into a vector. There are several ways to do this.

NADSYN1_vector <- unlist( NADSYN1_list )

Name the vector

names( NADSYN1_list )
##  [1] "NP_060631.2"    "XP_001174076.2" "XP_001098992.2" "XP_540795.4"   
##  [5] "NP_001029615.1" "NP_084497.1"    "NP_852145.1"    "NP_001006465.1"
##  [9] "NP_001120406.1" "NP_001092723.1"
names( NADSYN1_vector ) <- names( NADSYN1_list )

PID table

Do pairwise alignments for humans, chimps and 2-other species.

NADSYN1_human      <- NADSYN1_vector["NP_060631.2"]
NADSYN1_chimp      <- NADSYN1_vector["XP_001174076.2"]
NADSYN1_rhesusmonkey     <- NADSYN1_vector["XP_001098992.2"]
NADSYN1_cattle  <- NADSYN1_vector["NP_001029615.1"]

align.human.chimp      <- Biostrings::pairwiseAlignment(NADSYN1_human, NADSYN1_chimp)
align.human.rhesusmonkey     <- Biostrings::pairwiseAlignment(NADSYN1_human, NADSYN1_rhesusmonkey)
align.human.cattle  <- Biostrings::pairwiseAlignment(NADSYN1_human, NADSYN1_cattle)
align.chimp.rhesusmonkey     <- Biostrings::pairwiseAlignment(NADSYN1_chimp, NADSYN1_rhesusmonkey)
align.chimp.cattle  <- Biostrings::pairwiseAlignment(NADSYN1_chimp, NADSYN1_cattle)
align.rhesusmonkey.cattle <- Biostrings::pairwiseAlignment(NADSYN1_rhesusmonkey, NADSYN1_cattle)

Build matrix

pids <- c(1,NA, NA,NA,
          Biostrings::pid(align.human.chimp), 1, NA, NA,
          Biostrings::pid(align.human.rhesusmonkey), Biostrings::pid(align.human.cattle), 1,NA,
          Biostrings::pid(align.chimp.rhesusmonkey), Biostrings::pid(align.chimp.cattle), Biostrings::pid(align.rhesusmonkey.cattle), 1)

mat <- matrix(pids, nrow = 4, byrow = T)
row.names(mat) <- c("Homo","Chimp","Rhesus","Cattle")   
colnames(mat) <- c("Homo","Chimp","Rhesus","Cattle")   

pander::pander(mat)  
  Homo Chimp Rhesus Cattle
Homo 1 NA NA NA
Chimp 99.15 1 NA NA
Rhesus 91.7 90.37 1 NA
Cattle 91.43 90.1 86.26 1

PID methods comparison

Compare different PID methods. I did this for Humans vs. chimps

PID1 <- Biostrings::pid(align.human.chimp, type="PID1")
PID2 <- Biostrings::pid(align.human.chimp, type="PID2")
PID3 <- Biostrings::pid(align.human.chimp, type="PID3")
PID4 <- Biostrings::pid(align.human.chimp, type="PID4")

method <- c("PID1", "PID2", "PID3", "PID4")

PID <- c( PID1, PID2, PID3, PID4 )

pid.comparison <- data.frame( method, PID )

pander::pander(pid.comparison)
method PID
PID1 99.15
PID2 99.29
PID3 99.29
PID4 99.22

Multiple Sequence Alignment

MSA data preparation *my MSA package was not working so I just commented this out

For use with R bioinformatics tools we need to convert our named vector to a string set using Biostrings::AAStringSet(). Note the _ss tag at the end of the object we’re assigning the output to, which designates this as a string set.

NADSYN1_vector_ss <- Biostrings::AAStringSet( NADSYN1_vector )

Building Multiple Sequence Alignment (MSA)

NADSYN1_align <- msa(NADSYN1_vector_ss, method = "ClustalW")
## use default substitution matrix

Cleaning / Setting up an MSA

msa produces a species MSA object

class( NADSYN1_align )
## [1] "MsaAAMultipleAlignment"
## attr(,"package")
## [1] "msa"
is( NADSYN1_align )
## [1] "MsaAAMultipleAlignment" "AAMultipleAlignment"    "MsaMetaData"           
## [4] "MultipleAlignment"

Default output of MSA

NADSYN1_align
## CLUSTAL 2.1  
## 
## Call:
##    msa(NADSYN1_vector_ss, method = "ClustalW")
## 
## MsaAAMultipleAlignment with 10 rows and 727 columns
##      aln                                                   names
##  [1] MGRKVTVATCALNQWALDFEGNFQR...TREEQVLEHFKEPSPIWKQLLPKDP NP_084497.1
##  [2] MGRKVTVATCALNQWALDFEGNFQR...TLEEQIQEHFKEPSPIWKQLLPKDP NP_852145.1
##  [3] MGRKVTVATCALNQWALDFEGNLQR...SLDGVD------------------- NP_060631.2
##  [4] MGRKVTVATCALNQWALDFEGNLQR...SLDGVD------------------- XP_001174076.2
##  [5] MGRKVTVATCALNQWALDFEGNLQR...SLDGVD------------------- XP_001098992.2
##  [6] MGRKVTVAACALNQWALDFQGNLQR...DLDGVD------------------- XP_540795.4
##  [7] MGRKVTVATCALNQWALDFEGNLQR...ELDGVD------------------- NP_001029615.1
##  [8] MGRAVSVAACALNQWALDFEGNAER...SVAEDTD------------------ NP_001006465.1
##  [9] MGRKVTVATCALNQWALDFEGNLNR...NISEEID------------------ NP_001120406.1
## [10] MGRKVTLATCSLNQWALDFDGNLGR...------------------------- NP_001092723.1
##  Con MGRKVTVATCALNQWALDFEGNLQR...?LDGVD------------------- Consensus

Change class of alignment

class(NADSYN1_align) <- "AAMultipleAlignment"

Convert to seqinr format

NADSYN1_align_seqinr <- msaConvert(NADSYN1_align, type = "seqinr::alignment")

OPTIONAL: show output with print_msa

compbio4all::print_msa(NADSYN1_align_seqinr)
## [1] "MGRKVTVATCALNQWALDFEGNFQRILKSIQIAKGKGARYRLGPELEICGYGCWDHYHES 0"
## [1] "MGRKVTVATCALNQWALDFEGNFQRILKSIQIAKGKGARYRLGPELEICGYGCWDHYHES 0"
## [1] "MGRKVTVATCALNQWALDFEGNLQRILKSIEIAKNRGARYRLGPELEICGYGCWDHYYES 0"
## [1] "MGRKVTVATCALNQWALDFEGNLQRILKSIEIAKNRGARYRLGPELEICGYGCWDHYYES 0"
## [1] "MGRKVTVATCALNQWALDFEGNLQRILKSIEIAKNRGARYRLGPELEICGYGCWDHYYES 0"
## [1] "MGRKVTVAACALNQWALDFQGNLQRILKSIEIAKRKGARYRLGPELEICGYGCWDHYYES 0"
## [1] "MGRKVTVATCALNQWALDFEGNLQRILKSIEIAKHRGARYRLGPELEICGYGCWDHYYES 0"
## [1] "MGRAVSVAACALNQWALDFEGNAERILRSISIAKSKGARYRLGPELEICGYGCADHYYES 0"
## [1] "MGRKVTVATCALNQWALDFEGNLNRILRSISIAKEKKARYRLGPELEICGYGCSDHFYES 0"
## [1] "MGRKVTLATCSLNQWALDFDGNLGRILKSIEIAKQKGAKYRLGPELEICGYGCADHFYES 0"
## [1] " "
## [1] "DTLLHSLQVLAALLDSPVTQDIICDVGMPIMHRNVRYNCRVIFLN-RKILLIRPKMALAN 0"
## [1] "DTLLHSLQVLAALLDAPATQDIICDVGMPIMHRNVRYNCLVIFLN-RKILLIRPKMALAN 0"
## [1] "DTLLHSFQVLAALVESPVTQDIICDVGMPVMHRNVRYNCRVIFLN-RKILLIRPKMALAN 0"
## [1] "DTLLHSFEVLAALLESPVTQDIICDVGMPVMHRNVRYNCRVIFLTGRKILLIRPKMALAN 0"
## [1] "DTLLHSFQVLAALLESPVTQDIICDVGMPVMHRNVRYNCRVIFLN-RKILLIRPKMALAN 0"
## [1] "DTLLHSLQVLAALLESPVTQDIICDVGMPVLHRNVRYNCRVIFLN-RRILLIRPKMALAN 0"
## [1] "DTLLHSLQVLAALLESPVTQDIICDVGMPVMHRNVRYNCRVIFLN-RKILLIRPKMALAN 0"
## [1] "DTLLHSFQVLAKLLESPATQDIICDVGMPLMHRNVRYNCRVIFLN-KKILLIRPKISLAN 0"
## [1] "DTIFHSFQVLAKLLESPETTDIICDVGMPVMHKNVRYNCRVIFLN-RKILLIRPKMVMAN 0"
## [1] "DTLLHCFQVLKSLLESPLTQDIICDVGMPVMHHNVRYNCRVIFLN-KKILFIRPKMLLAN 0"
## [1] " "
## [1] "EGNYRELRWFTPWTRSRQTEEYVLPRMLQDLTKQKTVPFGDVVLATQDTCVGSEICEELW 0"
## [1] "EGNYRELRWFTPWARSRQTEEYVLPRMLQDLTKQETVPFGDVVLATQDTCIGSEICEELW 0"
## [1] "EGNYRELRWFTPWSRSRHTEEYFLPRMIQDLTKQETVPFGDAVLVTWDTCIGSEICEELW 0"
## [1] "EGNYRELRWFTPWSRSRHTEEYFLPRMIQDLTKQETVPFGDAVLVTWDTCIGSEICEELW 0"
## [1] "EGNYRELRWFTPWSRSRHTEEYLLPRMIQDLTKQETAPFGDAVLATWDTCIGSEICEELW 0"
## [1] "EGNYRELRWFTPWSRSRQTEEYFLPRMIQDVTKQETVPFGDAVLATRDTCIGSEICEELW 0"
## [1] "EGNYRELRWFTPWSRSRQTEEYFLPRMLQDLTKQETVPFGDAVLSTWDTCIGSEVCEELW 0"
## [1] "AGNYRELRWFTPWNKARHVEEYLLPRIIQEVTGQDTVPFGDAVLATKDTCLGTEICEELW 0"
## [1] "EGNYRELRWFTPWSRIREVEDFFLPRTIQCITGQITVPFGDAVIATKDTCVGTEICEELW 0"
## [1] "YGNNREFRWFSPWSRPRYVEEYFLPRMIQDVTEQSTVPFGDVVLSTIDTCIGSEICAELW 0"
## [1] " "
## [1] "TPRSPHIDMGLDGVEIITNASGSHHVLRKAHTRVDLVTMATSKNGGIYLLANQKGCDGDR 0"
## [1] "TPCSPHVNMGLDGVEIITNASGSHHVLRKAHTRVDLVTMATSKNGGIYLLANQKGCDGHL 0"
## [1] "TPHSPHIDMGLDGVEIITNASGSHQVLRKANTRVDLVTMVTSKNGGIYLLANQKGCDGDR 0"
## [1] "TPHSPHIDMGLDGVEIITNASGSHHVLRKANTRVDLVTMVTSKNGGIYLLANQKGCDGDR 0"
## [1] "TPHSPHIDMGLDGVEIITNASGSHHVLRKANTRVDLVTMATSKNGGIYLLANQKGCDGDR 0"
## [1] "TPHSPHVDMGLDGVEIFTNASGSHHVLRKAHARVDLVTMATTKNGGIYLLANQKGCDGDR 0"
## [1] "TPHSPHVDMGLDGVEIFTNASGSHHVLRKAHARVDLVTMATTKNGGIYLLANQKGCDGDR 0"
## [1] "APNSPHIEMGLDGVEIFTNSSGSHHVLRKAHTRVDLVNSATAKNGGIYILSNQKGCDGDR 0"
## [1] "APNSPHIDMGLDGVEIITNGSASHHELRKAYLRVDLIKSTTAKNGGIYLLSNMKGCDSDR 0"
## [1] "NPRSPHVDMGLDGIEIFTNSSASYHELRKADHRVNLVKSATTKSGGIYMFANQRGCDGDR 0"
## [1] " "
## [1] "LYYDGCAMIAMNGSIFAQGTQFSLDDVEVLTATLDLEDVRSYKAEISSRNLEATRVSPYP 0"
## [1] "LYYDGCAMIAMNGSIFAQGTQFSLDDVEVLTATLDLEDVRSYRAKISSRNLEATRVNPYP 0"
## [1] "LYYDGCAMIAMNGSVFAQGSQFSLDDVEVLTATLDLEDVRSYRAEISSRNLAASRASPYP 0"
## [1] "LYYDGCAMIAMNGSVFAQGSQFSLDDVEVLTATLDLEDVRSYRAEISSRNLAASRASPYP 0"
## [1] "LYYDGCAMIAMNGSVFAQGSQFSLDDVEVLTATLDLEDVRSYRAEISSRNLAASRASPYP 0"
## [1] "LYYDGCALIAMNGHIFAQGSQFSLDDVEVLTATLDLEDVRSYRAEISSRNLAASRVSPYP 0"
## [1] "LYYDGCALIAMNGSIFAQGSQFSLDDVEVLTATLDLEDIRSYRAEISSRNLAASRVSPYP 0"
## [1] "LYYDGCAMISMNGETVAQGSQFSLDDVEVLVATLDLEDVRSYRAEISSRNLAASKVNPFP 0"
## [1] "LYFDGCAMVSLNGDIVAQGSQFSLTDVEVLTATLDLEDVRSYRAQISSRCISASRVRPFH 0"
## [1] "LYYDGCAMIAINGDIVARGAQFSLEDVEVVTATLDLEDVRSYRGERCHPHMEYEHK-PYQ 0"
## [1] " "
## [1] "RVTVDFALSVSEDLLEPVSEPMEWTYHRPEEEISLGPACWLWDFLRRSKQAGFFLPLSGG 0"
## [1] "RVTVDFALSVSEDLLEPVSEPVEWTYHRPEEEISLGPACWLWDFLRRNNQAGFFLPLSGG 0"
## [1] "RVKVDFALSCHEDLLAPISEPIEWKYHSPEEEISLGPACWLWDFLRRSQQAGFLLPLSGG 0"
## [1] "RVKVDFALSCHEDLLAPISEPIEWKYHSPEEEISLGPACWLWDFLRRSQQAGFLLPLSGG 0"
## [1] "RVKVDFALSCHEDLLAPVSEPIEWKYHSPEEEISLGPACWLWDFLRRSQQGGFLLPLSGG 0"
## [1] "RVKVDFALSCREDLLEPPSEPVEWMYHSPAEEISLGPACWLWDFLRRSRQAGFFLPLSGG 0"
## [1] "RVKVDFALSCHEDLLEPVSEPIEWKYHSPAEEISLGPACWLWDFLRRSRQAGFFLPLSGG 0"
## [1] "RIKVNFALSCSDDLSVPICVPIQWRHHSPEEEICLGPACWLWDYLRRSKQAGFLLPLSGG 0"
## [1] "RVHVDFSLSSFDDLDLPTNDLIQWKYHTPEEEISLGPACWLWDYLRRSKQSGFLLPLSGG 0"
## [1] "RIKTDFSLSDCDDRCLPTHQPVEWIFHTPEEEISLGPACWLWDYLRRSGQAGFLLPLSGG 0"
## [1] " "
## [1] "VDSAASACIVYSMCCLVCDAVKSGNQQVLTDVQNLVDESSYTPQDPRELCGRLLTTCYMA 0"
## [1] "VDSAASACVVYSMCCLVCEAVKSGNQQVLTDVQNLVDESSYTPQDPRELCGRLLTTCYMA 0"
## [1] "VDSAATACLIYSMCCQVCEAVRSGNEEVLADVRTIVNQISYTPQDPRDLCGRILTTCYMA 0"
## [1] "VDSAATACLIYSMCCQVCEAVRSGNEEVLADVRTIVNQISYTPQDPRDLCGRILTTCYMA 0"
## [1] "VDSAATACLVYSMCCQVCKSVRSGNQEVLADVRTIVNQISYTPQDPRDLCGRILTTCYMA 0"
## [1] "VDSAATACLVYSMCRQVCEAVRNGNQEVLADVRAIVDQLSYTPQDPRDLCGRLLTTCYMA 0"
## [1] "VDSAATACLVYSMCHQVCEAVKRGNLEVLADVRTIVNQLSYTPQDPRELCGRVLTTCYMA 0"
## [1] "IDSSATACIVYSMCRQVCLAVKNGNSEVLADARKIVHDETYIPEDPQEFCKRVFTTCYMA 0"
## [1] "VDSSAVACIVYSMCTLVCEAVATGNGDVLTEVQGIVQDDTYLPTSPQDLCKRILTTCYMA 0"
## [1] "VDSSSSACIVYSMCVQICQAVEHGNCQVLEDVQRVVGDSSYRPQDPRELCGRLFTTCYMA 0"
## [1] " "
## [1] "SENSSQETHSRATKLAQLIGSYHINLSIDTAVKAVLG-IFSLMTGKLPRFSAHGGSSREN 0"
## [1] "SENSSQETHNRATELAQQIGSYHISLNIDPAVKAILG-IFSLVTGKFPRFSAHGGSSREN 0"
## [1] "SKNSSQETCTRARELAQQIGSHHISLNIDPAVKAVMG-IFSLVTGKSPLFAAHGGSSREN 0"
## [1] "SKNSSQETCTRARELAQQIGSHHISLNIDPAVKAVMG-IFSLVTGKSPLFAAHGGSSREN 0"
## [1] "SKNSSQETCTRARELAQQIGRWIL------YVRTVEGEHLSREERLGSIWNVPSGALG-- 0"
## [1] "SENSSQETCDRAKELARQIGSHHIGLNIDPAVTAVVG-IFSLVTGKRPLFAAHGGSSREN 0"
## [1] "SENSSQETCDRARELAQQIGSHHIGLHIDPVVKALVG-LFSLVTGASPRFAVHGGSDREN 0"
## [1] "SENSSQDTRNRAKLLAEQIGSYHINLNIDAAVKAIVG-IFSMVTGRTPRFSVYGGSRREN 0"
## [1] "SENSSQDTHDRAKHLAEQIGSYHLTPKIDGAVKAIMN-IFQVVTGKVPKFRAHGGSGREN 0"
## [1] "SENSSEDTRNRAKDLAAQIGSNHLNINIDMAVKAMLG-IFSMVTGKWPQFRANGGSAREN 0"
## [1] " "
## [1] "LALQNVQARIRMVLAYLFAQLSLWSRGARGSLLVLGSANVDESLLGYLTKYDCSSADINP 0"
## [1] "LALQNVQARIRMVLAYLFAQLSLWSRGARGSLLVLGSANVDESLLGYLTKYDCSSADINP 0"
## [1] "LALQNVQARIRMVLAYLFAQLSLWSRGVHGGLLVLGSANVDESLLGYLTKYDCSSADINP 0"
## [1] "LALQNVQARIRMVLAYLFAQLSLWSRGVHGGLLVLGSANVDESLLGYLTKYDCSSADINP 0"
## [1] "QSLQNVQARIRMVLAYLFAQLSLWSRGIRGGLLVLGSANVDESLLGYLTKYDCSSADINP 0"
## [1] "LALQNVQARLRMVLAYLFAQLSLWARGARGGLLVLGSANVDESLLGYLTKYDCSSADINP 0"
## [1] "LALQNVQARVRMVIAYLFAQLSLWSRGAPGGLLVLGSANVDESLLGYLTKYDCSSADINP 0"
## [1] "LALQNVQARVRMVPAYLFAQLTLWTRGMPGGLLVLGSANVDESLRGYLTKYDCSSADINP 0"
## [1] "LALQNVQARIRMVIAYLFAQLSLWARGLEGGLLVLGSANVDESLRGYLTKYDCSSADLNP 0"
## [1] "LALQNVQARIRMVLAYLFAQLCLWAQGKTGGLLVLGSANVDESLTGYFTKYDCSSADINP 0"
## [1] " "
## [1] "IGGISKTDLRAFVQFCAERFQLPVLQTILSAPATAELEPLADGQVSQMDEEDMGMTYAEL 0"
## [1] "IGGISKTDLRAFVQLCAERFQLPVLQAILSAPATAELEPLADGQVSQMDEEDMGMTYTEL 0"
## [1] "IGGISKTDLRAFVQFCIQRFQLPALQSILLAPATAELEPLADGQVSQTDEEDMGMTYAEL 0"
## [1] "IGGISKTDLRVFVQFCIQRFQLPALQSILLAPATAELEPLADGQVSQTDEEDMGMTYAEL 0"
## [1] "IGGISKTDLRAFVQFCIERFQLTALQSIVSAPATAELEPLADGQVSQTDEEDMGMTYAEL 0"
## [1] "IGGISKTDLKAFVHFCMEHFQLPALQRILAAPATAELEPLTDGQVSQTDEEDMGMTYAEL 0"
## [1] "IGGISKTDLRAFVQLCVERFQLPALQSILAAPATAELEPLAHGRVSQTDEEDMGMTYAEL 0"
## [1] "IGGISKTDLKNFIQYCIENFQLTALRSIMAAPPTAELEPLMDGQVSQTDEADMGMTYAEL 0"
## [1] "IGGISKTDLRGFIQYSIDRFQLHALKGIMSAPPTAELEPLTDGKVSQTDEDDMGMTYAEL 0"
## [1] "IGGVSKTDLKGFLEYCVKRLQLTSLIGILEAPPTAELEPLTDGKVVQTDEADMGMTYSEL 0"
## [1] " "
## [1] "SIFGRLRKVAKAGPYSMFCKLLNMWRDSYTPTQVAEKVKLFFSKYSMNRHKMTTLTPAYH 0"
## [1] "SIFGRLRKVAKAGPYSMFCKLLNMWKDSCTPRQVAEKVKRFFSKYSINRHKMTTLTPAYH 0"
## [1] "SVYGKLRKVAKMGPYSMFCKLLGMWRHICTPRQVADKVKRFFSKYSMNRHKMTTLTPAYH 0"
## [1] "SVYGKLRKVAKMGPYSMFCKLLGMWRHICTPRQVADKVKRFFSKYSMNRHKMTTLTPAYH 0"
## [1] "SVYGKLRKVAKMGPYSMFCKLLGMWRHVCTPRQVADKVKWFFTKHSMNRHKMTTLTPAYH 0"
## [1] "SVYGRLRKIAKAGPYSMFCKLVNMWKDACSPRQVADKVRQFFSKYAMNRHKMTTLTPAYH 0"
## [1] "SVYGRLRKVAKTGPYSMFCKLLDMWRDTCSPRQVADKVKCFFSKYSMNRHKMTTLTPAYH 0"
## [1] "SIYGKLRKIAKAGPYSMFCKLINLWKEICTPREVASKVKHFFRMYSVNRHKMTTLTPSYH 0"
## [1] "SVYGKLRKVLKAGPYSMFCKLLLMWKNICTPKQVADKVKHFFRTYSINRHKMTTLTPAYH 0"
## [1] "SVIGRLRKISKCGPYSMFCKLISSWKDTFSPSQVATKVKHFFRMYSINRHKMTTVTPSYH 0"
## [1] " "
## [1] "AENYSPDDNRFDLRPFLYNTRWPWQFLCIDNQVLQLERKASQTREEQVLEHFKEPSPIWK 0"
## [1] "AENYSPDDNRFDLRPFLYNTRWPWQFLCIDNQVVQLERKTSQTLEEQIQEHFKEPSPIWK 0"
## [1] "AENYSPEDNRFDLRPFLYNTSWPWQFRCIENQVLQLERAEPQSLDGVD------------ 0"
## [1] "AENYSPEDNRFDLRPFLYNTSWPWQFRCIENQVLQLERAEPQSLDGVD------------ 0"
## [1] "AENYSPEDNRFDLRPFLYNTSWPWQFRCIENQVLQLERAAPQSLDGVD------------ 0"
## [1] "AESYSPDDNRFDLRPFLYNSSWPWQFRCIEDQVHQLESRGPQDLDGVD------------ 0"
## [1] "AESYSPDDNRFDLRPFLYNTRWPWQFRCIENQVLQLEGRQRQELDGVD------------ 0"
## [1] "AENYSPDDNRFDLRPFLYNTTWSWQFRCIDNQVSHLEKKEGISVAEDTD----------- 0"
## [1] "AESYSPDDNRFDLRPFLYNTAWNWQFRCIDNEVSHLERNRDANISEEID----------- 0"
## [1] "ADSYGPDDNRFDLRPFLYNTRWSWQFRCIDNEVAKME----------------------- 0"
## [1] " "
## [1] "QLLPKDP 53"
## [1] "QLLPKDP 53"
## [1] "------- 53"
## [1] "------- 53"
## [1] "------- 53"
## [1] "------- 53"
## [1] "------- 53"
## [1] "------- 53"
## [1] "------- 53"
## [1] "------- 53"
## [1] " "

Finished MSA

Most sections seemed to be fairly conserved

class(NADSYN1_align) <- "AAMultipleAlignment"
ggmsa::ggmsa(NADSYN1_align, start = 50, end = 100) 

Distance Matrix

Make a distance matrix

NADSYN1_dist <- seqinr::dist.alignment(NADSYN1_align_seqinr, 
                                       matrix = "identity")

This produces a “dist” class object

is( NADSYN1_dist )
## [1] "dist"     "oldClass"
class( NADSYN1_dist )
## [1] "dist"

Round for display

NADSYN1_align_seqinr_rnd <- round(NADSYN1_dist, 3)
NADSYN1_align_seqinr_rnd
##                NP_084497.1 NP_852145.1 NP_060631.2 XP_001174076.2
## NP_852145.1          0.238                                       
## NP_060631.2          0.382       0.386                           
## XP_001174076.2       0.384       0.387       0.084               
## XP_001098992.2       0.411       0.427       0.270          0.273
## XP_540795.4          0.397       0.393       0.337          0.339
## NP_001029615.1       0.384       0.384       0.310          0.313
## NP_001006465.1       0.496       0.496       0.478          0.478
## NP_001120406.1       0.512       0.514       0.494          0.494
## NP_001092723.1       0.526       0.526       0.530          0.530
##                XP_001098992.2 XP_540795.4 NP_001029615.1 NP_001006465.1
## NP_852145.1                                                            
## NP_060631.2                                                            
## XP_001174076.2                                                         
## XP_001098992.2                                                         
## XP_540795.4             0.388                                          
## NP_001029615.1          0.357       0.308                              
## NP_001006465.1          0.501       0.480          0.483               
## NP_001120406.1          0.520       0.513          0.512          0.483
## NP_001092723.1          0.555       0.516          0.525          0.523
##                NP_001120406.1
## NP_852145.1                  
## NP_060631.2                  
## XP_001174076.2               
## XP_001098992.2               
## XP_540795.4                  
## NP_001029615.1               
## NP_001006465.1               
## NP_001120406.1               
## NP_001092723.1          0.527

Phylognetic trees of sequences

Build a phylogenetic tree from distance matrix

tree <- nj(NADSYN1_align_seqinr_rnd)

Plotting phylogenetic trees

Plot the tree

plot.phylo(tree, main="NADSYN1 Phylogenetic Tree", 
            use.edge.length = F)

mtext(text = "NADSYN1 Phylogenetic Tree - rooted, no branch lengths")